In emergency scenarios, it is usually difficult to rely on network infrastructure, especially in remote or geographically difficult-to-access locations. However, it is necessary to have tools to communicate or assess the situation. Therefore, ad hoc networks emerge as an option to solve this problem. This paper proposes the development of an emergency communication system for the transmission of multimedia traffic in a real scenario, between the different floors of a building. For this purpose, multiple experiments were carried out to determine the values of fundamental metrics (e.g., packet loss, delay, and throughput) for real-time audio and video transmission. Specifically, open-source tools were developed with the ability to extract the required metrics and objectively compare video quality using current encoding mechanisms (e.g., VP8, VP9, H.264, H.265). The results obtained show that VP8 is the most suitable codec for the proposed scenario. In addition, a videoconferencing tool was developed with the ability to adapt the video characteristics (e.g., bitrate) according to the network conditions.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ahmed, Z., Naz, S., & Ahmed, J. (2020). Minimizing transmission delays in vehicular ad hoc networks by optimized placement of road-side unit. Wireless Networks 2020 26:4, 26(4), 2905–2914. https://doi.org/10.1007/S11276-019-02198-X
Barman, N., & Martini, M. G. (2017). H.264/MPEG-AVC, H.265/MPEG-HEVC and VP9 codec comparison for live gaming video streaming. 2017 9th International Conference on Quality of Multimedia Experience, QoMEX 2017. https://doi.org/10.1109/QOMEX.2017.7965686
Bienik, J., Uhrina, M., Kuba, M., & Vaculik, M. (2016). Performance of H. 264, H. 265, VP8 and VP9 Compression Standards for High Resolutions. 2016 19th International Conference on Network-Based Information Systems (NBiS), 246–252.
Castellanos, W., Guzmán, P., Arce, P., & Guerri, J. C. (2015). Mechanisms for improving the scalable video streaming in mobile Ad hoc networks. PE-WASUN 2015 - Proceedings of the 12th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, 33–40. https://doi.org/10.1145/2810379.2810391
Dinh, T. D., Le, D. T., Tran, T. T. T., & Kirichek, R. (2019). Flying Ad-Hoc Network for Emergency Based on IEEE 802.11p Multichannel MAC Protocol. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11965 LNCS, 479–494. https://doi.org/10.1007/978-3-030-36614-8_37/COVER
Felici-castell, S., García-pineda, M., Segura-garcia, J., Fayos-jordan, R., & Lopez-ballester, J. (2021). Adaptive live video streaming on low-cost wireless multihop networks for road traffic surveillance in smart cities. Future Generation Computer Systems, 115, 741–755. https://doi.org/10.1016/j.future.2020.10.010
Frnda, J., Voznak, M., & Sevcik, L. (2016). Impact of packet loss and delay variation on the quality of real-time video streaming. Telecommunication Systems, 62(2), 265–275.
González, S., Castellanos, W., Guzmán, P., Arce, P., & Guerri, J. C. (2016). Simulation and experimental testbed for adaptive video streaming in ad hoc networks. Ad Hoc Networks, 52, 89–105. https://doi.org/10.1016/j.adhoc.2016.07.007
Grois, D., Marpe, D., Mulayoff, A., Itzhaky, B., & Hadar, O. (2013). Performance comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders. 2013 Picture Coding Symposium, PCS 2013 - Proceedings, 394–397. https://doi.org/10.1109/PCS.2013.6737766
GStreamer: open source multimedia framework. (2022). https://gstreamer.freedesktop.org/
Iliana, E., Ángel, M., & Roberto Carlos, A. (2017). Análisis del parámetro Throughput en una red Ad hoc y MANET en el estándar 802.11ac. Marzo, 3, 1–9. www.ecorfan.org/spain
Jagannath, J., Furman, S., Jagannath, A., Ling, L., Burger, A., & Drozd, A. (2019). HELPER: Heterogeneous Efficient Low Power Radio for enabling ad hoc emergency public safety networks. Ad Hoc Networks, 89, 218–235. https://doi.org/10.1016/J.ADHOC.2019.03.010
Khaliq, K. A., Chughtai, O., Shahwani, A., Qayyum, A., & Pannek, J. (2019). An Emergency Response System: Construction, Validation, and Experiments for Disaster Management in a Vehicular Environment. Sensors 2019, Vol. 19, Page 1150, 19(5), 1150. https://doi.org/10.3390/S19051150
Mauthe, A., Hutchison, D., Cetinkaya, E. K., Ganchev, I., Rak, J., Sterbenz, J. P. G., Gunkelk, M., Smith, P., & Gomes, T. (2016). Disaster-resilient communication networks: Principles and best practices. 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), 1–10.
Mengzhe, L., Xiuhua, J., & Xiaohua, L. (2015). Analysis of H.265/HEVC, H.264 and VP9 coding efficiency based on video content complexity. 2015 IEEE International Conference on Computer and Communications (ICCC), 420–424. https://doi.org/10.1109/CompComm.2015.7387608
Mohammed, A. S., Balaji B, S., S, S. B. M., N, A. P., & K, V. (2020). FCO — Fuzzy constraints applied Cluster Optimization technique for Wireless AdHoc Networks. Computer Communications, 154, 501–508. https://doi.org/10.1016/J.COMCOM.2020.02.079
National Science Foundation, A. S. U. (2000). YUV Sequences. http://trace.eas.asu.edu/yuv/
Palacios, I., Placencia, J., Muñoz, M., Samaniego, V., González, S., & Jiménez, J. (2022). MQTT Based Event Detection System for Structural Health Monitoring of Buildings. Lecture Notes in Networks and Systems, 405 LNNS, 56–70. https://doi.org/10.1007/978-3-030-96043-8_5
Pan, Z., Qin, H., Yi, X., Zheng, Y., & Khan, A. (2019). Low complexity versatile video coding for traffic surveillance system. International Journal of Sensor Networks, 30(2), 116–125. https://doi.org/10.1504/IJSNET.2019.099473
Paredes, C. I., Mezher, A. M., & Igartua, M. A. (2016). Performance Comparison of H.265/HEVC, H.264/AVC and VP9 Encoders in Video Dissemination over VANETs. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 195 LNICST, 51–60. https://doi.org/10.1007/978-3-319-61949-1_6
Rao, K. R., Bredow, J. W., Manry, M. T., Devarajan, V., Karthikeyan, R., & Dillon, W. E. (2020). Heterogeneous Transcoding for Next Generation Multimedia Video Codecs for Efficient Communication The members of the Committee approve the doctoral dissertation of SHREYANKA SUBBARAYAPPA.
Salam, H. U., Memo, S., Das, L., Rehman, A. U., & Hussain, Z. (2018). Drone Based Resilient Network Architecture for Survivals in Earthquake Zones in Pakistan. Sindh University Research Journal -Science Series, 50(001), 175–182. https://doi.org/10.26692/surj/2018.01.0031
Sharma, J., Choudhury, T., Satapathy, S. C., & Sabitha, A. S. (2019). Study on H.265/HEVC against VP9 and H.264 : on space and time complexity for codecs. Proceedings of the 2018 International Conference On Communication, Computing and Internet of Things, IC3IoT 2018, 106–110. https://doi.org/10.1109/IC3IOT.2018.8668132
Tolentino Medrano, N. A. (2021). Diseño e implementación de un nodo VANET considerando un sistema de control disparado por eventos.
Tsbmail. (2003). G.114 : Tiempo de transmisión en un sentido. https://www.itu.int/rec/T-REC-G.114-200305-I/es
Vyopta. (2019). What’s an Acceptable Amount of Packet Loss in 2019? https://www.vyopta.com/blog/video-conferencing/understanding-packet-loss/
Zhang, F., & Bull, D. R. (2014). Measuring Video Quality. 5, 227–249. https://doi.org/10.1016/B978-0-12-420149-1.00007-7
ZhangTicao, & MaoShiwen. (2019). An Overview of Emerging Video Coding Standards. GetMobile: Mobile Computing and Communications, 22(4), 13–20. https://doi.org/10.1145/3325867.3325873