Estrategias efectivas para mitigar fluctuaciones de tensión y frecuencia en microrredes aisladas: Una revisión de literatura

Santiago Arcos-Echeverría
https://orcid.org/0009-0001-3133-2257
Danny Ochoa-Correa
https://orcid.org/0000-0001-5633-1480
Resumen

La expansión territorial ha generado nuevos desafíos para los sistemas eléctricos, impulsando la necesidad de electrificar zonas rurales de difícil acceso y territorios insulares. Esta demanda ha fomentado el desarrollo de microrredes eléctricas basadas en generación distribuida a partir de fuentes renovables, las cuales, debido a su baja inercia, presentan inestabilidad en frecuencia y voltaje, especialmente durante sobrecargas o transiciones entre modos de operación aislado y conectado a red. Este artículo presenta una revisión de literatura sobre estrategias para mitigar estas fluctuaciones, analizando 28 publicaciones recientes. Entre los enfoques identificados se destacan los controladores adaptativos, la compensación mediante inversores inteligentes, y la incorporación de almacenamiento energético como mecanismo de soporte dinámico, evidenciándose una preferencia por soluciones basadas en electrónica de potencia y algoritmos predictivos.

DESCARGAS
Los datos de descarga aún no están disponibles.
Cómo citar
Arcos-Echeverría, S., & Ochoa-Correa, D. (2025). Estrategias efectivas para mitigar fluctuaciones de tensión y frecuencia en microrredes aisladas: Una revisión de literatura. Revista Tecnológica - ESPOL, 37(2), 145-169. https://doi.org/10.37815/rte.v37n2.1343
Biografía del autor/a

Danny Ochoa-Correa

Es Ingeniero Eléctrico por la Universidad de Cuenca, Ecuador, desde 2011. En 2014, obtuvo el título de Máster Universitario en Ingeniería Eléctrica por la Universidad Politécnica de Madrid (UPM), España. Es Doctor en Ingeniería Eléctrica y Electrónica por la UPM desde 2019. Sus áreas de interés son: integración de aerogeneradores de velocidad variable a la red eléctrica, operación, control y servicios complementarios en sistemas eléctricos de potencia y microrredes

Referencias

Anttila, S., Döhler, J. S., Oliveira, J. G., & Boström, C. (2022). Grid Forming Inverters: A Review of the State of the Art of Key Elements for Microgrid Operation. Energies, 15(15). https://doi.org/10.3390/en15155517

Arou, A. J., & Tsuji, T. (2024). Coordinated Q-V/P-f Control Strategy Using Virtual Power Factor for Autonomous AC Microgrid with PV Smart Inverters. IEEJ Transactions on Electrical and Electronic Engineering, 19(3), 327-341. https://doi.org/10.1002/tee.23980

Attou, N., Zidi, S.-A., Hadjeri, S., & Khatir, M. (2023). A Control Design of Grid-Forming and Grid-Following Inverters with a Seamless Transition in Microgrid. EEA - Electrotehnica, Electronica, Automatica, 71(2), 10-18. https://doi.org/10.46904/eea.23.71.2.1108002

Bassey, O., & Butler-Purry, K. L. (2020). Black start restoration of islanded droop-controlled microgrids. Energies, 13(22). https://doi.org/10.3390/en13225996

Bassey, O., & Butler-Purry, K. L. (2022). Islanded Microgrid Restoration Studies with Graph-Based Analysis. Energies, 15(19). https://doi.org/10.3390/en15196979

Cheng, Z., Lin, H., Liang, W., Zhu, L., & Zheng, Y. (2022). Research on Adaptive Control Strategy of Microgrid Inverter based on Virtual Synchronous Generator. ACM Int. Conf. Proc. Ser., 1027-1031. https://doi.org/10.1145/3558819.3565462

Elmetwaly, A. H., Eldesouky, A. A., & Sallam, A. A. (2020). An Adaptive D-FACTS for Power Quality Enhancement in an Isolated Microgrid. IEEE Access, 8, 57923-57942. https://doi.org/10.1109/ACCESS.2020.2981444

Fani, B., Shahgholian, G., Haes Alhelou, H., & Siano, P. (2022). Inverter-based islanded microgrid: A review on technologies and control. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 2. https://doi.org/10.1016/j.prime.2022.100068

Hmad, J., Houari, A., Bouzid, A. E. M., Saim, A., & Trabelsi, H. (2023). A Review on Mode Transition Strategies between Grid-Connected and Stand-alone Operation of Voltage Source Inverters-Based Microgrids. Energies, 16(13). https://doi.org/10.3390/en16135062

Hsu, C.-T., Cheng, T.-J., Huang, H.-M., Lee, Y.-D., Chang, Y.-R., & Jiang, J.-L. (2019). Over frequency control of photovoltaic inverters in an island microgrid. Microelectronics Reliability, 92, 42-54. https://doi.org/10.1016/j.microrel.2018.11.011

Hu, C., Shi, X., Luo, S., Zhou, J., Ma, R., & Fan, H. (2021). Decentralized Dynamic Disturbance Compensation Control Strategy for Multiple Parallel Inverters in Microgrid. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 41(13), 4425-4438. https://doi.org/10.13334/j.0258-8013.pcsee.201258

Ide, T., Hirase, Y., Yoshimura, E., Umezu, Y., Bando, S., & Sugimoto, K. (2025a). Identifying Power Oscillation Factors and Improving Stability in Microgrids Comprised of Inverter-Based Resources. IEEJ Transactions on Power and Energy, 145(3), 299-310. https://doi.org/10.1541/ieejpes.145.299

Ide, T., Hirase, Y., Yoshimura, E., Umezu, Y., Bando, S., & Sugimoto, K. (2025b). Investigating and addressing synchronous instabilities in inverter-based resources within microgrids. Applied Energy, 377. https://doi.org/10.1016/j.apenergy.2024.124379

Jasim, A. M., & Jasim, B. H. (2022). Grid-Forming and Grid-Following Based Microgrid Inverters Control. Iraqi Journal for Electrical and Electronic Engineering, 18(1), 111-131. https://doi.org/10.37917/ijeee.18.1.13

Joshal, K. S., & Gupta, N. (2023). Decentralized Control for Multiple Network-Forming Inverters in a Solar PV-BESS Based Stand-alone Microgrid System. Electric Power Components and Systems. https://doi.org/10.1080/15325008.2023.2283860

Khan, S., Iqubal, N., & Prasad, S. (2022). Voltage Regulator Using Sliding Mode Controller for Inverter Based Islanded Microgrid. En Kumar J., Tripathy M., & Jena P. (Eds.), Lect. Notes Electr. Eng. (Vol. 870, pp. 141-152). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-19-0193-5_12

Kokila Vani, C., Sarangapani, E., & Kumaresan, R. (2021). Mitigation of Frequency Variation Through Voltage Control in Islanded Microgrid. En G. Kumaresan, N. S. Shanmugam, & V. Dhinakaran (Eds.), Advances in Materials Research (Vol. 5, pp. 953-961). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-8319-3_95

Luo, S., Peng, K., Hu, C., Shi, X., & Lu, H. (2022). Decentralized Dynamic Disturbance Compensation Control Strategy for Multiple Parallel Inverters in Microgrid. IEEE Ind. Electron. Soc. Annu. On-Line Conf., ONCON. 1st IEEE Industrial Electronics Society Annual On-Line Conference, ONCON 2022. https://doi.org/10.1109/ONCON56984.2022.10126896

Matthee, A., Moonen, N., Sulaeman, I., & Leferink, F. (2024). Transient Response of Generator- and Inverter-Based Microgrids to Rapid Load Changes. IEEE Transactions on Electromagnetic Compatibility, 66(5), 1646-1654. https://doi.org/10.1109/TEMC.2024.3435732

Mohamed Salim, O., & El-Sayed Salem Aboraya, A. (2024). Power quality enhancement of unbalanced Distributed-Resources based on triple-loop compensation. Ain Shams Engineering Journal, 15(2), 102454. https://doi.org/10.1016/j.asej.2023.102454

Ochoa, D., & Martinez, S. (2021). Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems. Energies, 14(12), 3660. https://doi.org/10.3390/en14123660

Pahasa, J., Potejana, P., & Ngamroo, I. (2021). Multi-objective decentralized model predictive control for inverter air conditioner control of indoor temperature and frequency stabilization in microgrid. Energies, 14(21). https://doi.org/10.3390/en14216969

Pilehvar, M. S., & Mirafzal, B. (2020a). Energy-storage fed smart inverters for mitigation of voltage fluctuations in islanded microgrids. IEEE Electr. Power Energy Conf., EPEC. 2020 IEEE Electric Power and Energy Conference, EPEC 2020. https://doi.org/10.1109/EPEC48502.2020.9319911

Pilehvar, M. S., & Mirafzal, B. (2020b). Frequency and voltage supports by battery‐fed smart inverters in mixed‐inertia microgrids. Electronics (Switzerland), 9(11), 1-14. https://doi.org/10.3390/electronics9111755

Pilehvar, M. S., & Mirafzal, B. (2020c). PV-fed smart inverters for mitigation of voltage and frequency fluctuations in islanded microgrids. Proc. - Int. Conf. Smart Grids Energy Syst., SGES, 807-812. https://doi.org/10.1109/SGES51519.2020.00149

PRISMA-P Group, Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1

Samanta, S., Datta, S., Das, S., Roy, B. K., & Ganguly, A. (2021). Design and FPGA Implementation of an Islanding Detection cum Re-synchronisation Technique for a Grid Connected Inverter in a DC Microgrid. Int. Conf. Energy, Power Environ.: Towards Clean Energy Technol., ICEPE. 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, ICEPE 2020. https://doi.org/10.1109/ICEPE50861.2021.9404503

Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & the PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ, 349(jan02 1), g7647-g7647. https://doi.org/10.1136/bmj.g7647

Shi, H., zhang, J., Zhou, J., Li, Y., & Jiang, Z. (2021). A Novel H∞ Robust Control Strategy for Voltage Source Inverter in Microgrid. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.731432

Shi, Y., Liu, Z., Liu, J., Wang, W., & An, R. (2025). A Decentralized Secondary Voltage Control Method with Unbalance Voltage Compensation Capability for Parallel Inverters in Islanded Microgrids. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2025.3556302

Singh, A. R., Ray, P., Seshu Kumar, R., & Salkuti, S. R. (2023). Introduction to Power Quality in Microgrids. En S. R. Salkuti, P. Ray, & A. R. Singh (Eds.), Power Quality in Microgrids: Issues, Challenges and Mitigation Techniques (Vol. 1039, pp. 1-21). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-2066-2_1

Singh, S. K., Rawal, M., Rawat, M. S., & Gupta, T. N. (2021). Hybrid islanding detection technique for inverter based microgrid. Int. Conf. Emerg. Technol., INCET. 2021 2nd International Conference for Emerging Technology, INCET 2021. https://doi.org/10.1109/INCET51464.2021.9456307

Sun, G., Li, Y., Jin, W., & Gao, Y. (2019). A Comprehensive Power Quality Control Strategy for Microgrid Based on Three-phase Multi-function Inverters. Dianwang Jishu/Power System Technology, 43(4), 1211-1219. https://doi.org/10.13335/j.1000-3673.pst.2018.1765

VOSviewer—Visualizing scientific landscapes. (s. f.). VOSviewer. Last access: July 5th, 2023 from https://www.vosviewer.com/

Wang, H., Wang, M., Cheng, Q., Lv, S., & Ji, X. (2022). Modelling simulation and inverter control strategy research of microgrid in grid-connected and island mode. Energy Reports, 8, 206-218. https://doi.org/10.1016/j.egyr.2022.09.117

Xia, F., Xia, Z., Di, Z., Yang, Z., Huang, X., & Song, L. (2018). Resistance capacitive inverter allocation method based on fast reactive support based on Microgrid. IOP Conf. Ser. Earth Environ. Sci., 170(4). https://doi.org/10.1088/1755-1315/170/4/042149

Yuan, C., Xie, P., Yang, D., & Xiao, X. (2018). Transient stability analysis of islanded AC microgrids with a significant share of virtual synchronous generators. Energies, 11(1). https://doi.org/10.3390/en11010044

Zhang, C., Xu, J., Qing, H., Chai, X., & Wang, X. (2022). Seamless Transferring Control Strategy for Master-Slave Microgrid Inverter in Whole Off-grid Process. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 46(23), 125-133. https://doi.org/10.7500/AEPS20210914002

Zheng, F., Lin, X., Lin, Y., Zhang, Y., & Zhang, Y. (2019). Design of a novel hybrid control strategy for es grid-connected inverter for smooth microgrid transition operation. IEEE Access, 7, 171950-171965. https://doi.org/10.1109/ACCESS.2019.2955713