En los canales abiertos la variabilidad espacial de la distribución de la velocidad se ve afectada por la distribución de la rugosidad del fondo y de las paredes laterales del cauce. La presente investigación propone analizar perfiles de velocidad en canales abiertos, evaluando datos registrados en el laboratorio “Grandi Modelli Idraulici” de la Universidad de Calabria (Italia). Se consideró la rugosidad de fondo que afecta el comportamiento del flujo de agua para comparar los perfiles de velocidad y esfuerzo cortante obtenidos en laboratorio con el esfuerzo cortante teórico. Se utilizó el lenguaje Matlab para procesar datos y elaborar gráficos. Se realizó la medición de 15 perfiles de velocidad, cada uno aproximadamente de 35 puntos. Las pruebas se realizaron en condición de flujo permanente uniforme, los datos de velocidad se procesaron en intervalos de 300s por punto, en cada sección la velocidad varía entre -0.5m/s y 1.0 m/s, los rangos de velocidad del proceso despiking varían entre -0.2 m/s a 0.7 m/s, siendo estos últimos los valores con los que se lleva a cabo el análisis. Se concluye que los esfuerzos viscosos están en rangos de -0.01 Pa a 0.02 Pa, esfuerzos cortantes turbulentos de -0.5 Pa a 3 Pa y esfuerzos cortantes de -0.5 Pa a 3 Pa. Estos últimos valores demuestran la preponderancia de los efectos turbulentos respecto a la viscosidad del fluido.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Referencias
Calderón, J. A. (2014). Comportamiento Hidráulico de sistemas de tuberías bajo fluido supercrítico: Diseño tradicional vs Diseño futuro. Universidad de los Andes. https://repositorio.uniandes.edu.co/bitstream/handle/1992/17158/u703594.pdf?sequence=1
Carrasco, X. (2019). Estudio y caracterización hidráulica del óvalo 21 al óvalo 22 del canal de riego Ambato- Huachi- Pelileo, cantón Cevallos, Provincia de Tungurahua. Universidad Tecnica de Ambato. https://repositorio.uta.edu.ec/bitstream/123456789/29539/1/Tesis%20I.%20C.%201305%20-%20Carrasco%20Carrasco%20Xavier%20Alejandro.pdf
Casignia, M. (2014). Dimensionamiento Hidráulico de una estructura de unión de dos canales. Universidad Central del Ecuador. http://www.dspace.uce.edu.ec/bitstream/25000/3015/1/T-UCE-0011-135.pdf
Castellanos, M. (2018). Estudio experimental de flujo en canales abiertos. Universidad de Jaen. https://tauja.ujaen.es/jspui/bitstream/10953.1/9194/1/Memoria_TFG_Isabel.pdf
Chow, V. T. (2004). Hidraulica de Canales Abiertos. McGraw-HILL.
Corapi, P., Acaro, X. C., Mendoza, J. C., & Vera, P. E. (2022b). Experimental Evaluation of the Coriolis Coefficient in Open Channels with High Roughness. LACCEI International Multi-Conference for Engineering, Education, and Technology. https://laccei.org/LACCEI2022-BocaRaton/meta/FP123.html
Corapi, P., Acaro, X., & Arroyo, J. (2022a). (Acoustic Doppler Velocimeter) tecnologia ADV (Issue February). Grupo Compas. https://www.researchgate.net/publication/358862496_Medicion_de_velocidades_en_canales_abiertos_mediante_tecnologia_ADV_Acoustic_Doppler_Velocimeter
Corapi, P., Acaro, X., & Chuquimarca, L. (2021). Velocity scaling in open-channel flows with sediment transport. Tecnologia y Ciencias del Agua. https://doi.org/10.24850/j-tyca-2021-05-02
Dey, S. (2014). Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. Journal of Hydraulic Research. https://doi.org/10.1080/00221686.2014.968888
French, R. (1998). Hidraulica de Canales Abiertos. McGRAW-HILL.
García, N. (2016). Hidráulica de Canales Principios básicos. Instituto Mexicano de Tecnología del Agua. https://www.imta.gob.mx/biblioteca/libros_html/riego-drenaje/Hidraulica-de-canales.pdf
Gavilan, G. (2001). Guia de Laboratorio de Hidraulica de Canales Abiertos.
Goring, D. G., & Nikora, V. I. (2002). Despiking Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering. https://www.researchgate.net/publication/245296487_Despiking_Acoustic_Doppler_Velocimeter_Data
Marín, E. (2017). Construcción de un modelo hidráulico para la simulación de tipos de flujo en canales abiertos para el laboratorio de mecánica de fluidos e hidráulica de la facultad de ingeniería, usac. Universidad de San Carlos de Guatemala. https://core.ac.uk/download/pdf/94669661.pdf
Nikora, V., Goring, D., McEwan, I., & Griffiths, G. (2001). Spatially Averaged Open-Channel Flow over Rough Bed. Journal of Hydraulic Engineering. https://www.researchgate.net/publication/270851629_Spatially_Averaged_Open-Channel_Flow_over_Rough_Bed
Nortek. (2018). Comprehensive Manual for Velocimeter.
Streeter, V. L., Wylie, E. B., & Bedford, K. W. (2000). Mecánica de Fluidos (Vol. Novena Edición ).
Velasco, D., & Craig, H. (2009). Experimental verification of acoustic Doppler velocimeter (ADV) performance in fine- grained, high sediment concentration fluids. SonTec/YSI. https://www.xylemanalytics.co.uk/media/pdfs/sontek-adv-in-fluid-mud.pdf