The automatic generation of distractors for multiple-choice questions in academic documents relies on advanced word embedding techniques, such as Word2Vec. These techniques represent words as vectors in a semantic space, facilitating the discovery of relationships and similarities between them. Through these methods, plausible but incorrect distractors can be created that reflect common misconceptions or are semantically related to the question. This approach has enhanced the quality of assessments by providing more challenging and realistic answer options. Additionally, it has automated the process of creating quizzes, saving time for educators and ensuring greater consistency. However, it is necessary to monitor and adjust this process to avoid implausible incorrect answers or implicit biases. This innovative methodology is transforming the way assessments are designed and administered in educational settings and in academic documents such as guides, quizzes, and written evaluations. In this paper, we present an introduction to the topic, followed by an exhaustive literature review. Subsequently, we describe in detail the methods and algorithms employed. The results obtained from experimentation are analysed and discussed, culminating in robust conclusions and practical recommendations.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2019). Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 7, 135-146. https://doi.org/10.1162/tacl_a_00051
Facebook OS. (2024). Word vectors for 157 languages · fastText. https://fasttext.cc/docs/en/crawl-vectors.html
Google. (2024). Google Code Archive - Long-term storage for Google Code Project Hosting. https://code.google.com/archive/p/word2vec/
Jurado Núñez, A., Flores Hernández, F., Delgado Maldonado, L., Sommer Cervantes, H., Martínez González, A., & Sánchez Mendiola, M. (2013). Distractores en preguntas de opción múltiple para estudiantes de medicina: ¿cuál es su comportamiento en un examen sumativo de altas consecuencias? Revista de Educación en Ciencias de la Salud, 10(3), 173-185.
Liu, Q., Wald, N., Daskon, C., & Harland, T. (2023). Multiple-choice questions (MCQs) for higher-order cognition: Perspectives of university teachers. Innovations in Education and Teaching International, 60(3), 314-323. https://doi.org/10.1080/14703297.2023.2222715
Manjarrés-Betancur, R. A., & Echeverri-Torres, M. M. (2020). Asistente virtual académico utilizando tecnologías cognitivas de procesamiento de lenguaje natural. Revista Politécnica, 16(31), 85–95. https://doi.org/10.33571/rpolitec.v16n31a7
Mikolov, T., Le, Q. V, & Sutskever, I. (2013). Exploiting Similarities among Languages for Machine Translation. https://code.google.com/p/word2vec/
Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 1532–1543. http://nlp.stanford.edu/pubs/glove.pdf
Quan, P., Shi, Y., Niu, L., Liu, Y., & Zhang, T. (2018). Automatic Chinese Multiple-Choice Question Generation for Human Resource Performance Appraisal. Procedia Computer Science, 139, 165–172. https://doi.org/10.1016/j.procs.2018.10.235
Sinha, M., Dasgupta, T., & Mandav, J. (2020). Ranking Multiple Choice Question Distractors using Semantically Informed Neural Networks. Proceedings of the 29th International Conference on Information and Knowledge Management (CIKM 2020), 3329-3332. https://doi.org/10.1145/3340531.3417468
Talamé, M. L., Monge, A., Nicolás Amor, M., & Cardoso, C. (2022). Creation of a corpus of embedded words from tweets generated in Argentina. Revista de Lingüística y Lenguas Aplicadas, 17(2), 123-139. http://revistas.upm.es/.
Xiao, W., Wang, M., Zhang, C., Tan, Y., & Chen, Z. (2018). Automatic generation of multiple-choice items for prepositions based on Word2vec. Communications in Computer and Information Science, 902, 81–95. https://doi.org/10.1007/978-981-13-2206-8_8
Zhang, C., Sun, Y., Chen, H., & Wang, J. (2020). Generating Adequate Distractors for Multiple-Choice Questions. arXiv Preprint. https://arxiv.org/abs/2010.12658