Textual Synthesis of Test for Bullying and Cyberbullying

Marcos Orellana
https://orcid.org/0000-0002-3671-9362
Jorge Luis Zambrano-Martinez
https://orcid.org/0000-0002-5339-7860
Patricio Santiago Garcia Montero
https://orcid.org/0009-0007-4113-8400
Liliana Marilu Lojano Lojano
https://orcid.org/0009-0006-4993-8747
Mateo Sebastian Zea Paredes
https://orcid.org/0009-0005-4209-8143
Tupak Pacjakutik Japon Lapo
https://orcid.org/0009-0005-3239-992X
Abstract

In recent years, bullying and cyberbullying have increased, affecting schools, colleges, and universities. Due to advances in information technology, any person is exposed to being attacked. Therefore, it is necessary to create solutions through appropriate techniques that help prevent bullying and cyberbullying. Consequently, this article proposes to create a textual synthesis from survey data that allows the development of models to classify or predict both victims and aggressors of bullying and cyberbullying. Data mining techniques, decision trees, and grouping techniques were used, resulting in a textual synthesis. This allowed the creation and evaluation of a supervised learning model and another model with clustering techniques applied to the data from the surveys performed on university students. The results demonstrated the importance of textual synthesis for generating models for the classification or prediction of victims and aggressors of bullying and cyberbullying, with an accuracy greater than 75% for the grouping model with the best performance.

DOWNLOADS
Download data is not yet available.
How to Cite
Orellana, M., Zambrano-Martinez, J. L., Garcia Montero, P. S., Lojano Lojano, L. M., Zea Paredes, M. S., & Japon Lapo, T. P. (2023). Textual Synthesis of Test for Bullying and Cyberbullying. Revista Tecnológica - ESPOL, 35(2), 192-205. https://doi.org/10.37815/rte.v35n2.1050
Author Biography

Jorge Luis Zambrano-Martinez

Jorge Luis Zambrano-Martinez is a Ph.D. in Computer Science received in Department of Networking Research Group (GRC) at the Universitat Politècnica de València (UPV) from Spain in 2019, included an awarded international doctoral and an awarded Cum Laude. He graduated in Master's Degree in Information and Communication Technology Security at Universitat Oberta de Catalunya in 2018. He graduated in Master’s Degree in Computer Engineering at Universitat Politècnica de València (UPV) in 2015. He graduated in Systems Engineering at Polytechnic University Salesian (Ecuador) in 2011. His research interests include Vehicular Networks, Smart Cities & IoT, Network Security, ITS, and Computer Vision.

References

Arce-Ruelas, K. I., Álvarez-Xochihua, O., Pelegrín, L., Cardoza-Avendaño, L., y González-Fraga, J. A. (2022). Automatic Cyberbullying Detection: A Mexican Case in High School and Higher Education Students. IEEE Latin America Transactions, 20(5).

Banerjee, V., Telavane, J., Gaikwad, P., y Vartak, P. (2019). Detection of Cyberbullying Using Deep Neural Network. International Conference on Advanced Computing y Communication Systems (ICACCS).

Bozyiğit, A., Bilimleri, B., Dokuz, B., İzmir, E. Ü., Bilgisayar, S. U., Bölümü, M., Eylül, D., İzmir, Ü., Bilgisayar, E. N., y Bölümü, B. (2019). Cyberbullying Detection by Using Artificial Neural Network Models. International Conference on Computer Science and Engineering (UBMK).

Bracco, A. (2018). Normalización de Texto en Español de Argentina (pp. 1–68).

Castilla, O. M. N. (2021). Ciberbullying: El acoso escolar en el ciberespacio e implicancias psicológicas. Hamut’ay, 8(1), 67–74.

Castro R, L. F., Espitia P, E., y Montilla, A. F. (2018). Applying CRISP-DM in a KDD process for the analysis of student attrition. Advances in Computing: 13th Colombian Conference, CCC 2018, Cartagena, Colombia, September 26–28, 2018, Proceedings 13, 386–401.

Cornel, J. A., Pablo, C. C., Marzan, J. A., Mercado, J. V., Fabito, B., Rodriguez, R., Octaviano, M., Oco, N., y la Cruz, A. De. (2019). Cyberbullying Detection for Online Games Chat Logs using Deep Learning. International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM).

Dalvi, R. R., Chavan, S. B., y Halbe, A. (2020). Detecting a Twitter Cyberbullying using Machine Learning. International Conference on Intelligent Computing and Control Systems (ICICCS).

Fletcher, S., y Islam, Md. Z. (2020). Decision Tree Classification with Differential Privacy. ACM Computing Surveys, 52(4), 1–33. https://doi.org/10.1145/3337064

Gupta, M. K., y Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology, 12(4), 1243–1257. https://doi.org/10.1007/s41870-020-00427-7

Han, J., Pei, J., y Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.

Herrera, C. R. M., Ríos, S. P., y Noboa, I. R. (2018). Indicadores de violencia relacionados con el ciberbullying en adolescentes del Ecuador. Pensando Psicología, 14(24).

Jorgensen, S. L., y Siegel, P. B. (2019). Social Protection in an Era of Increasing Uncertainty and Disruption. World Bank, Washington, DC. https://doi.org/10.1596/31812

Kathuria, A., Gupta, A., y Singla, R. K. (2021). A Review of Tools and Techniques for Preprocessing of Textual Data (pp. 407–422). https://doi.org/10.1007/978-981-15-6876-3_31

Li, C., Wang, P., Martin-Moratinos, M., Bella-Fernández, M., y Blasco-Fontecilla, H. (2022). Traditional bullying and cyberbullying in the digital age and its associated mental health problems in children and adolescents: a meta-analysis. European Child y Adolescent Psychiatry, 1–15.

Mahat, M. (2021). Detecting Cyberbullying across Multiple Social Media Platforms Using Deep Learning. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021, 299–301. https://doi.org/10.1109/ICACITE51222.2021.9404736

Martin-Criado, J. M., Casas, J. A., Ortega-Ruiz, R., y Rey, R. Del. (2021). Parental supervision and victims of cyberbullying: Influence of the use of social networks and online extimacy. Revista de Psicodidactica, 26(2), 161–168. https://doi.org/10.1016/j.psicod.2020.12.005

Mollo, J. P., Larrain, E., y Landazabal, M. G. (2018). Prevalencia de bullying y cyberbullying en Latinoamérica: una revisión. Revista Iberoamericana de Psicología: Ciencia y Tecnología, 11(3), 1–18.

Namane, K. C., y Kyobe, M. (2017). Examining the evolution of Mobile Bully - Victims across different schools located in low to high safety risk areas in Cape Town, South Africa. 2017 Conference on information Communication Technology and Society.

Nielsen, M. B., y Einarsen, S. V. (2018). What we know, what we do not know, and what we should and could have known about workplace bullying: An overview of the literature and agenda for future research. Aggression and Violent Behavior, 42, 71–83. https://doi.org/10.1016/j.avb.2018.06.007

Rahman, S., Talukder, K. H., y Mithila, S. K. (2021). An Empirical Study to Detect Cyberbullying with TF-IDF and Machine Learning Algorithms. Proceedings of International Conference on Electronics, Communications and Information Technology, ICECIT 2021. https://doi.org/10.1109/ICECIT54077.2021.9641251

Ramirez, A. J. B., y Ccallohuari, H. A. M. (2020). Modelo de aprendizaje supervisado para pronóstico de la deserción de estudiantes de la Facultad de Ingeniería y Arquitectura de la Universidad Peruana Unión - Lima.

Roux, M. (2018). A comparative study of divisive and agglomerative hierarchical clustering algorithms. Journal of Classification, 35, 345–366.

Ruiz-Chavez, Z., Salvador-Meneses, J., y Garcia-Rodriguez, J. (2018). Machine Learning Methods Based Preprocessing to Improve Categorical Data Classification (pp. 297–304). https://doi.org/10.1007/978-3-030-03493-1_32

Schröer, C., Kruse, F., y Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181, 526–534.

Shaikh, F. B., Rehman, M., y Amin, A. (2020). Cyberbullying: A Systematic Literature Review to Identify the Factors Impelling University Students towards Cyberbullying. IEEE Access, 8, 148031–148051. https://doi.org/10.1109/ACCESS.2020.3015669

Sharma, S., Batra, N., y others. (2019). Comparative study of single linkage, complete linkage, and ward method of agglomerative clustering. 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon), 568–573.

Tapia, F., Aguinaga, C., y Luje, R. (2018). Detection of Behavior Patterns through Social Networks like Twitter, using Data Mining techniques as a method to detect Cyberbullying. 2018 7th International Conference On Software Process Improvement (CIMPS), 111–118.