Digital transformation in education has created the need to train teachers and improve their digital competencies. However, training processes are often ineffective due to the lack of personalization in the proposals and the variety in teacher profiles. Given this, this article addresses the development of a web tool designed to diagnose teachers’ digital competencies and provide personalized recommendations for MOOCs to support the development of their skills. To achieve this, a system that uses Natural Language Processing (NLP) techniques and a content-based recommendation model is proposed. Course data is obtained through web scraping and processed with NLP techniques, using an advanced language model (BERT) to generate vector representations of the courses and competencies. The web system allows teachers to self-assess their competencies, visualize the results, and receive personalized recommendations for MOOCs. The implementation of this system has proven effective in identifying teachers’ areas for improvement and suggesting relevant courses for their professional development. The results suggest that the use of this system can be an effective solution for training teachers in digital competencies.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ali, Aida & Shamsuddin, Siti Mariyam & Ralescu, Anca. (2015). Classification with class imbalance problem: A review. International Journal of Advance Soft Computing Applications, 7, 176-204.
Aggarwal, C. C. (2016). Recommender Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3
Ayabaca, D. M. G., Alba, J. A. J., & Guamán, E. E. E. (2019). Implementación de las TIC en el ámbito educativo ecuatoriano. Sociedad & Tecnología, 2(2), Article 2. https://doi.org/10.51247/st.v2i2.49
Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Eval. Ind., 189.
Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., & Pérez, J. (2023). Spanish Pre-trained BERT Model and Evaluation Data (arXiv:2308.02976). arXiv. https://doi.org/10.48550/arXiv.2308.02976
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv. http://arxiv.org/abs/1810.04805
Figueredo, O. R. B. (2013). Tecnologías emergentes en la educación: Una experiencia de formación de docentes que fomenta el diseño de ambientes de aprendizaje. Educação & Sociedade, 34(123), 531–548.
INTEF (Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado). (2023). Marco de Referencia de la Competencia Digital Docente (MRCDD). Secretaría General Técnica del Ministerio de Educación y Formación Profesional de España.
Kedia, A., & Rasu, M. (2020). Hands-On Python Natural Language Processing: Explore tools and techniques to analyze and process text with a view to building real-world NLP applications. Packt Publishing Ltd.
Khyani, D., & B S, S. (2021). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 22, 350–357.
Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview. Theory Into Practice, 41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2
Lee, R. S. T. (2023). Natural Language Processing: A Textbook with Python Implementation. Springer Nature.
Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of Massive Datasets. Cambridge University Press.
MEN (Ministerio de Educación Nacional de Colombia). (2013). Competencias TIC para el Desarrollo Profesional Docente. Oficina de Innovación Educativa con Uso de Nuevas Tecnologías.
Scikit-learn. (2018). Parameter estimation using grid search with cross-validation. Scikit-learn. Retrieved May 27, 2024, from https://scikit-learn.org/0.18/auto_examples/model_selection/grid_search_digits.html
Patel, J. M. (2020). Getting Structured Data from the Internet: Running Web Crawlers/Scrapers on a Big Data Production Scale. Apress.
Redecker, C. (2020). Marco Europeo para la Competencia Digital de los Educadores: DigCompEdu (Fundación Universia & Ministerio de Educación y Formación Profesional, Trans.). Secretaría General Técnica del Ministerio de Educación y Formación Profesional de España.
Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE, 10(3), e0118432. https://doi.org/10.1371/journal.pone.0118432
Trust, T. (2018). 2017 ISTE Standards for Educators: From Teaching With Technology to Using Technology to Empower Learners. Journal of Digital Learning in Teacher Education, 34(1), 1–3. https://doi.org/10.1080/21532974.2017.1398980

