The answer to the moniliasis enigma lies in science and technology with the project developed in Orellana Province, where moniliasis is a fungal disease that causes significant losses to farmers. Moniliasis severely affects cocoa crops, and it is difficult to detect its presence early. Data from sensors and manual records were collected to train and validate a predictive model using supervised learning, where environmental conditions and disease symptoms were analysed. Design science methodology was applied based on three cycles: the relevance, rigour and design cycle. In the relevance cycle the problem and the need for the model were defined, in the rigour cycle a preliminary investigation was carried out to determine the feasibility of the objective and finally in the design cycle the data was modelled with machine learning algorithms and the prediction model was implemented and tested to verify its correct functioning.
The model was shared with cocoa farming families in Orellana, demonstrating its effectiveness. This will allow farmers to take appropriate and timely control measures to prevent the spread of the disease and thus increase cocoa production and quality.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Bernardi, L., Branco da Motta, & Bernardi Lucioana, C. (2018). Development of an app as a tool to support research and the prevention of osteoporosis. Original Articles. https://doi.org/10.1590/1981-22562018021.170189
Boersma, S., & lungu, mircea. (2021). React-bratus: visualización de jerarquías de componentes de React. IEEE.
Caicedo, C. (2019). Primer Simposio Internacional Innovaciones Tecnológicas para Fortalecer la Cadena de Cacao en la.
Carrera, K., Mosquera, L., & Leiva, M. (2014). Protocolo para el aislamiento de Moniliophthora roreri (Cif y Par)Evans et al. en frutos de cacao cv. ‘Nacional’ de la Amazoníaecuatoriana. Biotecnología Vegetal , 14.
Correa, J., Castro, S., & Coy, J. (2014). Estado de la moniliasis del cacao causada por Moniliophthora roreri en Colombia . Sistema de Información Científica Redalyc.
Fernández, T., Fernández Leonardo, Ricciardi, T., Ugarte, L., & Almeida, M. (2018). Lenguaje de programación Python para el análisis de sistemas de potencia Educación e investigación. IEEE.
Fortunato, D., & Bernardino, jorge. (2018). Aplicaciones web progresivas: una alternativa a las aplicaciones móviles nativas. IEEE.
Gramajo, M. G., Ballejos, L., & Ale, M. (2020). Seizing Requirements Engineering Issues through Supervised Learning Techniques. IEEE Latin America Transactions, 18(7), 1164–1184. https://doi.org/10.1109/TLA.2020.9099757
Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. In Artificial Intelligence in Agriculture (Vol. 2, pp. 1–12). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2019.05.004
Leandro-Muñoz, M. E., Tixier, P., Germon, A., Rakotobe, V., Phillips-Mora, W., Maximova, S., & Avelino, J. (2017). Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao. PLoS ONE, 12(10). https://doi.org/10.1371/JOURNAL.PONE.0184638
Oliveira, D., Barbosa, U., CRO Bergland, A., & Resende, O. (2022). G-SOJA - SITIO WEB CON PREDICCIÓN DE LA CLASIFICACIÓN DE LA SOJA UTILIZANDO MACHINE LEARNING. IEEE.
Ovalle, C. (2022). Modelo predictivo basado en Machine Learning para la Cadena de Suministro y su influencia en la gestión logística de una empresa de venta de autos. Journal of the ACM ER .
Ricardez, D. la C., Espinoza, L., García, O., & Pérez, P. (2016). ACTIVIDAD ANTIFÚNGICA in vitro DEL EXTRACTO ACUOSO Y ALCALOIDEO DE Lupinus spp. SOBRE Moniliophthora rorer. Agroproductividad.
Robles, S., Vásquez, H., & Naranjo, L. (2019). Vista de Adaptación de la metodología de ciencia de diseño en el desarrollo de luminarias | Tecnología Vital. https://revistas.ulatina.ac.cr/index.php/tecnologiavital/article/view/252/265
Susanto, Stiawan, D., Arifin, M. A. S., Idris, M. Y., & Budiarto, R. (2020). Iot botnet malware classification using weka tool and scikit-learn machine learning. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2020-October, 15–20. https://doi.org/10.23919/EECSI50503.2020.9251304
Susilo, A., Karna, N., & Mayasari, R. (2021). Decision Tree-Based Bok Choy Growth Prediction Model for Smart Farm. 2021 4th International Conference on Information and Communications Technology (ICOIACT), 169–174. https://doi.org/10.1109/ICOIACT53268.2021.9563914