An expansive clay undergoes large variations in volume according to the changes in humidity to which it is exposed, producing an expansion with increasing humidity and a contraction with its reduction. This phenomenon generates significant problems in the works that must be founded on this type of soil. This experimental design consists of laboratory tests to determine the physical and mechanical properties of three samples of expansive clay compared to stabilized soil samples. Stabilization is obtained by replacing the soil with various percentages of ash to control its volume change. For this purpose, two types of ashes are used: the first one from the Tungurahua volcano and the other of organic origin (rice husk ash), combined in a proportion of equal parts (50% - 50% by weight). The tests were applied on soil samples with replacements of 10%, 20%, and 30% by weight of the clayey soil, by the ash stabilizing mixture. The combination of ash in the soil mass achieves a reduction of the volume change effect typical of pure expansive clays, a reduction in the liquid limit, a decrease of the specific gravity, a decrease of the expansion index, and an increase of the shear strength and consolidation coefficient.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
ASTM D3080. (2011). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions.
ASTM D4318. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Alonso, E. E., Vaunat, J., & Gens, A. (1999). Modelling the mechanical behaviour of expansive clays. Engineering Geology, 54(1), 173-183. https://doi.org/10.1016/S0013-7952(99)00079-4
Angelone, S., Garibay, M., & Cauhapé, M. (2006). Permeabilidad de Suelos. Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario.
ASTM D854. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.
ASTM D1557. (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)).
ASTM D2216. (2010). Test Method for Laboratory Determination of Water Content of Soil and Rock.
ASTM D2434. (2006). Standard Test Method for Permeability of Granular Soils (Constant Head).
ASTM D2435. (2011). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading.
ASTM D2487. (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
ASTM D4829. (2011). Standard Test Method for Expansion Index of Soils.
ASTM D6913. (2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis.
Atemimi, Y. K. (2020). Effect of the grain size of sand on expansive soil. doi:10.4028/www.scientific.net/KEM.857.367
Basma, A. A., Al-Homoud, A. S., Husein Malkawi, A. I., & Al-Bashabsheh, M. A. (1996). Swelling-shrinkage behavior of natural expansive clays. Applied Clay Science, 11(2), 211-227. https://doi.org/10.1016/S0169-1317(96)00009-9
Bose, B. (2020). Correlation of compressibility behaviour with activity of clay. International Journal on Emerging Technologies, 11(3), 828-832. Retrieved from www.scopus.com
Cheng, Y., Wang, S., Li, J., Huang, X., Li, C., & Wu, J. (2018). Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans. Elsevier, 187 Beijing, China. doi:10.1016/j.conbuildmat.2018.08.061.
Das, B. (2015). Fundamentos de Ingeniería Geotécnica. Cengage Learning Editores, S.A., México.
Ganta, S. (2017). Soil Stabilization with Rice Husk Ash and Lime Sludge. International Journal of Research, 4(14): 1112 – 1119.
Goldstein, J., Newbury, D., Echlin, P., Lyman, C., Lifshin, E., Sawyer, L., & Michael, J. (2003). Scanning electron microscopy and X-ray microanalysis. New York: Kluwer Academic/Plenum Publishers.
Kataoka, S., Shibuya, S., & Uematsu, S. (2017). Ensayos de laboratorio y terraplen a gran escala de la mezcla deescoria y suelo de grano fino. Paper presentado en la ICSMGE 2017 - 19th International Conference on Soil Mechanics and Geotechnical Engineering, 2017-September 939-942.
Manosalvas, S. (2014). Instituto Geofísico de la Escuela Politécnica Nacional. Obtenido de https://www.igepn.edu.ec/detectores-de-lahares/content/18-tungurahua.
Moreno, S., & Rodríguez, J. (2013). Determinación de las propiedades índices y mecánicas de los suelos expansivos en la vía San Mateo-Esmeraldas zona de Winchele, realizando los ensayos con agua potable y con agua de mar. Repositorio digital PUCE (Pontificia Universidad Católica del Ecuador). Obtenido de http://repositorio.puce.edu.ec/handle/22000/6236
NEC-SE-CM (s. f.). Recuperado 25 de noviembre de 2021, de https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2014/08/NEC-SE-CM.pdf
Sivrikaya, O., Togrol, E., & Kayadelen, C. (2008). Estimating compaction behavior of fine-grained soils based on compaction energy. Canadian Geotechnical Journal, 45(6), 877-887. DOI:10.1139/T08-022
Sridharan, A., & Nagaraj, H. B. (2005). Plastic limit and compaction characteristics of fine-grained soils. Ground Improvement, 9(1), 17-22. doi:10.1680/grim.9.1.17.58544
Syahril, S., Somantri, A. K., & Haziri, A. A. (2020). Estudios de las caracteristicas del suelo arcilloso estabilizado utilizando cenizas volcanicas y relaves como capas de subrasante. Paper presentado en la IOP Conference Series: Materials Science and Engineering, 830(2) doi:10.1088/1757-899X/830/2/022043

