Análisis de métodos OMA para la extracción de parámetros modales sobre edificios existentes

Víctor Samaniego Galindo
Iván Palacios Serrano
José Placencia León
Milton Muñoz Calle
Santiago González Martínez
Juan Jiménez Pacheco
Resumen

En este artículo se presenta la aplicación de métodos de análisis modal operacional (OMA, Operational Modal Analysis) con el objetivo de caracterizar los parámetros modales (v.g. frecuencias y modos de vibración) de una edificación. El estudio se realiza sobre un escenario real consistente en un edificio esencial. En concreto se emplea: el método de descomposición en el dominio de la frecuencia (FDD, Frequency Domain Decomposition) y su versión mejorada (EFDD, Enhanced-FDD). En una primera etapa, se lleva a cabo una evaluación estructural preliminar del edificio (empleando el método de inspección visual rápida, RVS), un levantamiento de dimensiones y ensayos en campo para la caracterización mecánica de sus componentes, todo ello con el propósito de conseguir un análisis modal convencional lo más fiable posible en términos de sus parámetros modales. Con base en este análisis modal, se diseña un plan de instrumentación con acelerómetros triaxiales de sistemas microelectromecánicos (MEMS); el proceso de instrumentación abarca tres etapas: la adquisición, el control y el almacenamiento de información. La principal contribución de este trabajo consiste en la evaluación de la aplicación de los métodos FDD y EFDD sobre un edificio esencial, con la particularidad del uso de vibraciones de microsismicidad para la identificación de parámetros modales. El análisis de los resultados obtenidos determina una frecuencia fundamental del edificio de 1.43 Hz, y evidencia un comportamiento modal no recomendado.

DESCARGAS
Los datos de descarga aún no están disponibles.
Cómo citar
Análisis de métodos OMA para la extracción de parámetros modales sobre edificios existentes. (2021). Revista Tecnológica - ESPOL, 33(2), 75-93. https://doi.org/10.37815/rte.v33n2.832

Referencias

ACI 228.1R-03. (2003). In-Place Methods to Estimate Concrete Strength Reported. ACI Committee Reports, 228, 1R, 44.

Allemang, R. J. (2003). The modal assurance criterion - Twenty years of use and abuse. Sound and Vibration, 37(8), 14–21.

Arcentales, I. (2020). Evaluación De La Respuesta Dinámica Del Hospital Naval General Hosnag Sometido a Vibración Ambiental. Brain, 117(3), 607–636. http://repositorio.espe.edu.ec/bitstream/21000/9434/1/T-ESPE-048572.pdf

ASTM C-805/C805M-18. (2018). Standard Test Method for Rebound Number of Hardened Concrete. ASTM International, 04.02, 1–4. http://www.astm.org/cgi-bin/resolver.cgi?C805C805M

ASTM C39 / C39M - 18. (2018). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, 8. http://www.astm.org/cgi-bin/resolver.cgi?C39C39M

ASTM C42 / C42M - 18. (2018). Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete. ASTM International, 7. http://www.astm.org/cgi-bin/resolver.cgi?C42C42M

Azam Sya’bani, Y., Novianty, A., & Luhur Prasasti, A. (2020). Implementation of Automatic First Arrival Picking On P-Wave Seismic Signal Using Logistic Regression Method. International Conference on Information and Comunication Technology (ICoICT), 8, 5–9.

Boscato, G., Dal Cin, A., Ientile, S., & Russo, S. (2016). Optimized procedures and strategies for the dynamic monitoring of historical structures. Journal of Civil Structural Health Monitoring, 6(2), 265–289. https://doi.org/10.1007/s13349-016-0164-9

Brincker, R., Zhang, L., & Andersen, P. (2000). Modal Identification from Ambient Responses using Frequency Domain Decomposition. MAC 18 : Proceedings of the International Modal Analysis Conference, 625–630.

Cárdenas, E. M., & Medina, L. U. (2021). Non-Parametric Operational Modal Analysis Methods in Frequency Domain: A Systematic Review. International Journal of Engineering and Technology Innovation, 11(1), 34–44. https://doi.org/10.46604/IJETI.2021.6126

Celebi, M. (2000). Seismic Instrumentation of Dams. USGS, 101(11), 1095–1104. https://doi.org/10.1061/ajgeb6.0000209

Celebi, M., Nishenko, S., Astill, C., & Chung, R. M. (1998). Seismic Instrumentation of Federal Buildings a Proposal Document for Consideration By Federal Agencies.

Chopra, A. K. (2013). DYNAMICS OF STRUCTURES Theory and Applications to Earthquake Engineering. In PEARSON (Cuarta edi).

Conti, M., & Giordano, S. (2014). Mobile ad hoc networking: Milestones, challenges, and new research directions. IEEE Communications Magazine, 52(1), 85–96. https://doi.org/10.1109/MCOM.2014.6710069

Farshchin, M. (2015). Frecuency Domain Decomposition (p. 1). https://la.mathworks.com/matlabcentral/fileexchange/50988-frequency-domain-decomposition-fdd

Gkoktsi, K., & Giaralis, A. (2019). A multi-sensor sub-Nyquist power spectrum blind sampling approach for low-power wireless sensors in operational modal analysis applications. Mechanical Systems and Signal Processing, 116, 879–899. https://doi.org/10.1016/j.ymssp.2018.06.049

Greiner, B. (2009). Operational Modal Analysis and its Application for SOFIA Telescope Assembly Vibration Measurements Operationelle. In Angewandte Chemie International Edition, 6(11), 951–952. Universidad de Stuttgart.

Hsiao, J. K. (2009). Computation of fundamental periods for moment frames using a hand-calculated approach. Electronic Journal of Structural Engineering, 9, 16–28.

Jacobsen, N. J., Andersen, P., & Brincker, R. (2007). Using EFDD as a robust technique to deterministic excitation in operational modal analysis. Proceedings of the 2nd International Operational Modal Analysis Conference, IOMAC 2007.

Kavitha, S., Joseph Daniel, R., & Sumangala, K. (2016). Design and Analysis of MEMS Comb Drive Capacitive Accelerometer for SHM and Seismic Applications. Measurement: Journal of the International Measurement Confederation, 93, 327–339. https://doi.org/10.1016/j.measurement.2016.07.029

Lacanna, G., Ripepe, M., Marchetti, E., Coli, M., & Garzonio, C. A. (2016). Dynamic response of the Baptistery of San Giovanni in Florence, Italy, based on ambient vibration test. Journal of Cultural Heritage, 20, 632–640. https://doi.org/10.1016/j.culher.2016.02.007

Muñoz, M., Guevara, R., González, S., & Jiménez, J. C. (2021). Reliable Data Acquisition System for a Low-Cost Accelerograph Applied to Structural Health Monitoring. Journal of Applied Science, Engineering, Technology, and Education, 3(2), 181–194. https://doi.org/10.35877/454ri.asci159

Muttillo, M., Battista, L. Di, De Rubeis, T., & Nardi, I. (2019). Structural health continuous monitoring of buildings-A modal parameters identification system. 2019 4th International Conference on Smart and Sustainable Technologies, SpliTech 2019, 46–49. https://doi.org/10.23919/SpliTech.2019.8783051

NEC-SE-DS. (2015). Cargas Sísmicas Diseño Sismo Resistente. In Norma Ecuatoriana de la Construcción. http://www.indeci.gob.pe/proyecto58530/objetos/archivos/20110606102841.pdf%0Ahttps://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2015/02/NEC-SE-DS-Peligro-Sísmico-parte-1.pdf (in spanish)

Neu, E., Janser, F., Khatibi, A. A., Braun, C., & Orifici, A. C. (2016). Operational Modal Analysis of a wing excited by transonic flow. Aerospace Science and Technology, 49, 73–79. https://doi.org/10.1016/j.ast.2015.11.032

Ostachowicz, W., Soman, R., & Malinowski, P. (2019). Optimization of sensor placement for structural health monitoring: a review. Structural Health Monitoring, 18(3), 963–988. https://doi.org/10.1177/1475921719825601

Pachón, P., Castro, R., García-Macías, E., Compan, V., & Puertas, E. (2018). E. Torroja’s bridge: Tailored experimental setup for SHM of a historical bridge with a reduced number of sensors. Engineering Structures, 162(February), 11–21. https://doi.org/10.1016/j.engstruct.2018.02.035

Pachón, P., Infantes, M., Cámara, M., Compán, V., García-Macías, E., Friswell, M. I., & Castro-Triguero, R. (2020). Evaluation of optimal sensor placement algorithms for the Structural Health Monitoring of architectural heritage. Application to the Monastery of San Jerónimo de Buenavista (Seville, Spain). Engineering Structures, 202(November 2019), 109843. https://doi.org/10.1016/j.engstruct.2019.109843

PROCEQ SA. (2016). Manual de operación SilverSchmidt y Hammerlink. 14.

PROCEQ SA. (2017). Manual de operación PROFOMETER.

Rojahn, C., Scawthorn, C., Anagnos, T., Wong, K., & Poland, C. D. (2002). Rapid visual screening of buildings for potential seismic hazards, Handbook, FEMA 154. March, 1–140.

Samaniego, V. (2020). Análisis modal con orientación hacia monitorización de salud estructural. Caso edificio Empresa Eléctrica Regional Centrosur [Universidsad de Cuenca]. In Repositorio Institucional Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/34869

Valenti, S., Conti, M., Pierleoni, P., Zappelli, L., Belli, A., Gara, F., Carbonari, S., & Regni, M. (2018). A low cost wireless sensor node for building monitoring. EESMS 2018 - Environmental, Energy, and Structural Monitoring Systems, Proceedings, 1–6. https://doi.org/10.1109/EESMS.2018.8405827

Yang, J., Wu, P., Chen, Y., & Wei, W. (2019). Development and Testing of the Earthquake Early Warning Information Push Platform Based on MQTT Protocol. Scientific Conference on Mechatronics Engineering and Computer Science (SCMC 2019), Scmc, 399–405. https://doi.org/10.25236/scmc.2019.082

Yun, D. Y., Kim, D., Kim, M., Bae, S. G., Choi, J. W., Shim, H. B., Hong, T., Lee, D. E., & Park, H. S. (2021). Field measurements for identification of modal parameters for high-rise buildings under construction or in use. Automation in Construction, 121(October 2020), 103446. https://doi.org/10.1016/j.autcon.2020.103446

Zhou, Y., Zhou, Y., Yi, W., Chen, T., Tan, D., & Mi, S. (2017). Operational Modal Analysis and Rational Finite-Element Model Selection for Ten High-Rise Buildings based on On-Site Ambient Vibration Measurements. Journal of Performance of Constructed Facilities, 31(5), 14. https://doi.org/10.1061/(asce)cf.1943-5509.0001019

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.