Small-scale farming is an emerging trend that seeks not only to raise awareness about self-sustainability but also to promote responsible agricultural practices, reduce the ecological footprint, and encourage the consumption of fresh and local food. One identified issue is the lack of automation, especially in irrigation. In this context, the objective of the project is to design an automated irrigation system using the Internet of Things, managed through a mobile application. The methodology used was based on service project design, incorporating techniques such as strategic planning, needs analysis, and resource management. Sensors and sprinklers adapted to the terrain were distributed, collecting data on soil moisture, pH, and temperature. This information was stored in the cloud for consultation and management via a mobile device. The results of the system show greater efficiency in rational water use, higher productivity, reduced manual labor, real-time remote monitoring, and the collection of historical data to enhance future agricultural practices. This approach not only optimizes resources but also promotes more sustainable and environmentally conscious farming.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ajagbe, S. A., Adeaga, O. A., Alabi, O. O., Ikotun, A. B., Akintunde, M. A., & Adigun, M. O. (2024). Design and development of arduino-based automation home system using the internet of things. Indonesian Journal of Electrical Engineering and Computer Science, 33(2), 767-776. https://doi.org/10.11591/ijeecs.v33.i2.pp767-776
Akhund, T., Newaz, N., Zaman, Z., Sultana, A., Barros, A. & Whaiduzzaman, M. (2022). Iot-based low-cost automated irrigation system for smart farming. In Intelligent Sustainable Systems: Selected Papers of WorldS4 2021, 1: 83-91. Springer Singapore. https://doi.org/10.1007/978-981-16-6309-3_9
Albalasmeh, A., Al-Quraan, N. & Shatanawi, W. (2022). Evaluating irrigation systematization effects on agricultural productivity in arid areas: Application of SWAT and GIS modeling. International Journal of Environmental Science and Technology, 19(2): 729-748. https://doi.org/10.1007/s13762-021-03365-w
Arora P. y Sharma, D. (2022). Impacto del riego en la productividad agrícola y la seguridad alimentaria: una revisión. Agua, 14(11): 2404. https://doi.org/10.3390/w14112404
Atalla, S., Tarapiah, S., Gawanmeh, A., Daradkeh, M., Mukhtar, H., Himeur, Y,... & Daadoo, M. (2023). IoT-Enabled Precision Agriculture: Developing an Ecosystem for Optimized Crop Management. Information, 14(4): 205. https://doi.org/10.3390/info14040205
Barragán, L. y Ardilana, L. (2022). Posibilidades y dificultades de una autonomía alimentaria en Colombia. Aproximación desde el caso de la comunidad nasa y los campesinos de la altillanura. Diálogo Andino, 69: 237-251. http://dx.doi.org/10.4067/S0719-26812022000300237.
Benavides, T. L. G., Moreno, P. A., Manrique, C. M. A. y Márquez, D. J. E. (2024). Drones para el catastro multipropósito y el ordenamiento territorial: un vuelo hacia la eficiencia y la transparencia. EIEI ACOFI, 1-11. https://doi.org/10.26507/paper.3657
CEPAL. (2019). Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2019-2020. CEPAL, FAO, IICA, San José, Costa Rica. https://repositorio.cepal.org/bitstream/handle/11362/45111/1/CEPAL-FAO2019-2020_es.pdf
David, M., Yommi, Á. y Sánchez, E. (2020). Elección del terreno y plantación del cultivo de kiwi. Ediciones INTA.
Farooq, S., Riaz, A., Abid, T. Umer, R.& Zikria, Y. (2020). Papel de la tecnología IoT en la agricultura: una revisión sistemática de la literatura. Electrónics, 9(21): 319. https://doi.org/10.3390/electronics9020319
Gnanavel, S., Sreekrishna, M., DuraiMurugan, N., Jaeyalakshmi, M. & Loksharan, S. (2022). The Smart IoT based Automated Irrigation System using Arduino UNO and Soil Moisture Sensor. 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2022, pp. 188-191, doi: 10.1109/ICSSIT53264.2022.9716368.
Góngora, D., Morales, E., Trujillo, G. y Torres, M. (2023). Caracterización de los procesos en el beneficio del cacao (Theobroma cacao L) en producciones a pequeña escala en el municipio de Guamal del Piedemonte llanero colombiano. TecnoLógicas, 26(57): e2633-e2633. https://doi.org/10.22430/22565337.2633
Gupta, V. & Sharma, K. (2022). Irrigation and food security: A review of the literature. Agricultural Economics Research Review, 35(1): 1-13. https://doi.org/10.17523/aer.2022.35.1.1-13
Habib, S., Alyahya, S., Islam, M., Alnajim, A., Alabdulatif, A. & Alabdulatif, A. (2022). Design and Implementation: An IoT-Framework-Based Automated Wastewater Irrigation. System. Electronics, 12(1): 28. https://doi.org/10.3390/electronics12010028
Herrera, C., Salgado, G., Manuel, V., Higuera, O., Barrales, C., Delgado, A. y Reyes, C. (2022). Producción y caracterización de vainilla (Vanilla planifolia) en función de la concentración de vainillina. Revista. Iberoamericana de Ciencias 9 (2):46-62. https://www.researchgate.net/publication/364825070
Huang, X., Wang, Y., Zhang, X. & Ge, Y. (2022). Soil fertility and crop yield under three irrigation systems in Northwest China. Agricultural Water Management, 254: 107390. https://doi.org/10.1016/j.agwat.2021.107390
Khan, M., Ray, R., Sargani, G., Ihtisham, M., Khayyam, M. & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9): 4883. https://doi.org/10.3390/su13094883
Kumar, D., Kumar, P. & Dhyani, S. (2021). Systematic Irrigation: A Boon for Sustainable Agriculture. Water, 13(7): 942. https://doi.org/10.3390/w13070942
Maraveas, C. y Bartzanas, R. (2022). Aplicación de internet de las cosas (IoT) para entornos de invernadero optimizados. Magna Scientia UCEVA, 2(2): 253-268. https://doi.org/10.54502/msuceva.v2n2a11
Marques, G., Pitarma, R., M. Garcia, N., & Pombo, N. (2019). Internet of things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics, 8(10): 1081. https://doi.org/10.3390/electronics8101081
Márquez, D. J. E. (2023). Technological developments and implications of autonomous military drones: prospects in global geopolitics. Revista Tecnológica - ESPOL, 35(1), 137–151. https://doi.org/10.37815/rte.v35n1.1018
Martínez, A., Guevara, H., Arias, L., Rodríguez, L., Pinto, R. y Aguilar, C. (2020). Caracterización de productores de maíz e indicadores de sustentabilidad en Chiapas. Revista Mexicana de Ciencias Agrícolas, 11(5): 1031-1042. https://doi.org/10.29312/remexca.v11i5.2189
Martínez, R., Vela, M., el Aatik, A., Murray, E., Roche, P. & Navarro, J. (2020). On the use of an IoT integrated system for water quality monitoring and management in wastewater treatment plants. Water, 12(4): 1096. https://doi.org/10.3390/w12041096
Mejía, V., Gómez, P. y Pinedo, T. (2021). Caracterización De Las Unidades Productivas Del Cultivo De Kiwicha (Amaranthus Caudatus) En Las Provincias De Yungay, Huaylas Y Carhuaz, En El Departamento De Áncash, Perú. Ciencia y Tecnología Agropecuaria, 22(1), 1-20. https://doi.org/10.21930/rcta.vol22_num1_art:1440
Nhamo, L., Magidi, J., Nyamugama, A., Clulow, A., Sibanda, M., Chimonyo, V. & Mabhaudhi, T. (2020). Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture, 10(7): 256. https://doi.org/10.3390/agriculture10070256
Nord, J., Koohang, A. & Paliszkiewicz, J. (2019). The Internet of Things: Review and theoretical framework. Expert Systems with Applications, 133: 97-108. https://doi.org/10.1016/j.eswa.2019.05.014
Puig, F., Rodríguez, D. & Soriano, M. (2022). Development of a Low-Cost Open-Source Platform for Smart Irrigation Systems. Agronomy, 12(12): 2909. https://doi.org/10.3390/agronomy12122909
Rana, R., Kumar, S. & Sehgal, V. (2020). An Assessment of Conventional and Micro Irrigation System for Crop Planning during Normal and Deficit Rainfall Years. Irrigation and Drainage, 69(4): 726-739. https://doi.org/10.1002/ird.2469
Roitsch, T., Cabrera-Bosquet, L., Fournier, A., Ghamkhar, K., Jiménez-Berni, J., Pinto, F. & Ober, E. (2019). New sensors and data-driven approaches—A path to next generation phenomics. Plant Science, 282: 2-10. https://doi.org/10.1016/j.plantsci.2019.01.011
Shahid, M., Chang, V., Sharif, M. & Sarwar, A. (2022). Streamlining water delivery systems in Asian irrigated agriculture: Untapped potential for productivity enhancement and environmental sustainability. Land Use Policy, 111(105785): https://doi.org/10.1016/j.landusepol.2021.105785
Sotomayor, O., Ramírez E. y Martínez H. (coords.). (2021). Digitalización y cambio tecnológico en las mipymes agrícolas y agroindustriales en América Latina. Documentos de Proyectos (LC/TS.2021/65), Santiago, Comisión Económica para América Latina y el Caribe (CEPAL)/Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO).
Tamayo, O. & Alegre, O. J. (2022). Asociación de cultivos, alternativa para el desarrollo de una agricultura sustentable. Siembra, 9(1): 1-21. https://doi.org/10.29166/siembra.v9i1.3287
Tran-Dang, H., Krommenacker, N., Charpentier, P. y Kim, D. (2020). Hacia la Internet de las cosas para la Internet física: perspectivas y desafíos. IEEE Internet of Things Journal, 7(6): 4711-4736. https://doi.org/10.1109/JIOT.2020.2971736.
Valencia, A. A., Ramírez D. J., Londoño, C. W., Palacios, M. L., Hernández, J. L., Agudelo, C, E., & Uribe, B. H. (2024). Research Trends in the Use of the Internet of Things in Sustainability Practices: A Systematic Review. Sustainability, 16(7): 2663. https://doi.org/10.3390/su16072663
Van Hoof, B., Núñez, G. y & De Miguel, C. (2022). Metodología para la evaluación de avances en la economía circular en los sectores productivos de América Latina y el Caribe. CEPAL, serie 229, Naciones Unidas.
Young, L. & Chen, L. (2022). Using Small Area Estimation to Produce Official Statistics. Stats, 5(3): 881-897. https://doi.org/10.3390/stats5030051

