Assessment of the Security of Digital Certificates in the Financial Platforms in Ecuador

David Peñarrieta
https://orcid.org/0009-0003-4888-0000
Marlon Navia
https://orcid.org/0000-0001-9775-3778
Eliana Garcia
https://orcid.org/0009-0002-0857-8977
Dannyll Zambrano
https://orcid.org/0000-0003-4413-4425
Abstract

This article presents a diagnosis of the application of digital certificates in the virtual banking services of Ecuador. The importance of this topic is based on the increasing attacks on electronic services of financial platforms in the region and the world, due to the exploitation of vulnerabilities discovered by cybercriminals in the weak application of cipher suites. The objective of the research is to show the level of security of these online banking portals (individuals), in the applicability of SSL/TLS protocols, with their respective cipher suites on the server side. Eighteen financial entities were analyzed using the online tool SSL Server Test by Qualys SSL Labs. It was found that 20% of the analyzed banking entities show weaknesses in the applicability of digital certificates, which could lead to cyberattacks on these virtual platforms during the client/server communication process over the internet. Confidentiality, integrity, and availability of data are indispensable characteristics of information security that a user should receive in the virtual banking service. Additionally, this work reviews the recommendations for the use of digital certificates according to the regulations issued by the IETF through the respective RFCs.

DOWNLOADS
Download data is not yet available.
How to Cite
Peñarrieta, D., Navia, M., Garcia, E., & Zambrano, D. (2024). Assessment of the Security of Digital Certificates in the Financial Platforms in Ecuador. Revista Tecnológica - ESPOL, 36(2), 174-189. https://doi.org/10.37815/rte.v36n2.1222

References

Advisory, S. (2014). This POODLE Bites : Exploiting The. Google Security Blog. https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html

Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J., Valenta, L., Adrian, D., Halderman, J. A., Dukhovni, V., Käsper, E., Cohney, S., Engels, S., Paar, C., & Shavitt, Y. (2016). Drown: Breaking TLS using SSLv2. Proceedings of the 25th USENIX Security Symposium, 689–706. https://drownattack.com/drown-attack-paper.pdf

Bleichenbacher, D. (1998). A Chosen Ciphertext Attack against Protocols based on the RSA Encryption Standard PKCS textsfsymbol351. Proc. of Crypto ’98, 1462, 1–12.

Blog de Internet Security Auditors: Seguridad SSL/TLS: LUCKY 13. (n.d.). Retrieved January 7, 2024, from https://blog.isecauditors.com/2020/04/seguridad-ssl-tls-lucky13.html

Böck, H., Somorovsky, J., & Young, C. (2017). Return Of Bleichenbacher’s Oracle Threat (ROBOT). Cryptology EPrint Archive.

Centro Criptográfico Nacional. (2023). Guía de Seguridad de las TIC CCN-STIC 221 Guía de Mecanismos Criptográficos autorizados por el CCN. https://www.ccn-cert.cni.es/es/guias-de-acceso-publico-ccn-stic/6954-ccn-stic-221-guia-de-mecanismos-criptograficos-autorizados-por-el-ccn-1/file.html

Centro Criptológico Nacional. (2017). Guía de Seguridad de las TIC CCN-STIC 811. Interconexión en el ENS. https://www.ccn-cert.cni.es/es/series-ccn-stic/800-guia-esquema-nacional-de-seguridad/521-ccn-stic-811-interconexion-en-el-ens/file?format=html

Cisco. (2017). SSL Introduction with Sample Transaction and Packet Exchange - Cisco. 1–8. https://www.cisco.com/c/en/us/support/docs/security-vpn/secure-socket-layer-ssl/116181-technote-product-00.html#anc6

CVE - MITRE. (2014). CVE Record | CVE. CVE - MITRE. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6593

Dell, K. M., & Farrell, E. S. (2021). RFC 8996 Deprecating TLS 1.0 and TLS 1.1. Internet Engineering Task Force, 3329, 8422. https://www.rfc-editor.org/info/rfc8996

Dierks, T., & Allen, C. (1999). The TLS Protocol Version 1.0 (Issue 2246). https://www.ietf.org/rfc/rfc2246.txt

Dierks T. and Rescorla E. (n.d.). The Transport Layer Security (TLS) Protocol Version 1.2 [RFC 5246]. Retrieved May 10, 2022, from https://www.rfc-editor.org/rfc/pdfrfc/rfc5246.txt.pdf

Factoring, F., & Export, R. S. A. (1990). Vulnerabilidad Freak de SSL. https://www.ecucert.gob.ec/wp-content/uploads/2021/07/Ficha-Tecnica-Freak-SSL.pdf

Hodges, J., Jackson, C., & Barth, A. (2012). HTTP Strict Transport Security (HSTS). In IETF - Internet Engineering Task Force. https://doi.org/10.17487/rfc6797

IBM. (2021). Cipher suite considerations when upgrading to TLS V1.2 - IBM Documentation. https://www.ibm.com/docs/en/zos/2.4.0?topic=protocols-cipher-suite-considerations-when-upgrading-tls-v12

Merget, R., Somorovsky, J., Aviram, N., Young, C., Fliegenschmidt, J., Schwenk, J., & Shavitt, Y. (2019). Scalable Scanning and Automatic Classification of TLS Padding Oracle Vulnerabilities. USENIX Security Symposium.

OpenSSL. (2016). Memory corruption in the ASN.1 encoder (CVE-2016-2108). https://www.openssl.org/news/secadv/20160503.txt

Qualys, I. (2015). SSL Server Test. Projects. https://www.ssllabs.com/ssltest/

Rescorla, E. (2008). [ECC] TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM) [RFC 5289]. RFC 5289, 1–6. https://datatracker.ietf.org/doc/html/rfc5289

Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version 1.3 [RFC 8446]. https://doi.org/https://doi.org/10.17487/rfc8446

Ristic, I. (2017). SSL and TLS Deployment Best Practices. Wiki, 4(December), 1–14. https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

Ristić, I. (2014). Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and PKI to Secure Servers and Web Applications (Feisty Duck Limited (Ed.); Vol. 2015, Issue build 592). https://www.feistyduck.com/books/bulletproof-tls-and-pki/bulletproof-tls-and-pki-2ed-sample.pdf

Rizzo, J., & Duong, T. (2011). The Beauty (RC4) and The BEAST (TLS) – HACKMAGEDDON. Hakmagenon. https://www.hackmageddon.com/2011/09/25/the-beauty-rc4-and-the-beast-tls/

Sannegowda, Y. (2019). Zombie POODLE and GOLDENDOODLE Vulnerabilities | Qualys Security Blog. https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-vulnerabilities

Sheffer, Y., Saint-Andre, P., & Fossati, T. (2022, November). Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). https://doi.org/10.17487/RFC9325

SSL Pulse. (2019). Qualys SSL Labs - SSL Pulse. SSL Pulse. https://www.ssllabs.com/ssl-pulse/

Statcounter. (2023). Desktop Windows Version Market Share Ecuador | Statcounter Global Stats. In Statcounter Global Stats. https://gs.statcounter.com/windows-version-market-share/desktop/ecuador/#monthly-202209-202309-bar

SUPERINTENDENCIA DE BANCOS. (2023). Calificación de Riesgo Instituciones Financieras. Web Page. https://www.superbancos.gob.ec/bancos/calificacion-de-riesgo-instituciones-financieras-2022/

The Internet Engineering Task Force (IETF). (n.d.). Introduction to the IETF. Retrieved January 5, 2024, from https://www.ietf.org/about/introduction/

The Internet Engineering Task Force (IETF). (2004). RFC 3749 - TLS Compression Methods. https://www.rfc-editor.org/rfc/pdfrfc/rfc3749.txt.pdf

Vaudenay, S. (2002). Security flaws induced by cbc padding – Applications to SSL, IPSEC, WTLS. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2332, 534–545. https://doi.org/https://doi.org/10.1007/3-540-46035-7_35

Young, C. (2019a). Introducing Zombie POODLE and GOLDENDOODLE. Tripwire. https://www.tripwire.com/state-of-security/zombie-poodle-goldendoodle

Young, C. (2019b). “TripWire Vert, What is GOLDENDOODLE Attack?” https://www.tripwire.com/state-of-security/goldendoodle-attack