Technological Evolution of Photovoltaic Solar Generation: A Literature Review in the Last Decade

Richard Fernando Criollo Enriquez
https://orcid.org/0009-0000-5763-9225
Danny Paul Guaillas Dominguez
https://orcid.org/0009-0004-1260-8176
Danny Ochoa Correa
https://orcid.org/0000-0001-5633-1480
Abstract

The constant innovation in technologies for generating electrical energy through the use of renewable resources has allowed them to become competitive with traditional technologies in recent years. This has made them a great option for large-scale systems. Currently, new photovoltaic technologies enable higher energy conversion efficiencies while reducing costs through the implementation of new materials, the latter being a key criterion for their subsequent large-scale deployment. This article presents a literature review on the technological evolution of photovoltaic solar generation, evaluating and analyzing only articles published between 2013 and 2023, using the PRISMA methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). From a total of 307 articles identified in prestigious databases such as Science Direct, IEEEXplore, and Scopus, a subset of 12 scientific articles has been systematically selected and reviewed according to specific inclusion and exclusion criteria defined by the researchers. The synthesis of the content of the selected articles reveals that emerging technologies, such as multi-junction cells, perovskite cells, organic solar cells, and thin-film heterojunction cells, have achieved higher efficiencies than conventional solar cells and offer more competitive prices, facilitating the expansion of photovoltaic systems in multiple applications.

DOWNLOADS
Download data is not yet available.
How to Cite
Criollo Enriquez, R. F., Guaillas Dominguez, D. P., & Ochoa Correa, D. (2024). Technological Evolution of Photovoltaic Solar Generation: A Literature Review in the Last Decade. Revista Tecnológica - ESPOL, 36(2), 13-31. https://doi.org/10.37815/rte.v36n2.1158
Author Biography

Danny Ochoa Correa

He is an Electrical Engineer from the University of Cuenca, Ecuador, since 2011. In 2014, he obtained the Master's degree in Electrical Engineering from the Polytechnic University of Madrid (UPM), Spain and the PhD in Electrical and Electronic Engineering from the UPM in 2019. He is a full-time professor and researcher at the University of Cuenca. His areas of interest are: integration of variable speed wind turbines into the electrical grid, operation, control and complementary services in electrical power systems and microgrids.

References

Abdellatif, S. Josten, A. S. G. Khalil, D. Erni, & F. Marlow. (2020). Transparency and Diffused Light Efficiency of Dye-Sensitized Solar Cells: Tuning and a New Figure of Merit. IEEE Journal of Photovoltaics, 10(2), 522–530. https://doi.org/10.1109/JPHOTOV.2020.2965399

An, J., Shen, Y., Roca i Cabarrocas, P., & Chen, W. (2022). Fabrication of Crystalline Si Thin Films for Photovoltaics. Physica Status Solidi - Rapid Research Letters, 16(12). Scopus. https://doi.org/10.1002/pssr.202200290

Araki, K., Tawa, H., Saiki, H., Ota, Y., Nishioka, K., & Yamaguchi, M. (2020). The outdoor field test and energy yield model of the four-terminal on si tandem PV module. Applied Sciences (Switzerland), 10(7). Scopus. https://doi.org/10.3390/app10072529

Bošnjaković, M., Santa, R., Crnac, Z., & Bošnjaković, T. (2023). Environmental Impact of PV Power Systems. Sustainability (Switzerland), 15(15). Scopus. https://doi.org/10.3390/su151511888

Boychev, B., & Petkova, P. (2023). Assessment of the Economic Efficiency of a Photovoltaic Plant for a Small and Medium-Sized Production Facility. 2023 15th Electrical Engineering Faculty Conference (BulEF), 1–3. https://doi.org/10.1109/BulEF59783.2023.10406203

British Petroleum. (2022). Statistical Review of World Energy 2022. https://www.bp.com/content/dam/bp/country-sites/es_es/spain/home/pdfs/noticias/Resumen%20Ejecutivo%20-%20STR.pdf

Chabla-Auqui, L., Ochoa-Correa, D., Villa-Ávila, E., & Astudillo-Salinas, P. (2023). Distributed Generation Applied to Residential Self-Supply in South America in the Decade 2013–2023: A Literature Review. Energies, 16(17), 6207. https://doi.org/10.3390/en16176207

Enaganti, P. K., Soman, S., Devan, S. S., Pradhan, S. C., Srivastava, A. K., Pearce, J. M., & Goel, S. (2022). Dye‐sensitized solar cells as promising candidates for underwater photovoltaic applications. Progress in Photovoltaics: Research and Applications, 30(6), 632–639. https://doi.org/10.1002/pip.3535

Ernst, M., Liu, X., Asselineau, C.-A., Chen, D., Huang, C., & Lennon, A. (2024). Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems. Energy Conversion and Management, 300, 117947. https://doi.org/10.1016/j.enconman.2023.117947

Evola, G., & Marletta, L. (2014a). Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector. Solar Energy, 107, 12–25. https://doi.org/10.1016/j.solener.2014.05.041

Galetovic, A., & Muñoz, C. (2009). Energías renovables no convencionales: ¿Cuánto nos va a costar? Estudios Públicos, 112. https://doi.org/10.38178/cep.vi112.461

Green, M. A., Dunlop, E. D., Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K., & Hao, X. (2023b). Solar cell efficiency tables (Version 61). Progress in Photovoltaics: Research and Applications, 31(1), 3–16. https://doi.org/10.1002/pip.3646

Hallam, B., Kim, M., Underwood, R., Drury, S., Wang, L., & Dias, P. (2022). A Polysilicon Learning Curve and the Material Requirements for Broad Electrification with Photovoltaics by 2050. Solar RRL, 6(10). Scopus. https://doi.org/10.1002/solr.202200458

Hou, J., Inganäs, O., Friend, R. H., & Gao, F. (2018). Organic solar cells based on non-fullerene acceptors. Nature Materials, 17(2), 119–128. https://doi.org/10.1038/nmat5063

Imran, H., Durrani, I., Kamran, M., Abdolkader, T. M., Faryad, M., & Butt, N. Z. (2018). High-Performance Bifacial Perovskite/Silicon Double-Tandem Solar Cell. IEEE Journal of Photovoltaics, 8(5), 1222–1229. IEEE Journal of Photovoltaics. https://doi.org/10.1109/JPHOTOV.2018.2846519

Jackson, P., Hariskos, D., Wuerz, R., Wischmann, W., & Powalla, M. (2014). Compositional investigation of potassium doped Cu(In,Ga)Se 2 solar cells with efficiencies up to 20.8%. Physica Status Solidi (RRL) – Rapid Research Letters, 8(3), 219–222. https://doi.org/10.1002/pssr.201409040

Jiang, Q., Song, Z., Bramante, R. C., Ndione, P. F., Tirawat, R., Berry, J. J., Yan, Y., & Zhu, K. (2023). Highly efficient bifacial single-junction perovskite solar cells. Joule, 7(7), 1543–1555. https://doi.org/10.1016/j.joule.2023.06.001

Khatoon, S., Kumar Yadav, S., Chakravorty, V., Singh, J., Bahadur Singh, R., Hasnain, M. S., & Hasnain, S. M. M. (2023). Perovskite solar cell’s efficiency, stability and scalability: A review. Materials Science for Energy Technologies, 6, 437–459. https://doi.org/10.1016/j.mset.2023.04.007

Li, W., Wang, D., Zhou, Q., & Dong, H. (2021). Energy Efficiency Evaluation of Photovoltaic Power Generation System Based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), 1029–1034. https://doi.org/10.1109/EI252483.2021.9713643

Liu, Shi, G., Liu, Z., & Ma, W. (2021). Toward printable solar cells based on PbX colloidal quantum dot inks. Nanoscale Horizons, 6(1), 8–23. Scopus. https://doi.org/10.1039/d0nh00488j

Liu, Zhou, K., Wang, J., Gui, R., Xian, K., Gao, M., Yin, H., Hao, X., Zhou, Z., & Ye, L. (2022). An Aggregation-Suppressed Polymer Blending Strategy Enables High-Performance Organic and Quantum Dot Hybrid Solar Cells. Small, 18(19). Scopus. https://doi.org/10.1002/smll.202201387

Ozden, T., Carr, A. J., Geerligs, B. (L. J. ), Turan, R., & Akinoglu, B. G. (2020b). One-year performance evaluation of two newly developed back-contact solar modules in two different climates. Renewable Energy, 145, 557–568. https://doi.org/10.1016/j.renene.2019.06.045

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. Scopus. https://doi.org/10.1136/bmj.n71

Parhamfar, M., Sadeghkhani, I., & Adeli, A. M. (2024). Towards the net zero carbon future: A review of blockchain-enabled peer-to-peer carbon trading. Energy Science and Engineering, 12(3), 1242–1264. Scopus. https://doi.org/10.1002/ese3.1697

Pica, A. T., & Sauma, E. E. (2015). Los desafíos de la utilización de energías renovables no convencionales intermitentes.

Reinhard, F. Pianezzi, B. Bissig, A. Chirilă, P. Blösch, S. Nishiwaki, S. Buecheler, & A. N. Tiwari. (2015). Cu(In,Ga)Se$_{bf 2}$ Thin-Film Solar Cells and Modules—A Boost in Efficiency Due to Potassium. IEEE Journal of Photovoltaics, 5(2), 656–663. https://doi.org/10.1109/JPHOTOV.2014.2377516

Saïdi, H., Ben Alaya, C., Boujmil, M. F., Durand, B., Lazzari, J. L., & Bouaïcha, M. (2020). Physical properties of electrodeposited CIGS films on crystalline silicon: Application for photovoltaic hetero-junction. Current Applied Physics, 20(1), 29–36. Scopus. https://doi.org/10.1016/j.cap.2019.09.015

Solano, J. C., Herrera, V., Ordóñez, Á., Caraballo, M., & Lozano, A. (2024). Economic Analysis of Residential Photovoltaic Self-Consumption in Ecuador: Simulation Tool. Green Energy and Technology, 57–69. Scopus. https://doi.org/10.1007/978-3-031-52171-3_4

Srivishnu, K. S., Rajesh, M. N., Prasanthkumar, S., & Giribabu, L. (2023). Photovoltaics for indoor applications: Progress, challenges and perspectives. Solar Energy, 264, 112057. https://doi.org/10.1016/j.solener.2023.112057

Vishkasougheh, M. H., & Tunaboylu, B. (2013). Simulation of high efficiency silicon solar cells with a hetero-junction microcrystalline intrinsic thin layer. Energy Conversion and Management, 72, 141–146. https://doi.org/10.1016/j.enconman.2012.10.025

Wang, F., & Wu, J. (2023). Applications in solar thin films. En Modern Ion Plating Technology: Fundamentals and Applications (pp. 321–340). Scopus.

White, N. N. Lal, & K. R. Catchpole. (2014). Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency. IEEE Journal of Photovoltaics, 4(1), 208–214. https://doi.org/10.1109/JPHOTOV.2013.2283342

Würfel, U., Herterich, J., List, M., Faisst, J., Bhuyian, M. F. M., Schleiermacher, H.-F., Knupfer, K. T., & Zimmermann, B. (2021). A 1 cm 2 Organic Solar Cell with 15.2% Certified Efficiency: Detailed Characterization and Identification of Optimization Potential. Solar RRL, 5(4), 2000802. https://doi.org/10.1002/solr.202000802

Xu, W., Yao, X., Wu, H., Zhu, T., & Gong, X. (2020). The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. Emergent Materials, 3(6), 727–750. Scopus. https://doi.org/10.1007/s42247-020-00128-8

Za’abar, F. I., Yusoff, Y., Mohamed, H., Abdullah, S. F., Mahmood Zuhdi, A. W., Amin, N., Chelvanathan, P., Bahrudin, Mohd. S., Rahman, K. S., Samsudin, N. A., & Wan Abdullah, W. S. (2021). A Numerical Investigation on the Combined Effects of MoSe2 Interface Layer and Graded Bandgap Absorber in CIGS Thin Film Solar Cells. Coatings, 11(8), 930. https://doi.org/10.3390/coatings11080930

Zhang, H., Yu, Z., Zhu, C., Yang, R., Yan, B., & Jiang, G. (2023). Green or not? Environmental challenges from photovoltaic technology. Environmental Pollution, 320. Scopus. https://doi.org/10.1016/j.envpol.2023.121066