Analysis of the spatial variability of the speed profiles in open channels with roughness

Pietro Corapi
Loiza Angeline Santos Santillan
Jose Luis Campoverde Leiva
Abstract

In open channels, the spatial variability of the velocity distribution is affected by the distribution of the roughness of the bottom and sidewalls of the channel. The present investigation aims to analyse velocity profiles in open channels by evaluating data recorded at the "Grandi Modelli Idraulici" laboratory of the University of Calabria (Italy). The bottom roughness that affects the water flow behaviour was considered to compare the velocity and shear profiles obtained in the laboratory with the theoretical shear stress; Matlab language was used to process data and elaborate graphs. Fifteen velocity profiles were measured, approximately 35 points each. The tests were carried out in a uniform permanent flow condition and the velocity data were processed in intervals of 300s per point; in each section, the velocity varies between -0.5m/s and 1.0 m/s, the velocity ranges of the despiking process vary between -0.2 m/s to 0.7 m/s, the latter being the values for the analysis. In conclusion, viscous stresses range from -0.01 Pa to 0.02 Pa, turbulent shear stresses from -0.5 Pa to 3 Pa, and shear stresses from -0.5 Pa to 3 Pa, the latter values showing the preponderance of turbulent effects concerning the viscosity of the fluid.

DOWNLOADS
Download data is not yet available.
How to Cite
Corapi, P., Santos Santillan, L. A., & Campoverde Leiva, J. L. (2023). Analysis of the spatial variability of the speed profiles in open channels with roughness. Revista Tecnológica - ESPOL, 35(1), 105-119. https://doi.org/10.37815/rte.v35n1.1000

References

Calderón, J. A. (2014). Comportamiento Hidráulico de sistemas de tuberías bajo fluido supercrítico: Diseño tradicional vs Diseño futuro. Universidad de los Andes. https://repositorio.uniandes.edu.co/bitstream/handle/1992/17158/u703594.pdf?sequence=1

Carrasco, X. (2019). Estudio y caracterización hidráulica del óvalo 21 al óvalo 22 del canal de riego Ambato- Huachi- Pelileo, cantón Cevallos, Provincia de Tungurahua. Universidad Tecnica de Ambato. https://repositorio.uta.edu.ec/bitstream/123456789/29539/1/Tesis%20I.%20C.%201305%20-%20Carrasco%20Carrasco%20Xavier%20Alejandro.pdf

Casignia, M. (2014). Dimensionamiento Hidráulico de una estructura de unión de dos canales. Universidad Central del Ecuador. http://www.dspace.uce.edu.ec/bitstream/25000/3015/1/T-UCE-0011-135.pdf

Castellanos, M. (2018). Estudio experimental de flujo en canales abiertos. Universidad de Jaen. https://tauja.ujaen.es/jspui/bitstream/10953.1/9194/1/Memoria_TFG_Isabel.pdf

Chow, V. T. (2004). Hidraulica de Canales Abiertos. McGraw-HILL.

Corapi, P., Acaro, X. C., Mendoza, J. C., & Vera, P. E. (2022b). Experimental Evaluation of the Coriolis Coefficient in Open Channels with High Roughness. LACCEI International Multi-Conference for Engineering, Education, and Technology. https://laccei.org/LACCEI2022-BocaRaton/meta/FP123.html

Corapi, P., Acaro, X., & Arroyo, J. (2022a). (Acoustic Doppler Velocimeter) tecnologia ADV (Issue February). Grupo Compas. https://www.researchgate.net/publication/358862496_Medicion_de_velocidades_en_canales_abiertos_mediante_tecnologia_ADV_Acoustic_Doppler_Velocimeter

Corapi, P., Acaro, X., & Chuquimarca, L. (2021). Velocity scaling in open-channel flows with sediment transport. Tecnologia y Ciencias del Agua. https://doi.org/10.24850/j-tyca-2021-05-02

Dey, S. (2014). Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. Journal of Hydraulic Research. https://doi.org/10.1080/00221686.2014.968888

French, R. (1998). Hidraulica de Canales Abiertos. McGRAW-HILL.

García, N. (2016). Hidráulica de Canales Principios básicos. Instituto Mexicano de Tecnología del Agua. https://www.imta.gob.mx/biblioteca/libros_html/riego-drenaje/Hidraulica-de-canales.pdf

Gavilan, G. (2001). Guia de Laboratorio de Hidraulica de Canales Abiertos.

Goring, D. G., & Nikora, V. I. (2002). Despiking Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering. https://www.researchgate.net/publication/245296487_Despiking_Acoustic_Doppler_Velocimeter_Data

Marín, E. (2017). Construcción de un modelo hidráulico para la simulación de tipos de flujo en canales abiertos para el laboratorio de mecánica de fluidos e hidráulica de la facultad de ingeniería, usac. Universidad de San Carlos de Guatemala. https://core.ac.uk/download/pdf/94669661.pdf

Nikora, V., Goring, D., McEwan, I., & Griffiths, G. (2001). Spatially Averaged Open-Channel Flow over Rough Bed. Journal of Hydraulic Engineering. https://www.researchgate.net/publication/270851629_Spatially_Averaged_Open-Channel_Flow_over_Rough_Bed

Nortek. (2018). Comprehensive Manual for Velocimeter.

Streeter, V. L., Wylie, E. B., & Bedford, K. W. (2000). Mecánica de Fluidos (Vol. Novena Edición ).

Velasco, D., & Craig, H. (2009). Experimental verification of acoustic Doppler velocimeter (ADV) performance in fine- grained, high sediment concentration fluids. SonTec/YSI. https://www.xylemanalytics.co.uk/media/pdfs/sontek-adv-in-fluid-mud.pdf

Similar Articles

You may also start an advanced similarity search for this article.