El objetivo del presente trabajo se enfoca en el diseño e implementación de un sistema inteligente de bajo costo para la detección temprana de incendios forestales, utilizando tecnologías de IoT (Internet of Things) e IA (Inteligencia Artificial). La metodología diseñada implicó el desarrollo y la evaluación comparativa de múltiples algoritmos, divididos en dos enfoques: técnicas basadas en el análisis de espacios de color (RGB, YCbCr, HSI, HSV y PJF) y modelos de IA (CNN, YOLOv8 y Haar Cascade). A partir de este análisis, se seleccionó una arquitectura híbrida que integra los dos métodos de mayor rendimiento: un detector de objetos basado en YOLOv8 (Método 9) y un algoritmo cromático que fusiona los espacios PJF, RGB y YCbCr (Método 12). Este sistema visual se complementa con un sensor de partículas PM2.5 para validar la presencia de humo y módulos GPS/4G para emitir alertas georreferenciadas. Como resultado clave, el prototipo final validado en condiciones controladas alcanzó métricas destacadas como un 99.82 % de exactitud, 99.64 % de sensibilidad y 100 % de especificidad bajo condiciones de alta iluminación. También demostró eficiencia energética y estabilidad térmica mediante monitoreo continuo de CPU, RAM y consumo de corriente. La principal contribución del trabajo consiste en una solución de campo validada, cuya arquitectura híbrida demuestra ser precisa, eficiente y adaptable, confirmando su viabilidad para ser implementada en contextos de emergencia.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Referencias
Alotaibi, E., & Nassif, N. (2024). Artificial intelligence in environmental monitoring: in-depth analysis. Discover Artificial Intelligence, 4(1), 1–26. https://doi.org/10.1007/s44163-024-00198-1
Altowaijri, A. H., Alfaifi, M. S., Alshawi, T. A., Ibrahim, A. B., & Alshebeili, S. A. (2021). A Privacy-Preserving Iot-Based Fire Detector. IEEE Access, 9, 51393–51402. https://doi.org/10.1109/ACCESS.2021.3069588
Anh, N. D., Van Thanh, P., Lap, D. T., Khai, N. T., Van An, T., Tan, T. D., An, N. H., & Dinh, D. N. (2022). Efficient Forest Fire Detection using Rule-Based Multi-color Space and Correlation Coefficient for Application in Unmanned Aerial Vehicles. KSII Transactions on Internet and Information Systems, 16(2), 381–404. https://doi.org/10.3837/TIIS.2022.02.002
Avazov, K., Hyun, A. E., Sami S, A. A., Khaitov, A., Abdusalomov, A. B., & Cho, Y. I. (2023). Forest Fire Detection and Notification Method Based on AI and IoT Approaches. Future Internet, 15(2). https://doi.org/10.3390/FI15020061
Bhargav, R., & Singh, P. (2025). Efficient UAV-Based Forest Fire Detection Using CNN and YOLOv8 Integration. 2025 6th International Conference on Recent Advances in Information Technology (RAIT), 1–6. https://doi.org/10.1109/RAIT65068.2025.11089330
Buza, E., & Akagic, A. (2022). Unsupervised Method for Wildfire Flame Segmentation and Detection. IEEE Access, 10, 55213–55225. https://doi.org/10.1109/ACCESS.2022.3176724
Celik, T., Ozkaramanli, H., & Demirel, H. (2007). Fire Pixel Classification using Fuzzy Logic and Statistical Color Model. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, 1, I-1205-I–1208. https://doi.org/10.1109/ICASSP.2007.366130
Dilshad, N., Khan, S. U., Alghamdi, N. S., Taleb, T., & Song, J. S. (2024). Toward Efficient Fire Detection in IoT Environment: A Modified Attention Network and Large-Scale Data Set. IEEE Internet of Things Journal, 11(8), 13467–13481. https://doi.org/10.1109/JIOT.2023.3336931
Hamida, A. B., Amar, C. B., & Albagory, Y. (2022). A New Color Model for Fire Pixels Detection in PJF Color Space. Intelligent Automation and Soft Computing, 33, 1607–1621. https://doi.org/10.32604/iasc.2022.024939
Kaggle. (s/f). Find Open Datasets and Machine Learning Projects. Recuperado el 20 de noviembre de 2024, de https://www.kaggle.com/datasets
Koschan, A., & Abidi, M. A. (2008). Digital color image processing. Wiley-Interscience. https://doi.org/10.1002/9780470230367
Lee, C. H., Lee, W. H., & Kim, S. M. (2023). Development of IoT-Based Real-Time Fire Detection System Using Raspberry Pi and Fisheye Camera. Applied Sciences 2023, Vol. 13, Page 8568, 13(15), 8568. https://doi.org/10.3390/APP13158568
Miller, T., Durlik, I., Kostecka, E., Kozlovska, P., Łobodzińska, A., Sokołowska, S., & Nowy, A. (2025). Integrating Artificial Intelligence Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data. Electronics 2025, Vol. 14, Page 696, 14(4), 696. https://doi.org/10.3390/ELECTRONICS14040696
Moreno Rubio, I. (2021). Detección de incendios en áreas forestales usando algoritmos de deep learning [Tesis de Grado, Universidad de Jaén]. http://crea.ujaen.es/jspui/handle/10953.1/20283
Organización Meteorológica Mundial. (2024, noviembre 11). El año 2024 va camino de ser el más cálido jamás registrado en un momento en que el calentamiento supera transitoriamente el umbral de 1,5 °C. Organización Meteorológica Mundial. https://wmo.int/es/news/media-centre/el-ano-2024-va-camino-de-ser-el-mas-calido-jamas-registrado-en-un-momento-en-que-el-calentamiento
Pranamurti, H., Murti, A., & Setianingsih, C. (2019). Fire Detection Use CCTV with Image Processing Based Raspberry Pi. Journal of Physics: Conference Series, 1201(1), 012015. https://doi.org/10.1088/1742-6596/1201/1/012015
Rashkovetsky, D., Mauracher, F., Langer, M., & Schmitt, M. (2021). Wildfire Detection from Multisensor Satellite Imagery Using Deep Semantic Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7001–7016. https://doi.org/10.1109/JSTARS.2021.3093625
Roboflow. (2020). Roboflow: Computer vision tools for developers and enterprises. https://roboflow.com/
Secretaría Nacional de Gestión de Riesgos. (2024). Incendios Forestales 2024. Gobierno de Ecuador – Secretaría Nacional de Gestión de Riesgos. https://www.gestionderiesgos.gob.ec/incendios-forestales-2024/
Secretaría Nacional de Gestión de Riesgos. (2025, febrero 24). Niveles de alertas y declaratorias vigentes establecidas por la SNGR. Gobierno de Ecuador – Secretaría Nacional de Gestión de Riesgos. https://www.gestionderiesgos.gob.ec/niveles-de-alertas-y-declaratorias-vigentes-establecidas-por-la-sgr/
Shrestha, B. (2020). Fire Detection Using Image Processing. http://www.theseus.fi/handle/10024/312830
Talaat, F. M., & ZainEldin, H. (2023). An improved fire detection approach based on YOLO-v8 for smart cities. Neural Computing and Applications, 35(28), 20939–20954. https://doi.org/10.1007/s00521-023-08809-1
Texas Instruments. (2008). INA219. www.ti.com
Vasconcelos, R. N., Franca Rocha, W. J. S., Costa, D. P., Duverger, S. G., Santana, M. M. M. de, Cambui, E. C. B., Ferreira-Ferreira, J., Oliveira, M., Barbosa, L. da S., & Cordeiro, C. L. (2024). Fire Detection with Deep Learning: A Comprehensive Review. Land, 13(10), 1696. https://doi.org/10.3390/land13101696
Waveshare. (2021). SIM7600X 4G & LTE Cat-1 HAT. https://www.waveshare.com/wiki/SIM7600X_4G_%26_LTE_Cat-1_HAT
Wu, Y., Wang, Z., Liu, S., Zhou, Y., Liu, G., & Xie, G. (2024). Flame detection method and application based on RGB-HSI model and initial flame growth characteristics. Journal of Physics: Conference Series, 2752(1), 012231. https://doi.org/10.1088/1742-6596/2752/1/012231
Xing, X., Murdoch, S., Tang, C., Papanastasiou, G., Cross-Zamirski, J., Guo, Y., Xiao, X., Schönlieb, C. B., Wang, Y., & Yang, G. (2024). Can generative AI replace immunofluorescent staining processes? A comparison study of synthetically generated cellpainting images from brightfield. Computers in Biology and Medicine, 182, 109102. https://doi.org/10.1016/J.COMPBIOMED.2024.109102
Yang, S., Huang, Q., & Yu, M. (2024). Advancements in remote sensing for active fire detection: A review of datasets and methods. Science of The Total Environment, 943, 173273. https://doi.org/10.1016/J.SCITOTENV.2024.173273
Zhou, Yong, & Zheng, H. (2016). Digital universal particle concentration sensor PMS5003 series data manual. https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf