Text Generation Guide for Automated Detection of Bullying and Cyberbullying

Marcos Orellana
https://orcid.org/0000-0002-3671-9362
Jorge Luis Zambrano-Martinez
https://orcid.org/0000-0002-5339-7860
Ronny Marcelo Calle Andrade
https://orcid.org/0009-0004-9825-155X
Amanda Roldan
https://orcid.org/0009-0009-3548-2269
Andrés Nicolas Tirado Jarama
https://orcid.org/0009-0002-2269-4608
Abstract

Currently, bullying among children is a serious social problem and even acts as one of the primary mental health problems. Therefore, various types of bullying have been detected, including physical, verbal, social, and cyberbullying, which uses technology within reach of the aggressor to broadcast the damage and make the victim constantly harassed. Artificial intelligence and bullying are widely studied and researched, but they are not regularly used together to mitigate the bullying problem. Nevertheless, this research aims to identify the keywords extracted from different audiovisual media whose central theme is bullying and cyberbullying to create semantic fields corresponding to the text extracted from the video and generate a guide for automated bullying detection as support for professionals.

DOWNLOADS
Download data is not yet available.
How to Cite
Orellana, M., Zambrano-Martinez, J. L., Calle Andrade, R. M., Roldan, A., & Tirado Jarama, A. N. (2023). Text Generation Guide for Automated Detection of Bullying and Cyberbullying. Revista Tecnológica - ESPOL, 35(2), 181-191. https://doi.org/10.37815/rte.v35n2.1049
Author Biography

Jorge Luis Zambrano-Martinez

Jorge Luis Zambrano-Martinez is a Ph.D. in Computer Science received in Department of Networking Research Group (GRC) at the Universitat Politècnica de València (UPV) from Spain in 2019, included an awarded international doctoral and an awarded Cum Laude. He graduated in Master's Degree in Information and Communication Technology Security at Universitat Oberta de Catalunya in 2018. He graduated in Master’s Degree in Computer Engineering at Universitat Politècnica de València (UPV) in 2015. He graduated in Systems Engineering at Polytechnic University Salesian (Ecuador) in 2011. His research interests include Vehicular Networks, Smart Cities & IoT, Network Security, ITS, and Computer Vision.

References

Alrajeh, S., Hassan, H., Al-Ahmed, A., y Alsayed Hassan, D. (2021). An investigation of the relationship between cyberbullying, cybervictimization and depression symptoms: A cross sectional study among university students in Qatar. PloS one, 16(12), e0260263.

Akhter, S., y others (2018). Social media bullying detection using machine learning on Bangla text. In 2018 10th International Conference on Electrical and Computer Engineering (ICECE) (pp. 385–388).

Caicedo, R. (2023). Metodo Semi-Supervisado para Detectar, Clasificar y Anotar en un Corpus de Suicidio Textos extraídos de Entornos Digitales. (Doctoral dissertation, Pontificia Universidad Catolica del Peru (Peru)).

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M., Nunes, C., y Jatowt, A. (2018). YAKE! Collection-Independent Automatic Keyword Extractor (pp. 806-810). https://doi.org/10.1007/978-3-319-76941-7_80

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., y Jatowt, A. (2020). YAKE! Keyword extraction from single documents using multiple local features. Information Sciences, 509, 257-289. https://doi.org/10.1016/j.ins.2019.09.013

Chatzakou, D., Kourtellis, N., Blackburn, J., De Cristofaro, E., Stringhini, G., y Vakali, A. (2017). Mean Birds. Proceedings of the 2017 ACM on Web Science Conference, 13-22. https://doi.org/10.1145/3091478.3091487

Chelmis, C., Zois, D.-S., y Yao, M. (2017). Mining Patterns of Cyberbullying on Twitter. 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 126-133. https://doi.org/10.1109/ICDMW.2017.22

Dhungana Sainju, K., Mishra, N., Kuffour, A., y Young, L. (2021). Bullying discourse on Twitter: An examination of bully-related tweets using supervised machine learning. Computers in Human Behavior, 120, 106735. https://doi.org/10.1016/j.chb.2021.106735

Dinakar, K., Reichart, R., y Lieberman, H. (2011). Modeling the detection of textual cyberbullying. Proceedings of the International AAAI Conference on Web and Social Media, 5(3), 11-17.

Efrat, A., Honovich, O., & Levy, O. (2022). Lmentry: A language model benchmark of elementary language tasks. arXiv preprint arXiv:2211.02069.

Gada, M., Damania, K., y Sankhe, S. (2021). Cyberbullying detection using lstm-cnn architecture and its applications. 2021 International Conference on Computer Communication and Informatics (ICCCI), 1-6.

Heikkilä, H.-K., Väänänen, J., Helminen, M., Fröjd, S., Marttunen, M., y Kaltiala-Heino, R. (2013). Involvement in bullying and suicidal ideation in middle adolescence: a 2-year follow-up study. European Child y Adolescent Psychiatry, 22(2), 95-102. https://doi.org/10.1007/s00787-012-0327-0

Landstedt, E., y Persson, S. (2014). Bullying, cyberbullying, and mental health in young people. Scandinavian Journal of Public Health, 42(4), 393-399. https://doi.org/10.1177/1403494814525004

Lucas-Molina, B., Pérez-Albéniz, A., Solbes-Canales, I., Ortuño-Sierra, J., y Fonseca-Pedrero, E. (2022). Acoso escolar, ciberbullying y salud mental: el rol de la cohesion entre estudiantes como factor protector escolar. Psychosocial Intervention, 31(1), 33–41s

Mahlangu, T., Tu, C., y Owolawi, P. (2018). A review of automated detection methods for cyberbullying. 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), 1-5.

Nikiforos, S., Tzanavaris, S., y Kermanidis, K.L. (2020). Virtual learning communities (VLCs) rethinking: influence on behavior modification—bullying detection through machine learning and natural language processing. Journal of Computers in Education, 7, 531–551.

Rezvani, N., Beheshti, A., y Tabebordbar, A. (2020). Linking textual and contextual features for intelligent cyberbullying detection in social media. Proceedings of the 18th International Conference on Advances in Mobile Computing y Multimedia, 3-10.

Rivers, I., Poteat, V. P., Noret, N., y Ashurst, N. (2009). Observing bullying at school: The mental health implications of witness status. School Psychology Quarterly, 24(4), 211-223. https://doi.org/10.1037/a0018164

Singh, V. K., Huang, Q., y Atrey, P. K. (2016). Cyberbullying detection using probabilistic socio-textual information fusion. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 884-887.

Uludasdemir, D., y Kucuk, S. (2019). Cyber bullying experiences of adolescents and parental awareness: Turkish example. Journal of pediatric nursing, 44, e84–e90.

Zhang, D., Huebner, E., y Tian, L. (2020). Longitudinal associations among neuroticism, depression, and cyberbullying in early adolescents. Computers in Human Behavior, 112, 106475.

Zhao, R., Zhou, A., y Mao, K. (2016). Automatic detection of cyberbullying on social networks based on bullying features. Proceedings of the 17th international conference on distributed computing and networking, 1-6.