Comparative study of object-oriented programming and reactive programming paradigms in solving Algebraic Integrals

Pedro Stalyn Aguilar Encarnacion
https://orcid.org/0009-0005-1664-2280
Jessenia Paola Castillo
https://orcid.org/0009-0009-5649-6862
Harold Jair Carreño
https://orcid.org/0009-0004-9268-1524
Michael Estefania Jativa Brito
https://orcid.org/0000-0002-6394-2586
Abstract

The article evaluates the performance in terms of execution times in solving algebraic integrals using both the object-oriented programming (OOP) and reactive programming (RP) paradigms. The problem addressed is the lack of scientific evidence that allows us to determine which paradigm offers the best results in terms of execution times in solving these integrals. The approach of the study involves the implementation of two versions in Java, each built following the principles of the aforementioned paradigms. Subsequently, through controlled experimental scenarios and integrated Java methods, the execution time of each application is measured. The results reveal that reactive programming demonstrates greater efficiency in terms of performance. This research focuses on the resolution of linear and polynomial algebraic integrals and points out the need for more extensive research in this field. In conclusion, the study shows that reactive programming significantly outperforms object-oriented programming, demonstrating notably lower execution times.

DOWNLOADS
Download data is not yet available.
How to Cite
Aguilar Encarnacion, P. S., Castillo, J. P., Carreño, H. J. ., & Jativa Brito, M. E. (2024). Comparative study of object-oriented programming and reactive programming paradigms in solving Algebraic Integrals. Revista Tecnológica - ESPOL, 36(1), 58-67. https://doi.org/10.37815/rte.v36n1.1163

References

Bainomugisha, E., Carreton, A. L., Cutsem, T. van, Mostinckx, S., & Meuter, W. de. (2013). A survey on reactive programming. ACM Comput. Surv., 45(4). https://doi.org/10.1145/2501654.2501666

Budnikova, O. S., & Bulatov, M. V. (2012). Numerical solution of integral-algebraic equations for multistep methods. Computational Mathematics and Mathematical Physics, 52(5), 691–701. https://doi.org/10.1134/S0965542512050041

Cai, M., & Li, C. (2020). Numerical Approaches to Fractional Integrals and Derivatives: A Review. Mathematics, 8(1). https://doi.org/10.3390/math8010043

Galindo, C., Pérez, S., & Silva, J. (2023). Program slicing of Java programs. Journal of Logical and Algebraic Methods in Programming, 130, 100826. https://doi.org/10.1016/j.jlamp.2022.100826

Garrido, A., & Carrillo, J. (2013). Programación reactiva en la administración de proyectos: aproximación conceptual y aplicaciones prácticas. Revista EAN, 74, 72–85. https://doi.org/10.21158/01208160.n74.2013.737

Gomez-Gasquet, P., & Diaz-Madronero, M. (2014). Algorithms for reactive production scheduling: an application in the ceramic industry. BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 53(4), I–IV. https://doi.org/10.3989/cyv.2014.v53.i4.1292

Jeffrey, A. (2004). 4 - Indefinite Integrals of Algebraic Functions. In A. Jeffrey (Ed.), Handbook of Mathematical Formulas and Integrals (Third Edition) (Third Edition, pp. 145–165). Academic Press. https://doi.org/10.1016/B978-012382256-7/50007-5

Maina, N. K., Muketha, G. M., & Wambugu, G. M. (2022). A Literature Survey of Complexity Metrics for Object-Oriented Programs. International Journal of Science and Engineering Applications. https://api.semanticscholar.org/CorpusID:248939582

Mosteo, A. R. (2020). Reactive programming in Ada 2012 with RxAda. Journal of Systems Architecture, 110, 101784. https://doi.org/10.1016/j.sysarc.2020.101784

Ortin, F., Facundo, G., & Garcia, M. (2023). Analyzing syntactic constructs of Java programs with machine learning. Expert Systems with Applications, 215, 119398. https://doi.org/10.1016/j.eswa.2022.119398

Ozkaya, M., & Erata, F. (2020). A survey on the practical use of UML for different software architecture viewpoints. Information and Software Technology, 121, 106275. https://doi.org/10.1016/j.infsof.2020.106275

Peñuela, A., Hutton, C., & Pianosi, F. (2021). An open-source package with interactive Jupyter Notebooks to enhance the accessibility of reservoir operations simulation and optimisation. Environmental Modelling & Software, 145, 105188. https://doi.org/10.1016/j.envsoft.2021.105188

Qiu, D., Li, B., & Leung, H. (2016). Understanding the API usage in Java. Information and Software Technology, 73, 81–100. https://doi.org/10.1016/j.infsof.2016.01.011

Singh, N., Chouhan, S. S., & Verma, K. (2021). Object Oriented Programming: Concepts, Limitations and Application Trends. 2021 5th International Conference on Information Systems and Computer Networks (ISCON), 1–4. https://doi.org/10.1109/ISCON52037.2021.9702463

Wan, Z., & Hudak, P. (2000). Functional reactive programming from first principles. Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation, 242–252. https://doi.org/10.1145/349299.349331

Xihui Zhang, John D. Crabtree, Mark G. Terwilliger, & Redman, Tyler T. (2020). Assessing Students’ Object-Oriented Programming Skills with Java: The “Department-Employee” Project. Journal of Computer Information Systems, 60(3), 274–286. https://doi.org/10.1080/08874417.2018.1467243

Zotos, K. (2007). Object-oriented design principles in mathematics. Applied Mathematics and Computation, 188(2), 1430–1436. https://doi.org/10.1016/j.amc.2006.11.009