A location-routing optimization model for distribution of humanitarian relief

Erwin Delgado Bravo
https://orcid.org/0000-0001-5933-4839
Carlos Martin Barreiro
https://orcid.org/0000-0002-8797-681X
Xavier Cabezas Garcia
https://orcid.org/0000-0003-3128-001X
Daniela Rivas Pastor
https://orcid.org/0000-0001-5525-5375
Evelyn Olarte Cedeño
https://orcid.org/0000-0002-2137-9895
Abstract

Responding effectively to humanitarian crises and emergencies caused by disasters of various kinds is a challenging task. The logistical aspects inherent to the planning and execution of response actions are oriented to effectively minimize costs and human losses. This study proposes a mathematical model to support the decision-making of the organizations involved in providing support to an emergency event. Such varied assistance can include suggesting the location of temporary transfer centers, distributing resources through secondary routes from the centers to the areas affected by the disaster, and reducing the risk of late delivery. The innovative aspect of this work incorporates a measure that quantifies, in a monetary manner, the time in which a vulnerable person is deprived of a resource (time between the generation of aid demand and the aid reception). Finally, the proposed model is applied in an instance derived from the effects caused by the earthquake in Ecuador in 2016.

DOWNLOADS
Download data is not yet available.
How to Cite
Delgado Bravo, E., Martin Barreiro, C., Cabezas Garcia, X., Rivas Pastor, D. ., & Olarte Cedeño, E. (2022). A location-routing optimization model for distribution of humanitarian relief. Revista Tecnológica - ESPOL, 34(2), 166-180. https://doi.org/10.37815/rte.v34n2.890

References

Afshar, A., & Haghani, A. (2012). Modeling integrated supply chain logistics in real-time large-scale disaster relief operations. Socio-Economic Planning Sciences, 46(4), 327–338. https://doi.org/10.1016/J.SEPS.2011.12.003

Al Theeb, N., & Murray, C. (2017). Vehicle routing and resource distribution in postdisaster humanitarian relief operations. International Transactions in Operational Research, 24(6), 1253–1284. https://doi.org/10.1111/ITOR.12308

Campbell, A. M., Vandenbussche, D., & Hermann, W. (2008). Routing for relief efforts. Transportation Science, 42(2), 127–145. https://doi.org/10.1287/TRSC.1070.0209

Clark, A., & Culkin, B. (2013). A network transshipment model for planning humanitarian relief operations after a natural disaster. International Journal of Computational Intelligence Systems, 7(1), 233–257.

Hezam, I., & Nayeem, M. (2021). A Systematic Literature Review on Mathematical Models of Humanitarian Logistics. Symmetry, 13(1).

Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31(5), 262–280. https://doi.org/10.1016/J.JOM.2013.06.002

Horner, M. W., & Downs, J. A. (2010). Optimizing hurricane disaster relief goods distribution: Model development and application with respect to planning strategies. Disasters, 34(3), 821–844. https://doi.org/10.1111/J.1467-7717.2010.01171.X ok

INEC. (2012). Resumen Metodológico y Principales Resultados: Encuesta Nacional de Ingresos y Gastos.

Instituto Geofísico de la Escuela Politécnica del Litoral. (2022). Informes y Noticias. Disponible en: https://www.igepn.edu.ec/eq20160416-informes-noticias

Khayal, D., Pradhananga, R., Pokharel, S., & Mutlu, F. (2015). A model for planning locations of temporary distribution facilities for emergency response. Socio-Economic Planning Sciences, 52, 22–30. https://doi.org/10.1016/J.SEPS.2015.09.002

Rabta, B., Wankmüller, C., & Reiner, G. (2018). A drone fleet model for last-mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction, 28, 107–112. https://doi.org/10.1016/J.IJDRR.2018.02.020

Secretaría Nacional de Gestión de Riesgo. (2011). Normativa para Aplicación de Estándares de Ayuda Humanitaria en Emergencias para Alimentos, Cocina, Hogar y Limpieza.

Wang, H., Du, L., & Ma, S. (2014). Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transportation Research Part E: Logistics and Transportation Review, 69, 160–179. https://doi.org/10.1016/J.TRE.2014.06.006

Yi, W., & Kumar, A. (2007). Ant colony optimization for disaster relief operations. Transportation Research Part E: Logistics and Transportation Review, 43(6), 660–672. https://doi.org/10.1016/J.TRE.2006.05.004