Análisis predictivo y gestión optimizada de la cartera de clientes morosos en CNEL EP, Unidad de Negocio Bolívar

Marco Vinicio Carrillo Trujillo
Pedro Stalyn Aguilar Encarnación
Resumen

La morosidad representa un obstáculo estructural para la sostenibilidad financiera de las empresas públicas de distribución eléctrica; sin embargo, a diferencia del sector financiero, aún no se han adaptado modelos predictivos basados en aprendizaje automático a este contexto. En particular, CNEL EP enfrenta dificultades para anticipar el incumplimiento de sus clientes, lo cual limita la eficacia de su gestión comercial. Ante esta problemática, el presente estudio tiene como objetivo determinar el modelo de aprendizaje automático más preciso para predecir el riesgo de morosidad en la Unidad de Negocio Bolívar. Para ello, se adoptó un enfoque metodológico basado en Design Science Research y CRISP-DM, el cual permitió integrar una revisión sistemática de literatura (PRISMA), el análisis de un conjunto de 72.483 registros históricos y la aplicación de técnicas como PCA, SMOTE y modelos ensemble (RandomForest, Gradient Boosting, AdaBoost y VotingClassifier). Gradient Boosting y VotingClassifier alcanzaron métricas casi perfectas (Accuracy: 0.9982; F1 Macro: 0.9957; AUC ROC: 1.000) y (Accuracy: 0.9983; F1 Macro: 0.9959; AUC ROC: 1.000), incluso en escenarios de estrés con ruido, desbalance y pérdida de datos; además, la incorporación de SHAP y LIME facilitó la interpretación de las predicciones, garantizando transparencia para usuarios no técnicos. Los hallazgos evidencian que la solución es robusta, replicable y aplicable en la práctica. Este estudio constituye un aporte significativo al demostrar que los modelos de aprendizaje automático pueden fortalecer la gestión de cartera en el sector eléctrico público ecuatoriano.

DESCARGAS
Los datos de descarga aún no están disponibles.
Cómo citar
Carrillo Trujillo, M. V., & Aguilar Encarnación, P. S. (2025). Análisis predictivo y gestión optimizada de la cartera de clientes morosos en CNEL EP, Unidad de Negocio Bolívar. Revista Tecnológica - ESPOL, 37(1), 285-308. https://doi.org/10.37815/rte.v37n1.1312

Referencias

Akinjole, A., Shobayo, O., Popoola, J., Okoyeigbo, O., & Ogunleye, B. (2024). Ensemble-Based Machine Learning Algorithm for Loan Default Risk Prediction. Mathematics, 12(21), 3423. https://doi.org/10.3390/MATH12213423

Akoka, J., Comyn-Wattiau, I., & Storey, V. C. (2023). Design Science Research: Progression, Schools of Thought and Research Themes. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13873 LNCS, 235–249. https://doi.org/10.1007/978-3-031-32808-4_15

Alonso Robisco, A., & Carbó Martínez, J. M. (2022). Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction. Financial Innovation, 8(1), 1–35. https://doi.org/10.1186/S40854-022-00366-1

Alvi, J., Arif, I., & Nizam, K. (2024). Advancing financial resilience: A systematic review of default prediction models and future directions in credit risk management. Heliyon, 10(21), e39770. https://doi.org/10.1016/J.HELIYON.2024.E39770

Aurona, G., & Richard, B. (2023). Design Science Research for a New Society: Society 5.0. 18th International Conference on Design Science Research in Information Systems and Technology, DESRIST 2023, Pretoria, South Africa, May 31 – June 2, 2023, Proceedings, 13873. https://doi.org/10.1007/978-3-031-32808-4

Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing, 91, 106263. https://doi.org/10.1016/J.ASOC.2020.106263

Delport, P. M. J., Solms, R. Von, & Gerber, M. (2024). Methodological Guidelines for Design Science Research. Procedia Computer Science, 237, 195–203. https://doi.org/10.1016/J.PROCS.2024.05.096

Gao, B., & Balyan, V. (2022). Construction of a financial default risk prediction model based on the LightGBM algorithm. Journal of Intelligent Systems, 31(1), 767–779. https://doi.org/10.1515/JISYS-2022-0036

Goecks, L. S., De Souza, M., Librelato, T. P., & Trento, L. R. (2021). Design Science Research in practice: review of applications in Industrial Engineering. Gestão & Produção, 28(4), e5811. https://doi.org/10.1590/1806-9649-2021V28E5811

Gregor, S. (2021). Reflections on the Practice of Design Science in Information Systems. Engineering the Transformation of the Enterprise: A Design Science Research Perspective, 101–113. https://doi.org/10.1007/978-3-030-84655-8_7

Ha, T., Xiao, D., Katsikis, V. N., Khan, H., Li, S., Zhu, M., Shia, B.-C., Su, M., & Liu, J. (2024). Consumer Default Risk Portrait: An Intelligent Management Framework of Online Consumer Credit Default Risk. Mathematics 2024, Vol. 12, Page 1582, 12(10), 1582. https://doi.org/10.3390/MATH12101582

Kim, H., Cho, H., & Ryu, D. (2020). Corporate Default Predictions Using Machine Learning: Literature Review. Sustainability 2020, Vol. 12, Page 6325, 12(16), 6325. https://doi.org/10.3390/SU12166325

Lai, L. (2020). Loan Default Prediction with Machine Learning Techniques. Proceedings - 2020 International Conference on Computer Communication and Network Security, CCNS 2020, 5–9. https://doi.org/10.1109/CCNS50731.2020.00009

Liu, J., Liu, J., Wu, C., & Wang, S. (2024). Enhancing credit risk prediction based on ensemble tree-based feature transformation and logistic regression. Journal of Forecasting, 43(2), 429–455. https://doi.org/https://doi.org/10.1002/for.3040

Montevechi, A. A., Miranda, R. de C., Medeiros, A. L., & Montevechi, J. A. B. (2024). Advancing credit risk modelling with Machine Learning: A comprehensive review of the state-of-the-art. Engineering Applications of Artificial Intelligence, 137, 109082. https://doi.org/10.1016/J.ENGAPPAI.2024.109082

Mujo, A., Nikolla, S., Hoxha, E., & Pelivani, E. (2025). Explainable AI in Credit Scoring: Improving Transparency in Loan Decisions. Journal of Information Systems Engineering and Management, 10(27s), 506–515. https://doi.org/10.52783/JISEM.V10I27S.4437

Qin, C., Zhang, Y., Bao, F., Zhang, C., Liu, P., & Liu, P. (2021). XGBoost optimized by adaptive particle swarm optimization for credit scoring. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/6655510

Ren, H. (2025). Machine Learning-Based Prediction of Customer Churn Risk in E-commerce. Advances in Economics, Management and Political Sciences, 153(1), 47–52. https://doi.org/10.54254/2754-1169/2024.19473

Rios, S. B., & Arbeláez, D. H. (2023). Construcción de un modelo para predecir la morosidad de cartera. Cuaderno Activa, 15(1). https://doi.org/10.53995/20278101.1229

scikit-learn.org. (n.d.-a). 3.1. Cross-validation: evaluating estimator performance — scikit-learn 1.6.1 documentation. Retrieved May 4, 2025, from https://scikit-learn.org/stable/modules/cross_validation.html

scikit-learn.org. (n.d.-b). 3.2. Tuning the hyper-parameters of an estimator — scikit-learn 1.6.1 documentation. Retrieved May 4, 2025, from https://scikit-learn.org/stable/modules/grid_search.html

Shahid, A., Hussain, M., & Iqbal, A. (2023). Machine Learning Based Improved Customer Churn Prediction Model for Telecommunications Industry. 18th IEEE International Conference on Emerging Technologies, ICET 2023, 147–153. https://doi.org/10.1109/ICET59753.2023.10375037

Sheikh, M. A., Goel, A. K., & Kumar, T. (2020). An Approach for Prediction of Loan Approval using Machine Learning Algorithm. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020, 490–494. https://doi.org/10.1109/ICESC48915.2020.9155614

Wang, Z., Zhang, H., Wang, J., Jiang, C., He, H., & Ding, Y. (2025). Forecasting time to risk based on multi-party data: An explainable privacy-preserving decentralized survival analysis method. Information Processing and Management, 62(1). https://doi.org/10.1016/j.ipm.2024.103881

Xu, T. (2024). Comparative Analysis of Machine Learning Algorithms for Consumer Credit Risk Assessment. Transactions on Computer Science and Intelligent Systems Research, 4, 60–67. https://doi.org/10.62051/R1M3PG16

Yemmanuru, P. K., Yeboah, J., & Nti, I. K. (2024). Customer Credit Risk: Application and Evaluation of Machine Learning and Deep Learning Models. 2024 IEEE 3rd International Conference on Computing and Machine Intelligence, ICMI 2024 - Proceedings. https://doi.org/10.1109/ICMI60790.2024.10585896

Zhang, L., & Wang, L. (2023). An Ensemble Learning-Enhanced Smart Prediction Model for Financial Credit Risks. Https://Doi.Org/10.1142/S0218126624501299, 33(7). https://doi.org/10.1142/S0218126624501299

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.