Rock fragmentation by blasting is fundamental in the mining sector. This process seeks to optimize rock size for subsequent extraction, transport, and processing. Predicting this fragmentation becomes a crucial task for improving operational efficiency; however, the application of simplified formulas lacks precision and adaptability to lithological variations. This study proposes the use of artificial intelligence (AI) for the accurate estimation of the average diameter of igneous, sedimentary, and metamorphic rocks. Based on a set of 97 real fragmentation and blasting data from around the world, the Random Forest (RF), Support Vector Regressor (SVR), and Kernel Ridge Regression (KRR) algorithms were evaluated, along with the Kuz-Ram equation, widely used in the industry. The results indicate that AI models significantly outperform the conventional equation. RF offers the highest accuracy with MSE of 0.0017 and R2 of 95.38%. In contrast, SVR achieves values of 0.0064 and 83.13%, while KRR achieves 0.016 and 69.60%. The adequate performance of these algorithms has led to the development of an application that allows users to view drilling grids, set specific dimensions, and compare projections of average rock size. This tool facilitates informed decision-making, improving mining processes and promoting more reliable and sustainable results in different operational contexts.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Amoako, R., Jha, A., & Zhong, S. (2022). Rock Fragmentation Prediction Using an Artificial Neural Network and Support Vector Regression Hybrid Approach. Mining, 2(2), 233–247. https://doi.org/10.3390/mining2020013
Aryafar, A., Rahimdel, M. J., & Tavakkoli, E. (2020). Selection of the most proper drilling and blasting pattern by using madm methods (A case study: Sangan iron ore mine, iran). Rudarsko Geolosko Naftni Zbornik, 35(3), 97–108. https://doi.org/10.17794/rgn.2020.3.10
Bunga, A. P., Noguel, J. A. O., & Quesada, R. W. (2019). Predicción y evaluación de la granulometría de la pila de material obtenido en las voladuras en la mina Prediction and assessment of material gradation obtained through blasting in Polymetallic Castellano mine , Pinar del Río , Cuba. Ciencia & Futuro, 10(1), 37–49. https://doi.org/ISSN 2306-823X
Das, R. K., Dhekne, P. Y., & Murmu, S. (2023). Development of a Multiplication Factor for the Kuz-Ram Model to Match the Fragment Size Obtained from Wipfrag Image Analysis. Journal of Mines, Metals and Fuels, 71(12), 2414–2425. https://doi.org/10.18311/jmmf/2023/34116
de Castro, D. F. (2021). Comparative analysis of fragmentation models for undeground blasting. UNDERGROUND MINING ENGINEERING 39 (2021) 29-42 UNIVERSITY OF BELGRADE - FACULTY OF MINING AND GEOLOGYFACULTY OF MINING AND GEOLOGY, 39(39), 29–42. https://doi.org/10.5937/podrad2139029f
Górriz, J. M., Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J. E., Atzmueller, M., Ballarini, F., Barakova, E., Bologna, G., Bonomini, P., Castellanos-Dominguez, G., Castillo-Barnes, D., Cho, S. B., Contreras, R., Cuadra, J. M., Domínguez, E., Domínguez-Mateos, F., Duro, R. J., Elizondo, D., Fernández-Caballero, A., … Ferrández-Vicente, J. M. (2023). Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends. Information Fusion, 100(July), 101945. https://doi.org/10.1016/j.inffus.2023.101945
Guerrero-Rodriguez, B., Salvador-Meneses, J., Garcia-Rodriguez, J., & Mejia-Escobar, C. (2024). Improving Landslides Prediction: Meteorological Data Preprocessing Based on Supervised and Unsupervised Learning. Cybernetics and Systems, 55(6), 1332–1356. https://doi.org/10.1080/01969722.2023.2240647
Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. (2018). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications, 30, 1015–1024. https://doi.org/10.1007/s00521-016-2746-1
Hekmat, A., Munoz, S., & Gomez, R. (2019). Prediction of Rock Fragmentation Based on a Modified Kuz-Ram Model. En Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection - MPES 2018 (pp. 69–79). Springer International Publishing. https://doi.org/10.1007/978-3-319-99220-4_6
Hu, J., Song, Z., Si, J., Cao, G., Nie, L., & Chen, A. (2023). Prediction of Rock Mass Parameters Based on PCA and Random Forest Method. Geotechnical and Geological Engineering, 41, 4629–4640. https://doi.org/10.1007/s10706-023-02536-z
Hudaverdi, T., Kulatilake, P. H. S. W., & Kuzu, C. (2006). Prediction of blast fragmentation using multivariate analysis procedures. International Journal for Numerical and Analytical Methods in Geomechanics, 30(13), 1303–1336. https://doi.org/https://doi.org/10.1002/nag.957
Kuznetsov, V. M. (1973). The mean diameter of fragments formed by blasting rock. Journal of Mining Science, 9(2), 144–148. https://link.springer.com/article/10.1007/BF02506177
Lawal, A. I. (2021). A new modification to the Kuz-Ram model using the fragment size predicted by image analysis. International Journal of Rock Mechanics and Mining Sciences, 138. https://doi.org/10.1016/j.ijrmms.2020.104595
Leng, Z., Fan, Y., Gao, Q., & Hu, Y. (2020). Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine. International Journal of Mining Science and Technology, 30(3), 373–380. https://doi.org/10.1016/j.ijmst.2020.03.010
Li, E., Yang, F., Ren, M., Zhang, X., Zhou, J., & Khandelwal, M. (2021). Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms. Journal of Rock Mechanics and Geotechnical Engineering, 13(6), 1380–1397. https://doi.org/10.1016/j.jrmge.2021.07.013
Lin, S.-B. (2023). Adaptive Parameter Selection for Kernel Ridge Regression.
López, E., López, C., Ortiz, F., & Pernia, J. (2003). Manual de Perforación y Voladura de Rocas. En Ingeopress. http://www.entornografico.com/ingeopres/Ing_119/ing119_sum.htm
Miao, Y., Zhang, Y., Wu, D., Li, K., Yan, X., & Lin, J. (2021). Rock Fragmentation Size Distribution Prediction and Blasting Parameter Optimization Based on the Muck-Pile Model. En Mining, Metallurgy and Exploration (Vol. 38, pp. 1071–1080). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s42461-021-00384-0
Mwango, V. (2015). Optimization of Blasting Parameters-A case study of Nchanga Open Pits. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 4(September 2015), 45–51. https://doi.org/ISSN 2277-8616
Ohadi, B., Sun, X., Esmaieli, K., & Consens, M. P. (2020). Predicting blast-induced outcomes using random forest models of multi-year blasting data from an open pit mine. Bulletin of Engineering Geology and the Environment, 79(1), 329–343. https://doi.org/10.1007/s10064-019-01566-3
Rabbani, A., Samadi, H., Fissha, Y., Agarwal, S. P., Balsara, S., Rai, A., Kawamura, Y., & Sharma, S. (2024). A comprehensive study on the application of soft computing methods in predicting and evaluating rock fragmentation in an opencast mining. Earth Science Informatics, 17(6), 6019–6034. https://doi.org/10.1007/s12145-024-01488-z
Raj, A. K., Choudhary, B. S., & Deressa, G. W. (2024). Prediction of Rock Fragmentation for Surface Mine Blasting Through Machine Learning Techniques. Journal of The Institution of Engineers (India): Series D. https://doi.org/10.1007/s40033-024-00812-7
Rojas Linares, E. L. (2018). Un nuevo enfoque predictivo de la fragmentación en la Voladura de Rocas. Industrial Data, 21(1), 17–26. https://doi.org/10.15381/idata.v21i1.14907
Rosales-Huamani, J. A., Perez-Alvarado, R. S., Rojas-Villanueva, U., & Castillo-Sequera, J. L. (2020). Design of a predictive model of rock breakage by blasting using artificial neural networks. Symmetry, 12(9), 1–17. https://doi.org/10.3390/SYM12091405
Saadoun, A., Boukarm, R., Fredj, M., Menacer, K., Boudjellal, D., Hafsaoui, A., & Yilmaz, I. (2024). Optimal Blast Design Considering the Effects of Geometric Blasting Parameters on Rock Fragmentation : A Case Study. In World Summit: Civil Engineering-Architecture-Urban Planning Congress, 1, 136–146. https://doi.org/10.3897/ap.7.e0146
Shafl, A. (2024, octubre 1). Random Forest Classification with Scikit-Learn. datacamp. https://www.datacamp.com/tutorial/random-forests-classifier-python
Su, H., & Ma, S. (2022). Study on the stability of high and steep slopes under deep bench blasting vibration in open-pit mines. Frontiers in Earth Science, 10(September), 1–15. https://doi.org/10.3389/feart.2022.990012
Vu, T., & Bao, T. (2021). Development of a predictive model of rock fragmentation for Nui Phao open-pit mine in Vietnam using multiple-output Neural Networks and Monte Carlo Dropout technique. ResearchSquare, 1, 1–14. https://doi.org/https://doi.org/10.21203/rs.3.rs-171960/v1
Wu, Z., Wu, Y., Weng, L., Li, M., Wang, Z., & Chu, Z. (2024). Machine learning approach to predicting the macro-mechanical properties of rock from the meso-mechanical parameters. Computers and Geotechnics, 166. https://doi.org/10.1016/j.compgeo.2023.105933
Xie, C., Nguyen, H., Bui, X. N., Choi, Y., Zhou, J., & Nguyen-Trang, T. (2021). Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms. Geoscience Frontiers, 12(3), 101108. https://doi.org/10.1016/j.gsf.2020.11.005
Yakovlev, V. L., Zharikov, S. N., Regotunov, A. S., & Kutuev, V. A. (2024). Methodological basis for adaptation of the drilling and blasting parameters to changing mining and geological conditions when mining complex-structured deposits. Mining Industry Journal (Gornay Promishlennost), 6, 89–97. https://doi.org/10.30686/1609-9192-2024-6-89-97
Yin, R., Liu, Y., Wang, W., & Meng, D. (2020). Sketch Kernel Ridge Regression Using Circulant Matrix: Algorithm and Theory. IEEE Transactions on Neural Networks and Learning Systems, 31, 3512–3524. https://doi.org/10.1109/TNNLS.2019.2944959
Zamora-Paredes, V., Arauzo-Gallardo, L., Raymundo-Ibanez, C., & Perez, M. (2020). Optimal mesh design methodology considering geometric parameters for rock fragmentation in open-pit mining in the Southern Andes of Peru. IOP Conference Series: Materials Science and Engineering, 758(1). https://doi.org/10.1088/1757-899X/758/1/012015
Zhang, R., Li, Y., & Gui, Y. (2023). Prediction of rock blasting induced air overpressure using a self-adaptive weighted kernel ridge regression. Applied Soft Computing, 148. https://doi.org/10.1016/j.asoc.2023.110851
Zhang, Y. L., Qin, Y. G., Armaghsni, D. J., Monjezi, M., & Zhou, J. (2024). Enhancing rock fragmentation prediction in mining operations: A Hybrid GWO-RF model with SHAP interpretability. Journal of Central South University, 31(8), 2916–2929. https://doi.org/10.1007/s11771-024-5699-z
Zhao, J., Li, D., Zhou, J., Armaghani, D. J., & Zhou, A. (2024). Performance evaluation of rock fragmentation prediction based on RF-BOA, AdaBoost-BOA, GBoost-BOA, and ERT-BOA hybrid models. Deep Underground Science and Engineering, 4, 3–17. https://doi.org/10.1002/dug2.12089