Extracción de conocimiento mediante ventanas de tiempo en variables atmosféricas

Nicolás Alvarez
Jaime Panata
Marcos Orellana
Priscila Cedillo
Jorge Luis Zambrano-Martinez
Juan Fernando Lima
Resumen

La industrialización y el rápido crecimiento de zonas urbanas aumentan alarmantemente la presencia de contaminantes atmosféricos. Estos contaminantes afectan la calidad de vida de las personas y se crea una oportunidad de estudio para determinar su comportamiento atmosférico y la relación entre variables meteorológicas presentes en el ambiente. Previo a esto, se aplicaron ventanas rodantes de tiempo para eliminar datos anómalos. A continuación, se identificaron variables y se segmentaron los datos a través del algoritmo X-means. También, dos clústeres que representan las relaciones entre pares de variables y la temporalidad de las ventanas de tiempo. Como resultado, se encontró una correlación inversa de -0,78 entre las variables de ozono y punto de rocío dentro de las horas de la jornada laboral.

DESCARGAS
Los datos de descarga aún no están disponibles.
Cómo citar
Extracción de conocimiento mediante ventanas de tiempo en variables atmosféricas. (2022). Revista Tecnológica - ESPOL, 34(3), 72-83. https://doi.org/10.37815/rte.v34n3.952

Referencias

Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association,. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1

Chong, K. C., Lau, W. J., Lai, S. O., Thiam, H. S., & Ismail, A. F. (2019). Preparation and Characterization of Chromium Metal Organic Framework for Carbon Dioxide Adsorption. IOP Conference Series: Earth and Environmental Science, 268(1), 012010. https://doi.org/10.1088/1755-1315/268/1/012010

Clifford, A., Lang, L., Chen, R., Anstey, K. J., & Seaton, A. (2016). Exposure to air pollution and cognitive functioning across the life course—A systematic literature review. Environmental Research, 147, 383–398. https://doi.org/10.1016/j.envres.2016.01.018

Franchini, M., Mengoli, C., Cruciani, M., Bonfanti, C., & Mannucci, P. M. (2016). Association between particulate air pollution and venous thromboembolism: A systematic literature review. European Journal of Internal Medicine, 27, 10–13. https://doi.org/10.1016/j.ejim.2015.11.012

Fränti, P., & Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. Applied Intelligence, 48(12), 4743–4759. https://doi.org/10.1007/s10489-018-1238-7

Goel, A., Ray, S., Agrawal, P., & Chandra, N. (2012). Air Pollution Detection Based on Head Selection Clustering and Average Method from Wireless Sensor Network. 2012 Second International Conference on Advanced Computing Communication Technologies, 434–438. https://doi.org/10.1109/ACCT.2012.18

Gu, K., Qiao, J., & Lin, W. (2018). Recurrent Air Quality Predictor Based on Meteorology- and Pollution-Related Factors. IEEE Transactions on Industrial Informatics, 14(9), 3946–3955. https://doi.org/10.1109/TII.2018.2793950

Juneja, A., & Das, N. N. (2019). Big Data Quality Framework: Pre-Processing Data in Weather Monitoring Application. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 559–563. https://doi.org/10.1109/COMITCon.2019.8862267

Kumar, P., & Krishan Wasan, S. (2010). Analysis of X-means and global k-means USING TUMOR classification. 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 5, 832–835. https://doi.org/10.1109/ICCAE.2010.5451883

Lan, Y., & Dai, Y. (2020). Urban Air Quality Prediction Based on Space-Time Optimization LSTM Model. 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), 215–222. https://doi.org/10.1109/ICAIBD49809.2020.9137441

Lind, D. A., Marchal, W. G., & Wathen, S. A. (2012). Estadística aplicada a los negocios y a la economía (15th ed.). McGraw-Hill.

Murray, R. S., & Larry, J. S. (2009). Estadística (4th ed.).

Orellana, M., Lima, J.-F., & Cedillo, P. (2021). Discovering Patterns of Time Association Among Air Pollution and Meteorological Variables. In K. Arai (Ed.), Advances in Information and Communication (pp. 205–215). Springer International Publishing. https://doi.org/10.1007/978-3-030-73103-8_13

Ostadabbas, S., & Jafari, R. (2010). Spectral Spatio-Temporal template extraction from EEG signals. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 4678–4682. https://doi.org/10.1109/IEMBS.2010.5626411

Othman, Z. A., Ismail, N., & Latif, M. T. (2017). Association rules of temperature towards high and low ozone in putrajaya. 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI), 1–5. https://doi.org/10.1109/ICEEI.2017.8312438

Othman, Z. A., Risdiyanto Ismail, N., Aziz Hamdan, A., & Mahmoud, S. (2016). KLANG VALLY RAINFALL FORECASTING MODEL USING TIME SERIES DATA MINING TECHNIQUE. 92, 8.

Parker, A. (1983). Contaminación del aire por la industria (1st ed.). Editorial Reverté. https://www.reverte.com/libro/contaminacion-del-aire-por-la-industria_91542/

Paulose, B., Sabitha, S., Punhani, R., & Sahani, I. (2018). Identification of Regions and Probable Health Risks Due to Air Pollution Using K-Mean Clustering Techniques. 2018 4th International Conference on Computational Intelligence Communication Technology (CICT), 1–6. https://doi.org/10.1109/CIACT.2018.8480232

Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Prentice Hall/Pearson Education.

Simioni, D., & United Nations (Eds.). (2003). Contaminación atmosférica y conciencia ciudadana. Naciones Unidas, CEPAL.

Yang, X., Tang, K., & Yao, X. (2009). The Minimum Redundancy – Maximum Relevance Approach to Building Sparse Support Vector Machines. In E. Corchado & H. Yin (Eds.), Intelligent Data Engineering and Automated Learning—IDEAL 2009 (pp. 184–190). Springer. https://doi.org/10.1007/978-3-642-04394-9_23

Yu, S. S., Chu, S. W., Wang, C. M., Chan, Y. K., & Chang, T. C. (2018). Two improved k-means algorithms. Applied Soft Computing Journal, 68, 747–755. https://doi.org/10.1016/j.asoc.2017.08.032

Zhang, X., Zhang, X., & Chen, X. (2017). Happiness in the air: How does a dirty sky affect mental health and subjective well-being? Journal of Environmental Economics and Management, 85, 81–94. https://doi.org/10.1016/j.jeem.2017.04.001

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.