Quantum cryptography, grounded in principles of quantum mechanics such as superposition and quantum entanglement, represents a significant advancement in enhancing communications security. Methods like Quantum Key Distribution (QKD) offer encryption that is theoretically unbreakable, providing robust protection against cyber threats. However, the advent of quantum computing introduces challenges for conventional cryptographic algorithms, such as RSA and demands the development of new encryption strategies, including post-quantum methods. Integrating quantum encryption into the Internet of Things (IoT) promises to significantly enhance security levels. However, it is crucial to adapt these methods to the limitations of devices with restricted resources. As quantum computing advances, its role in data and communication protection will be crucial, though implementing these systems will face challenges related to cost and complexity. In the realm of industrial communications, selecting the appropriate protocol is essential for the efficient integration and operation of automated systems. Common industrial protocols, such as AMQP, CoAP, DDS, HTTP, MQTT, OPC, and XMPP, exhibit significant variations in aspects such as communication types, security, latency, resource usage, and reliability. Each protocol presents specific challenges, including security vulnerabilities and issues related to latency or resource usage, affecting its suitability for real-time and critical applications.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ahmed, P. (2020). End to end for IoTnetworks. Cryptography andSecurity 14(5), 345-360.
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019, Octubre 23). La supremacía cuántica usando un procesador superconductor programable. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510: Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019).https://doi.org/10.1038/s41586-019-1666-5
Ashton, K. . (2009). "That 'Internet of Things' Thing." . RFID Journal.
Banerjee, S., & Kumar, D. (2021). Advanced persistent threats in IoT systems. ACM Transactions on Internet Technology, 20*(4), Article 28.
Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Vol. 175, pp. 8-12.
Bennett, C. H., Brassard, G., & Ekert, A. K. (1992). Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of IEEE International Conference on Computers, Communications and Signal Processing.
Bertino, E. &. (2005). Database Security – Concepts, Approaches, and Challenges. IEEE Computer Society Press.
Brown, D. (2021). Journal of Cyber Law. Legal and regulatory aspects of IoT security, 15(3), 45-60.
Brown, D. (2021). Legal and regulatory aspects of IoT security. Journal of Cyber Law, 15*(3), 45-60.
Chen, L., et al. (2022). Post-Quantum Cryptography: An Overview. IEEE Transactions on Information Forensics and Security.
CRYSTALS-Kyber Official Documentation. (2024). CRYSTALS-Kyber Official Documentation. CRYSTALS-Kyber Overview.
Davis, B., & Miller, E. (2020). IoT device authentication mechanisms. IEEE Internet of Things Magazine, 2*(1), 35-42.
Fernandez, L., & James, T. (2022). Privacy-preserving techniques in IoT applications. Fernandez, L., & James, T. (2022). Privacy-pIEEE Transactions on Emerging Topics in Computing, 10*(1), 180-192.
Fernandez, L., & James, T. (2022). Privacy-preserving techniques in IoT applications. IEEE Transactions on Emerging Topics in Computing, 10(1), 180-192.
Gentry, C. &. (2017). Fully Homomorphic Encryption without Bootstrapping from Standard Lattice Assumptions . FOCS 2017.
Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, . 74(1), 145-195.
Gomez, E., & Smith, R. (2021). Security solutions for IoT healthcare systems. Journal of Medical Internet Research, 23*(7), Article e2459.
Gupta, V. . (2022). IoT security protocols: An overview. International Journal of Security and Networks, 15*(1), 22-36.
Hewage, Asiri & Kamburugamuwa, Pasan. (2020). Quantum Cryptography for Internet of Things Security : A Review.
Ivanov, M., & Petrov, S. (2021). Blockchain-based access control for IoT devices. . International Journal of Distributed Ledger Technologies, 5*(4), 203-215.
Khan, A. (2020). Best practices for device manufacturers. . IEEE Consumer Electronics Magazine, 9*(2), 28-34.
Kumar, P. &. (2017). Cryptographic Algorithms for IoT Security . In Advances in Computer Communication and Computational Sciences. Springer.
Liu, C., & Wang, J. (2021). Intrusion detection systems for IoT: Techniques and challenges. Sensors, 21*(5), 1345-1360.
Marcos Allende López . (2019, Mayo 31). Como funciona la computacion cuantica. https://blogs.iadb.org/: https://blogs.iadb.org/conocimiento-abierto/es/como-funciona-lacomputacion-cuantica/
Martinez, H., & White, N. (2021). Integrating IoT Devices with Cloud Security Solutions. Journal of Cloud Computing, vol. 9, no. 2, pp. 210-225, 2021.
Melodie Roschman. (2024, Febrero 6). https://uwaterloo.ca/. https://uwaterloo.ca/news/mathematics/university-waterloo-joins-post-quantum-cryptography-alliance
Miguel Martínez R. (2015, 06/ 17). https://www.telefonicaempresas.es/. https://www.telefonicaempresas.es/grandes-empresas/blog/seguridad-y-privacidad-en-iot-estamos-a-tiempo/
Ministerio del Interior. (2015). Secretaría de Estado de Seguridad. (n.d.). Gestión de Fondos Europeos. Madrid-España: Retrieved from Ministerio del Interior.
Mosca, M. (2018). The case for quantum-safe cryptography. Nature. Ontario, Canada: 549(7671), 188-190.
National Institute of Standards and Technology . (2024). Post-Quantum Cryptography (NIST). NIST PQC.
National Institute of Standards and Technology (NIST). (2016). Report on Post-Quantum Cryptography. California: EEUU. NIST: https://www.nist.gov/
Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
Patel, N. &. (2020). IoT security standards: A comprehensive review. Computer Standards & Interfaces, 71*, 103-117.
Regev, O. (2009). On Lattices, Learning with Errors, Random Linear Codes, and Cryptography . Journal of the ACM.
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. ( (2009). The security of practical quantum key distribution. . Reviews of Modern Physics, , 81(3), 1301-1350.
Schneier, B. (2015). Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World. W.W. Norton & Company.
Shannon, C. E. (1949). Communication Theory of Secrecy Systems. . Bell System Technical Journal, 28(4), 656-715.
Shor, P. W. . (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484-1509. . https://doi.org/https://doi.org/10.1137/S0097539795293172
Shor, P. W. (1994). lgorithms for quantum computation: discrete logarithms and factoring," Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124-134, doi: 10.1109/SFCS.1994.365700. Santa Fe, NM, USA: IEEE. In Proceedings 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). IEEE.
Stallings, W., & Kaufman, C. (2015). Computer Security: Principles and Practice. Pearson.
Tanenbaum, A. S. (2011). Computer Networks. Prentice Hall.
Taylor, R., & Parker, J. (2020). IoT security: A multi-layered approach. Security and Privacy, 3*(2), Article e136.
Ugwuishiwu, Chikodili & Orji, Ugochukwu & Ugwu, Celestine & Asogwa, Caroline. (2021). An overview of Quantum Cryptography and Shor’s Algorithm. . International Journal of Advanced Trends in Computer Science and Engineering. 9. 7487 – 7495. 10.30534/ijatcse/.
Wang, G., & Yang, F. (2021). Securing IoT data in transit and at rest. Journal of Data and Information Security, 12*(3), 123-140.
Zhou, M., & Zhang, L. . (2021). Security vulnerabilities in IoT frameworks: A case study. IEEE Transactions on Industrial Informatics, 17*(3), 1890-1902.
Zhou, W., Jia, Y., Peng, A., Zhang, Y., & and Peng Liu, I. (2018). https://ieeexplore.ieee.org/ielaam/6488907/8709863/8386824-aam.pdf. The Effect of IoT New Features on Security and: http://www.ieee.org/publications standards/publications/rights/index.html