The performance of the thermal envelope in buildings plays a crucial role in the energy consumption used for heating and cooling, in the well-being of occupants, as well as in the costs associated with its installation and maintenance, especially in regions with extreme climates. However, selecting the optimal thickness represents a challenge for designers since, in certain situations, as the thickness of the thermal insulation increases, the heating demand decreases while the cooling demand tends to increase. This study focused on determining the optimal insulation thicknesses in a hypothetical 1200 m² building located in Salamanca, Spain, using the EnergyPlus software to perform an annual simulation, where technical and economic aspects were considered. For the development of this work, two scenarios were established. In the first scenario, the thicknesses of expanded polystyrene (EPS) insulation in the floor, roof, and walls were independently varied, with values ranging between 0.01 m and 0.08 m. In the second scenario, the thicknesses were adjusted uniformly in these areas. The results showed that the second option was the most suitable, with a payback period of 7.9 years. These analyses considered specific climatic parameters, detailed indoor conditions, and corresponding thermal loads, offering results that enable informed decision-making regarding the design and financing of building thermal envelopes.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Al-Tamimi, N. (2021). Cost Benefit Analysis of Applying Thermal Insulation Alternatives to Saudi Residential Buildings. JES. Journal of Engineering Sciences, 49(No 2), 156–177. https://doi.org/10.21608/jesaun.2021.50485.1021
Alvear Calle, Ing. A., Sánchez, Arq. J. H., Tapia Abril, Arq. E., Ordoñez Alvarado, G., Aragón, M., Flores, C., & Heredia, E. (2016). Declaraciones consensuadas del Seminario-Taller: “Arquitectura Sostenible” Un enfoque sobre estrategias de diseño bioclimático: Caso Ecuador. Estoa. Revista de La Facultad de Arquitectura y Urbanismo de La Universidad de Cuenca, 5, 151–172.
Amani, N. (2024). Simulation-based design: minimizing energy consumption in residential buildings through optimal thermal insulation. World Journal of Engineering, ahead-of-print(ahead-of-print). https://doi.org/10.1108/WJE-04-2024-0188
Amende, K., Keen, J., Lynn, C., Tosh, M., Sneed, A., & Howell, R. (2021). Principles of Heating, Ventilating, and Air Conditioning (9th ed.). ASHRAE.
Andrade Cedillos, O. F., & Benítez Lara, O. A. (2009). La arquitectura sostenible en la formación del arquitecto [Trabajo de graduación]. Universidad de El Salvador.
Bordoloi, U., & Das, B. (2024). Enhancing thermal comfort in buildings through the integration of phase change material on the building envelope: a simulation study. IOP Conference Series: Earth and Environmental Science, 1372(1), 12089. https://doi.org/10.1088/1755-1315/1372/1/012089
Boyano, A., Hernandez, P., & Wolf, O. (2013). Energy demands and potential savings in European office buildings: Case studies based on EnergyPlus simulations. Energy and Buildings, 65, 19–28. https://doi.org/https://doi.org/10.1016/j.enbuild.2013.05.039
Esteves, A., Esteves, M. J., Mercado, M. V., Barea, G., & Gelardi, D. (2018). Building Shape that Promotes Sustainable Architecture. Evaluation of the Indicative Factors and Its Relation with the Construction Costs. Architecture Research, 8(4), 111–122. https://doi.org/10.5923/j.arch.20180804.01
Fumo, N., Mago, P., & Luck, R. (2010). Methodology to estimate building energy consumption using EnergyPlus Benchmark Models. Energy and Buildings, 42(12), 2331–2337. https://doi.org/https://doi.org/10.1016/j.enbuild.2010.07.027
Fundación de la Energía de la Comunidad de Madrid. (2012). Guía sobre materiales aislantes y eficiencia energética. https://www.fenercom.com/publicacion/guia-sobre-materiales-aislantes-y-eficiencia-energetica-2012/
International Energy Agency (IEA). (2013). Transition to Sustainable Buildings. https://www.iea.org/reports/transition-to-sustainable-buildings#
Lawrence, T., & Keen, J. (2024). High-Performance Buildings Simplified (2nd ed.). ASHRAE.
Mercado, M. V., & Barea, G. (2019). INFLUENCIA DE LA AISLACIÓN TÉRMICA DE LA ENVOLVENTE EN EL CONSUMO ENERGÉTICO DE VIVIENDAS EN LA ESTACIÓN DE VERANO. In IBPSA 2019 (Ed.), 6° Congreso Sudamericano de Simulación de Edificios.
Ounis, S., Aste, N., Butera, F. M., Pero, C. Del, Leonforte, F., & Adhikari, R. S. (2022). Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value. Energies, 15(10). https://doi.org/10.3390/en15103570
Spitler, J. (2014). Load Calculation Applications Manual (2nd ed.). ASHRAE.
U.S. Department of Energy’s (DOE) Building Technologies Office (BTO). (n.d.). EnergyPlus Licensing. Retrieved October 9, 2024, from https://energyplus.net/licensing
Weber Saint-Gobain. (n.d.). webertherm PLACA EPS. Retrieved October 14, 2024, from https://www.es.weber/sate/materiales-aislantes/webertherm-placa-eps
Yang, W., Lin. Yaolin, & Fatourehchi, D. (2024). Thermal comfort. In C. Candido, I. Durakovic, & S. Marzban (Eds.), Routledge Handbook of High-Performance Workplaces (1st ed., pp. 62–78). Routledge.
Yu, J., Yang, C., & Tian, L. (2008). Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy and Buildings, 40(8), 1536–1546. https://doi.org/https://doi.org/10.1016/j.enbuild.2008.02.020
Yu, J., Yang, C., Tian, L., & Liao, D. (2009). A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Applied Energy, 86(11), 2520–2529. https://doi.org/https://doi.org/10.1016/j.apenergy.2009.03.010

