MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01D91C3E.31FF3820" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252" 960

 

 

 

 

https://doi.org/10.37815/rte.v34n4.960

Artículos originales=

 

Topologías en el Internet de las Cosas Médicas (IoM= T), = revisión bibliográfica

Topologies in the Internet of Medical Thi= ngs (IoMT), literature review

 

Wilson Chango= 1 <= /span>https://orc= id.org/0000-0003-3231-0153,

Teresa Olivares2=   https://orcid.org/0000-0001-9512-2745, Francisco Delicado2 https://orcid.org/0000-0002-2150-7797

 

1Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

wilson.chango@espoch.edu.ec

 

2Universidad de Castilla – La Mancha, Ciudad Real, España

teresa.olivares@uclm.es, frencisco.delicado@uclm.es

 

Enviado:         2022/07/03

Aceptado:       2022/12/13

Publicado:      2022/12/30                         

Resumen

Sumario: Introducc= ión, Metodología, Organización y discusión de la información encontrada, An= álisis de los resultados de la investigación, El Problema de La Topología De = La Red y Conclusiones.

 

Como citar= : Chango, W= ., Olivares, T. & Delicado, F. (2022). Topologías en el Internet de las Cosas Médicas (IoMT), revisión bibliográfica. Revista Tecnológica - Espol, 34(4), 120-136. http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/9= 60


La revisión bibliográfica es una= fase fundamental en un proyecto de investigación, y debe garantizar la obtención= de la información más relevante en el campo de estudio. El objetivo principal = de este proyecto es conocer los trabajos relacionados con el Internet de las C= osas Médicas, en adelante (IoMT). Se analiza un tota= l de 535 artículos buscados en Association for Computing Machinery, = en Adelante ACM, Web of Scien= ce y Scopus el dominio de búsqueda fue IoMT. Se establecieron tres parámetros, (problemática, artefacto y evaluación del artefacto), esto de acuerdo = a la Investigación de la Ciencia del Diseño, en Adelante DSR, es un enfoque de investigación para la construcción de artefactos para proporcionar una solu= ción útil a un problema en cada dominio. La ecuación (Internet de las cosas Y ma= lla) dio como resultado 535, (Internet de las cosas Y medicina) un total de 417 y finalmente (Internet de las cosas Y malla médica) con 8, esto significa que= hay mucho por indagar en este dominio de investigación. Las ventajas identifica= das en este tipo de topología es llevar los mensajes de un nodo a otro por diferentes caminos, no puede haber absolutamente ninguna interrupción en las comunicaciones, cada servidor tiene sus propias comunicaciones con todos los demás servidores. Los grandes datos procedentes de los dispositivos IoMT han influido drásticamente en las cuestiones de = salud e informática. En este documento, se realiza una revisión de la literatura científica y se mapean las tendencias de investigación sobre el paradigma <= span class=3DSpellE>IoMT en el ámbito de la salud. Por último, este docum= ento amplía la literatura, y los resultados de este estudio pueden servir de base para futuras investigaciones.

 

= Palabras clave: IoMT, LPWAN, revisión bibliográfica, topologías de red, configuraciones de malla.

 

Abstract

The bibliographic review is a = fundamental phase in a research project, and it must guarantee that the most relevant information in the field of study is obtained. Our main objective was to kn= ow the works related to the Internet of medical things, from now on (IoMT).  We analyzed a total of 535 articles sea= rched in Association for Computing Machinery in Adelante ACM, Web of Science and Scopus the search domain was IoMT, we established 3 parameters, (problemati= c, artifact and artifact evaluation), this according to the Research of Design= Science in Adelante DSR, is a research approach for the construction of artifacts to provide a useful solution to a problem in each domain. The equation (Intern= et of things AND mesh) resulted in 535, (Internet of things AND medicine) a to= tal of 417 and finally (Internet of medical things AND mesh) with 8, this means that there is a lot to investigate in this research domain. The advantages identified in this type of topology is to carry messages from one node to another by different paths, there can be absolutely no interruption in communications, each server has its own communica-tions with all other serv= ers. Health and IT issues have been drastically influenced by the large data from IoMT devic-es. In this paper, we conducted a review of the scientific liter= ature and mapped research trends on the IoMT paradigm in the health domain. Final= ly, this paper expands on the liter-ature, and the findings of this study can s= erve as a basis for future studies.

 

Keywords: IoMT, LPWAN, bibliographic review, network topologies, mesh configurations.

 

Introducción

El Internet de las Cosas Médicas (IoMT), capta o analiza datos y los envía a otros dispositivos don= de los usuarios finales son el personal sanitario. Esta información es útil pa= ra la toma de decisiones por parte de estas unidades médicas. Las propuestas p= ara implementar este sistema utilizando las redes LPWAN como medio de comunicac= ión aportan importantes ventajas sobre otras similares en cuanto a coste, cober= tura y fácil adaptabilidad. Pero, ¿son las actuales topologías de red utilizadas para transmitir esta información las mejores opciones para el IoMT? Este artículo trata de responder a esta importante pregunta de investigación.

 

El IoMTha introducido un cambio revolucionario al facili= tar la gestión de las enfermedades, mejorar los métodos de diagnóstico y tratamien= to de las mismas y reducir los costes y los errores= de la asistencia sanitaria. Este cambio ha tenido un gran impacto en la calidad d= e la asistencia sanitaria tanto para los pacientes como para el personal sanitar= io de primera línea. El IoMT es una combinación de dispositivos y aplicaciones médicas que se conectan a través de redes.=

 =

Muchos prov= eedores de servicios sanitarios están aprovechando las últimas tendencias de TI, co= mo la virtualización, la nube, la movilidad y el análisis de grandes datos, pa= ra sentar las bases de las instalaciones de próxima generación. La mayoría de = los proveedores están considerando cuidadosamente cómo las comunicaciones de da= tos, específicamente la red, pueden permitir la movilidad de los cuidadores, conectar el ecosistema de médicos, pacientes y dispositivos médicos, proporcionar una plataforma escalable para nuevos modelos de atención y, en última instancia, salvaguardar los datos de los pacientes. Los proveedores = de servicios sanitarios deben tener en cuenta cinco requisitos esenciales para cumplir la promesa de prestar una atención continua: Ofrecer rendimiento, flexibilidad, seguridad, sencillez y economía (Performance, = 2018).

 <= /span>

Las LPWAN, = son redes de largo alcance, alta cobertura y bajo consumo de energía. Esto se consigue realizando pequeñas transmisiones de datos con poco ancho de banda, ahorrando energía para una mayor penetración. Algunos ejemplos de estas red= es son: Narrowband IoT= (NB-IoT), Sigfox o LoRaWAN, una especificación de red creada por la LoRa Alliance. Sigfox y N= B-IoT utilizan bandas con licencia, de ahí su coste de = uso. Mientras que LoRa utiliza la banda libre, por l= o que no tiene coste de uso. LoRaWAN tiene un bajo co= nsumo de energía, un bajo ancho de banda y está pensada para un tráfico casi exclusivamente ascendente y una topología en estrella.

 =

El principal interés de esta investigación consiste mejorar las redes y garantizar que se cumplan los objetivos de rendimiento (disponibilidad de conexión, cobertura global y, en ocasiones, en tiempo real), flexibilidad, seguridad, simplicid= ad y economía (bajo consumo de batería para los sensores).  Este problema se llevará a cabo con la verificación de la comunicación entre dispositivos utilizando una topología adecuada, esto permite que los datos lleguen sin ningún problema a las unid= ades de salud para su respectivo análisis y toma de decisiones. Como se ha mencionado anteriormente, la topología utilizada en Lo= RaWAN es una topología en estrella. Creemos que sería bueno ampliar esta topologí= a en estrella en determinados casos para aumentar principalmente la cobertura y evitar problemas de saturación y colisión en la pasarela de destino. Por lo tanto, este trabajo tiene como objetivo hacer un estudio de las topologías y soluciones de comunicación más utilizadas en el IoMT, analizar sus pros y sus contras e identificar aquellos aspectos de la comunicación del IoMT que requieren un mayor desarrollo e investigación para cumplir con los requisitos impuestos por el= IoMT.

 =

En este tra= bajo, por lo tanto, se realiza una revisión de la literatura científica y se mapea las tendencias de investigación sobre el paradigma de = IoMT en el dominio de la salud, centrándose en las topologías, de las tres ecuaciones "Internet de las cosas Y malla", "Internet de las cosas Y medicina" e "Internet de las cosas Y malla médica" la última obtuvo un valor mínimo en comparación con las otras, esto significa = que hay mucho por investigar en este dominio de investigación. Las ventajas identificadas en este tipo de topología es llevar los mensajes de un nodo a otro por diferentes caminos, no puede haber absolutamente ninguna interrupc= ión en las comunicaciones, cada servidor tiene sus propias comunicaciones con t= odos los demás servidores.

 =

En este tra= bajo se analizan las topologías más utilizadas en IoMT.= El esquema del trabajo es el siguiente: En la sección 2 se presenta la metodol= ogía utilizada para el análisis bibliográfico aplicando criterios de búsqueda, e= n la sección 3 se describen las investigaciones realizadas en IoT e IoMT según la clasificación especificada en la sección 2, mientras que en la sección 4 se presentan los objetivos del trab= ajo en referencia a las topologías utilizadas en IoMT y, por último, en la sección 5 se presentan las conclusiones obtenidas del tra= bajo.

 

Metodología

Para abordar el objetivo general identificado anterior= mente, se revisaron 570 artículos científicos de la web del sitio y la base de dat= os Scopus, las palabras clave que se utilizaron para enc= ontrar estos artículos fueron IoT, 'IoMT', 'Mesh Topology', en= un rango de fechas de 2016-2021. Los artículos de investigación se clasificaro= n en tres grupos generales y se resumieron según el problema, el artefacto y la evolución del artefacto. La ecuación (Internet de las cosas Y malla) dio co= mo resultado 276, (Internet de las cosas Y medicina) un total de 286 y finalme= nte (Internet de las cosas médicas Y malla) con solo 8. Esto significa que toda= vía queda mucho trabajo por hacer en las comunicaciones de IoMT y de redes de malla.

 

Para facilitar el proceso de búsqueda, las palabras cl= ave debían estar presentes al menos en el título y en el resumen, además, los artículos debían estar publicados en inglés, se excluyeron los artículos qu= e no estaban dentro del rango de fechas establecido, los que se encontraron duplicados en WoS, Scopus<= /span> y los que no pertenecían a la informática, obteniendo un total de 570 artícul= os para analizar y, finalmente, seleccionar los 70 más relevantes.

 

Figura 1

 

Organización y discusión de la información encontrada

Journal Citation Reports (J= CR) cubre las publicaciones revisadas por pares más citadas del mundo y permite buscar el factor de impacto de una revista o grupo de revistas concreto y h= acer comparaciones entre ellas. Cada grupo temático de revistas se divide en cua= tro cuartiles: Q1, Q2, Q3, Q4, que corresponden respectivamente al grupo confor= mado por el primer 25% de las revistas del listado, el grupo que ocupa del 25 al 50%, el que se posiciona entre el 50 y el 75% y, por último, el que se ubica entre el 75 y el 100% del ranking ordenado. se confirma por aquellas que oc= upan el primer cuartil Q1.

 <= /o:p>

Posteriormen= te, mediante la lectura de los títulos, se excluyó cualquier artículo que no estuviera claramente relacionado con la medicina y el uso de cualquier topología, quedando una lista de 70 artículos, mientras que el resto se consideró de poca relevancia. La relevancia se refería principalmente a la conexión del artículo con el tema estudiado y a las publicaciones revisadas= por pares más citadas en el mundo que permiten buscar el factor de impacto de u= na revista o grupo de revistas en particular y hacer comparaciones entre ellas. Cada grupo temático de revistas se divide en cuatro cuartiles (Q1, Q2, Q3, = Q4), cuatro topologías de red (Start, Peer-to-Peer, Mesh, Hybrid) y el protocolo de comunicación utilizado en c= ada una de las investigaciones (ver Figura 2).

Figura 2=

Organización de la información

&nbs= p;

La  REF _Ref122029789 \h = Figura 2 muestra las investigaciones realizadas en el ámbito de la medicina (Cáncer Dental, Sistema Respiratorio, Enfermedades Renales, Enfermedades Cardiovasculares, Enfermedades Digestivas, Virus, Glucosa, Implantes Médicos, Monitorización de Laboratorio, Presión Arterial, Salud Mental, Signos Vitales, Signos Vitales -Seguridad, Terapias) frente a la topología de red

 <= /o:p>

Análisis de los resultados de la investigación

Figura 3

Aplicación principal en un Internet de las Cosas Médicas (IoMT).

 

<= /span>

 

En la Tabla 1 se puede observar las aplicaciones en medicina con sus respectivas topologías. En cuanto al modelo de estrella se tiene un total d= e 41 de 70, esto significa que su uso es mayor; sin embargo, esta topología se b= asa en la centralización del cómputo, almacenamiento y control.

Tabla 1=

Clasificación de los trabajos en grupos de enfermedades y topologías

Medicine=

Estrella=

Malla

Hibrido<= o:p>

 Cá= ncer

(Palani & Venkatalakshmi, 2019),= (Khan et al., 2019)

Dental

(Liu et al., 2020)

(Alarifi et al., 2019),(Vellappally et al., 2019)

Sistema Respiratorio=

(Haoyu et al., 2019)

Enfermedad Renal

(Arulanthu & Perumal, 2020)

Cardiovascular<= /o:p>

(Huang et al., 2019),(Al-Kaisey et al., 2020),(Pirbhulal et al., 2019)

(Cubillos-Calvachi et al., 2020)

(Karthick & Manikandan, 2019),(Kan et al., 2015)

Virus

(Rani et al., 2019),(Song et al., 2018)

Glucosa

(Leahy, 2008),(Gupta et al., 2019),(Cappon et al., 2017)

Implantes Médicos

(Santagati et al., 2020)

Laboratorio

(Kang et al., 2018)

Presión arterial

(Sood & Mahajan, 2019),(da Silva et al., 2019),(Farahani et al., 2020)

(Sharman et al., 2020)

Salud Mental

(Sayeed et al., 2019),(Zilani et al., 2020),(Yadav et al., 2019)

(Rachakonda et al., 2020),(Sarmento et al., 2020),(Rachakonda et al., 2019)

Signos vitales<= /o:p>

(Awan et al., 2019),(Zanjal & Talmale, 2016),(Díaz de León-Castañeda, 2019)

(Xing et al., 2018),(Evangeline & Lenin, 2019),(Ullah et al., 2017)

(Hedrick et al., 2020),(Ng et al., 2020),(Rajasekaran et al., 2019)

(Sánchez et al., 2019),(Mavrogiorgou et al., 2019),(Han et al., 2020)

(Ignacio et al., 2019),(Qureshi & Krishnan, 2018),(Morzy et al., 2013)

(Chen et al., 2020),(Nørfeldt et al., 2019)

(Kodali et al., 2016),(Cui et al., 2020)ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.3390/app7080817","ISBN"= :"8613889862359","ISSN":"20763417","abst= ract":"As a key technology in smart healthcare monitoring systems, wireless body ar= ea networks (WBANs) can pre-embed sensors and sinks on body surface or inside bodies for collecting different vital signs parameters, such as human Electrocardiograph (ECG), Electroencephalograph (EEG), Electromyogram (EM= G), body temperature, blood pressure, blood sugar, blood oxygen, etc. Using real-time online healthcare, patients can be tracked and monitored in nor= mal or emergency conditions at their homes, hospital rooms, and in Intensive = Care Units (ICUs). In particular, the reliability and effectiveness of the pac= kets transmission will be directly related to the timely rescue of critically = ill patients with life-threatening injuries. However, traditional fault-toler= ant schemes either have the deficiency of underutilised resources or react too slowly to failures. In future healthcare systems, the medical Internet of Things (IoT) for real-time monitoring can integrate sensor networks, cloud computing, and big data techniques to address these problems. It can coll= ect and send patient's vital parameter signal and safety monitoring informati= on to intelligent terminals and enhance transmission reliability and efficie= ncy. Therefore, this paper presents a design in healthcare monitoring systems = for a proactive reliable data transmission mechanism with resilience requirem= ents in a many-to-one stream model. This Network Coding-based Fault-tolerant Mechanism (NCFM) first proposes a greedy grouping algorithm to divide the topology into small logical units; it then constructs a spanning tree bas= ed on random linear network coding to generate linearly independent coding combinations. Numerical results indicate that this transmission scheme wo= rks better than traditional methods in reducing the probability of packet los= s, the resource redundant rate, and average delay, and can increase the effective throughput rate.","author":[{"dropping-particle":"&quo= t;,"family":"Peng","given":"Yuhuai"= ,"non-dropping-particle":"","parse-names":fal= se,"suffix":""},{"dropping-particle":"&q= uot;,"family":"Wang","given":"Xiaojie&qu= ot;,"non-dropping-particle":"","parse-names":= false,"suffix":""},{"dropping-particle":"= ;","family":"Guo","given":"Lei"= ;,"non-dropping-particle":"","parse-names":fa= lse,"suffix":""},{"dropping-particle":"&= quot;,"family":"Wang","given":"Yichun&qu= ot;,"non-dropping-particle":"","parse-names":= false,"suffix":""},{"dropping-particle":"= ;","family":"Deng","given":"Qingxu&= quot;,"non-dropping-particle":"","parse-names"= ;:false,"suffix":""}],"container-title":"= ;Applied Sciences (Switzerland)","id":"ITEM-1","issue":&= quot;8","issued":{"date-parts":[["2017"]= ]},"title":"An efficient network coding-based fault-tolerant mechanism in WBAN for smart healthcare monitoring systems","type":"article-journal","volume&q= uot;:"7"},"uris":["http://www.mendeley.com/documen= ts/?uuid=3D03186888-fd60-46cd-a9c9-984fbf9ae9da"]}],"mendeley&quo= t;:{"formattedCitation":"(Peng et al., 2017)","plainTextFormattedCitation":"(Peng et al., 2017)","previouslyFormattedCitation":"(Peng et a= l., 2017)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}(Peng et al., 2017),(Plageras et al., 2016)ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.1186/s13174-019-0108-9","ISB= N":"1317401901089","ISSN":"18690238",&qu= ot;abstract":"The futuristic wireless networks expects to provide adequate support for dist= inct kind of applications, their diverse requirements, and scenarios for future Internet systems, such as Internet of Things based on multimedia and sens= or data, while figuring out low cost solutions to offload the mobile communication core. In this context, Low-cost Wireless Backhauls (LWBs) c= an be useful, since they are based on cheap WLAN technologies, such as Wirel= ess Mesh Networks that provide capacity for future IoT applications based on mixed traffic. The routing is a fundamental process to provide communicat= ion in these multi-hop networks and multi-objective routing optimization algorithms based on Integer Linear Programming (ILP) models have been stu= died in the literature to address this problem, but there is a lack of solutio= ns for mixed traffic. For this reason, we propose a novel ILP multi-objective approach, called Multi-objective routing Aware of miXed traffIc (MAXI), w= hich employs three weighted objectives to guide the routing in WMNs with diffe= rent applications and requirements. In addition, we provide a comparative anal= ysis with other relevant approaches of routing using NS-3 to evaluation based = on simulation, that takes into account different types and levels of interference (e.g. co-channel interference and external interference) foc= used on mixed IoT traffic for elderly healthcare scenario. Finally, we demonst= rate the effectiveness of the proposed approach to support the requirements of each application through the appropriate combination of objective functio= ns, mainly in dense scenarios with high level of interference.","au= thor":[{"dropping-particle":"","family":= "Medeiros","given":"Vinícius N.","non-dropping-particle":"","parse-names= ":false,"suffix":""},{"dropping-particle"= ;:"","family":"Silvestre","given":&= quot;Bruno","non-dropping-particle":"","parse= -names":false,"suffix":""},{"dropping-particl= e":"","family":"Borges","given"= ;:"Vinicius C.M.","non-dropping-particle":"","parse-nam= es":false,"suffix":""}],"container-title"= ;:"Journal of Internet Services and Applications","id":"ITEM-1","issue":&q= uot;1","issued":{"date-parts":[["2019"]]= },"publisher":"Journal of Internet Services and Applications","title":"Multi-objective routing aware = of mixed IoT traffic for low-cost wireless Backhauls","type":"article-journal","volume= ":"10"},"uris":["http://www.mendeley.com/docu= ments/?uuid=3D73999e10-d093-43ca-8a7a-9acd6b6cb722"]}],"mendeley&= quot;:{"formattedCitation":"(Medeiros et al., 2019)","plainTextFormattedCitation":"(Medeiro= s et al., 2019)","previouslyFormattedCitation":"(Medeiros = et al., 2019)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}(Medeiros et al., 2019),(Rajput & Brahimi, 2019a)

(Rajput & Brahimi, 2019b),(Silvestre-Blanes et al., 2020)

(Kang et al., 2018),(Quincozes et al., 2019)ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.1016/j.procs.2017.08.357","I= SSN":"18770509","abstract":"In developing countries, population increase is not sufficiently matched by increase in available health care resources. Inspite of technology advanc= es, proper medical facility and resources are still not available to a large percentage of population, especially those having low income and living in rural or remote areas. There is an urgent need for development of a low c= ost and highly reliable technology for monitoring healthcare for those living= in such areas that provides rapid monitoring of basic vital health parameters for large numbers of people, and making this data readily available to do= ctor present anywhere in the world. A novel and an efficient biomedical device= has been designed which can quickly monitor the vital signs of large number of people simultaneously and transmit that information wirelessly to the doc= tor or medical facility present anywhere in the world. The instrument is represented by a hub and spoke model with the spokes being the sensor nod= es consisting of a microcontroller MSP430G2553 and a wireless transceiver nRF24L01 (IEEE 802.15.4). The hub consists of a Raspberry Pi 3 with the s= ame transceiver. The data received at the hub can be transmitted to the doctor through the inbuilt IEEE 802.11 (Wi-Fi protocol) of Raspberry Pi 3. All t= hat the instrument needs to work is a Wi-Fi or an Ethernet connection and all= the sensor nodes can be powered from the coin cell batteries. Peer-review und= er responsibility of the Conference Program Chairs.","author":[{"dropping-particle":"&q= uot;,"family":"Garbhapu","given":"Venkata Virajit","non-dropping-particle":"","parse-= names":false,"suffix":""},{"dropping-particle= ":"","family":"Gopalan","given"= ;:"Sundararaman","non-dropping-particle":"",&= quot;parse-names":false,"suffix":""}],"contai= ner-title":"Procedia Computer Science","id":"ITEM-1","issued":{"= ;date-parts":[["2017"]]},"page":"408-415"= ;,"publisher":"Elsevier B.V.","title":"IoT Based Low Cost Single Sensor Node Remote Health Monitoring System","type":"article-jour= nal","volume":"113"},"uris":["http:= //www.mendeley.com/documents/?uuid=3D3d82c250-bfa5-496b-8006-4e06c0770af1&q= uot;]}],"mendeley":{"formattedCitation":"(Garbhapu & Gopalan, 2017)","plainTextFormattedCitation":"(Garbhapu & Gopalan, 2017)","previouslyFormattedCitation":"(Garbh= apu & Gopalan, 2017)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}(Garbhapu & Gopalan, 2017),(Choi et al., 2019) <= /span>

Terapias<= /span>

(Lam et al., 2020)

(Yu, 2020)

 

En cuanto a las redes Peer-to-Peer, se tiene un va= lor de 10 y su estructura consiste en que todos los nodos de la red están conectad= os entre sí por un enlace. De este modo, los nodos de una topología Peer-to-Peer están conectados punto a punto con los demás = nodos de la red, mientras que los dispositivos finales están conectados al nodo de red más cercano. Así, este tipo de configuración se adapta a la situación e= n la que se encuentra la red con respecto al tráfico de información. Por último,= las redes Mesh, un total de 15, se componen básicam= ente de tres clases de nodos: gateways o Dispositivo= s de Funcionalidad Completa (FFD), sensores/actuadores-rout= ers o Dispositivos de Funcionalidad Reducida (RFD).

 

Por último, la topología híbrida con un valor de 4 se deriva de la unión de dos topologías de red (topología estrella-autobús topología estrella-anillo). Su implementación es debido a la complejidad de la solución de red y tiene un costo muy alto debido a su administración y mantenimiento. También proporci= ona los beneficios que ofrecen los otros diseños. Esto significa que puede tene= r la facilidad de localizar problemas de la organización en estrella o las facilidades económicas que ofrece la red de bus. A continuación, se describ= en de forma general las investigaciones realizadas en cada área de la medicina, considerando las topologías descritas en el apartado anterior.

Tabla 2

Clasificación de los trabajos en grupos de enfermedades y tecnologías

Medicine

Zigbee

WIFI

3G/4G/5G

LoraWan<= /span>

 Cáncer

(Palani & Venkatalakshmi, 2019),(Khan et al., 2019)

 

Dental

(Alarifi et al., 2019)

(Liu et al., 2020)<= /span>

(Vellappally et al., 2019)=

Sistema Respiratorio

(Haoyu et al., 2019)

=  

Enfermedad Renal

(Arulanthu & Perumal, 2020)

=  

Cardiovascular

(Huang et al., 2019),(Al-Kaisey et al., 2020),(Pirbhulal et al., 2019)

(Cubillos-Calvachi et al., 2020)<= /span>,(Ali et al., 2020)<= /span>,(Karthick & Manikandan, 2019)=

(Kan et al., 2015)<= /span>

=  

Virus

(Rani et al., 2019)= ,(Song et al., 2018)=

=  

Glucosa

(Leahy, 2008)

(Leahy, 2008),(Gupta et al., 2019)

(Cappon et al., 2017)

=  

Implantes Médicos

(Mumtaz et al., 2018)

=  

Laboratorio

(Kang et al., 2018)=

=  

Presión arterial

(Sood & Mahajan, 2019)= ,(da Silva et al., 2019),(Farahani et al., 2020)

(Sharman et al., 2020)

=  

Salud Mental

(Sayeed et al., 2019),ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.1109/TCE.2020.2976006","ISSN= ":"15584127","abstract":"Not knowing when to stop eating or how much food is too much can lead to many health issues. In iLog, we propose a system which can not only monitor but also create awareness for the user of how much food is too much. iLog provides information on the emotional state of a person along with the classification of eating behaviors to Normal-Eating or Stress-Eating. Chr= onic stress, uncontrolled or unmonitored food consumption, and obesity are intricately connected, even involving certain neurological adaptations. We propose a deep learning model for edge computing platforms which can automatically detect, classify and quantify the objects from the plate of= the user. Three different paradigms where the idea of iLog can be performed a= re explored in this research. Two different edge platforms have been impleme= nted in iLog. The platforms include mobile, as it is widely used, and a single board computer which can easily be a part of network for executing experiments with iLog-Glasses being the main wearable. The iLog model has produced an overall accuracy of 98% with an average precision of 85.8%.","author":[{"dropping-particle":"&qu= ot;,"family":"Rachakonda","given":"Laava= nya","non-dropping-particle":"","parse-names&= quot;:false,"suffix":""},{"dropping-particle"= :"","family":"Mohanty","given":&quo= t;Saraju P.","non-dropping-particle":"","parse-names= ":false,"suffix":""},{"dropping-particle"= ;:"","family":"Kougianos","given":&= quot;Elias","non-dropping-particle":"","parse= -names":false,"suffix":""}],"container-title&= quot;:"IEEE Transactions on Consumer Electronics","id":"ITEM-1&qu= ot;,"issue":"2","issued":{"date-parts&qu= ot;:[["2020"]]},"page":"115-124","publis= her":"IEEE","title":"ILog: An Intelligent Device for Automatic Food Intake Monitoring and Stress Detection in the IoMT","type":"article-journal","volume"= ;:"66"},"uris":["http://www.mendeley.com/documents= /?uuid=3D4852f12f-16a1-4ee5-b1bb-c1705634f566"]}],"mendeley"= :{"formattedCitation":"(Rachakonda et al., 2020)","plainTextFormattedCitation":"(Rachako= nda et al., 2020)","previouslyFormattedCitation":"(Rachak= onda et al., 2020)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}<= ![endif]-->(Rachakonda et al., 2020)

(Rachakonda et al., 2020)<= /span>

(Yadav et al., 2019),(Sarmento et al., 2020)

=  

Signos vitales

(Kodali et al., 2016),(Ullah et al., 2017),(Hedrick et al., 2020)

(Peng et al., 2017)= ,(Rajasekaran et al., 2019)= ,(Kang et al., 2018)=

(Garbhapu & Gopalan, 2017),(Elsts et al., 2018),(Latif et al., 2020)

(Mavrogiorgou et al., 2019),(Rajput & Brahimi, 2019a),(Rajput & Brahimi, 2019b)

(Han et al., 2020)<= /span>,(Silvestre-Blanes et al., 2020)

(Zanjal & Talmale, 2016),(Díaz de León-Castañeda, 2019),(Xing et al., 2018)

(Evangeline & Lenin, 2019),ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.1016/j.scs.2017.06.010","ISS= N":"22106707","abstract":"Interoperability remains a major burden to the developers of Internet of Things systems. I= t is due to IoT devices are extremely heterogeneous regarding basic communicat= ion protocols, data formats, and technologies. Furthermore, due to the absenc= e of worldwide satisfactory standards, Interoperability tools remains imperfec= t. In this paper, we have proposed Semantic Interoperability Model for Big-d= ata in IoT (SIMB-IoT) to deliver semantic interoperability among heterogeneous IoT devices in health care domain. This model is used to recommend medici= ne with side effects for different symptoms collected from heterogeneous IoT sensors. Two datasets are taken for the analysis of big-data. One dataset= contains diseases with drug details and the second dataset contains medicines with side effects. Information between physician and patient are semantically annotated and transferred in a meaningful way. A Lightweight Model for Semantic annotation of Big-data using heterogeneous devices in IoT is proposed to provide annotations for big data. Resource Description Framew= ork (RDF) is a semantic web framework that is recycled to communicate things using Triples to make it semantically significant. RDF annotated patients’ data and made it semantically interoperable. SPARQL query is used to extr= act records from RDF graph. Tableau, Gruff-6.2.0, and Mysql tools are used in simulation in this article.","author":[{"dropping-particle":"&= quot;,"family":"Ullah","given":"Farhan&q= uot;,"non-dropping-particle":"","parse-names"= :false,"suffix":""},{"dropping-particle":&quo= t;","family":"Habib","given":"Muham= mad Asif","non-dropping-particle":"","parse-nam= es":false,"suffix":""},{"dropping-particle&qu= ot;:"","family":"Farhan","given":&q= uot;Muhammad","non-dropping-particle":"","par= se-names":false,"suffix":""},{"dropping-parti= cle":"","family":"Khalid","given&qu= ot;:"Shehzad","non-dropping-particle":"",&quo= t;parse-names":false,"suffix":""},{"dropping-= particle":"","family":"Durrani","gi= ven":"Mehr Yahya","non-dropping-particle":"","parse-na= mes":false,"suffix":""},{"dropping-particle&q= uot;:"","family":"Jabbar","given":&= quot;Sohail","non-dropping-particle":"","pars= e-names":false,"suffix":""}],"container-title= ":"Sustainable Cities and Society","id":"ITEM-1","issued":{"= ;date-parts":[["2017"]]},"page":"90-96",= "title":"Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare","type":"article-journal","volum= e":"34"},"uris":["http://www.mendeley.com/doc= uments/?uuid=3Dfe96eb60-ef34-4727-a73e-1a2e55ce79a7"]}],"mendeley= ":{"formattedCitation":"(Ullah et al., 2017)","plainTextFormattedCitation":"(Ullah et al., 2017)","previouslyFormattedCitation":"(Ullah et = al., 2017)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}<= ![endif]-->(Ullah et al., 2017),ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.1109/TLA.2019.8931137","ISSN= ":"15480992","abstract":"Internet of Things (IoT) is a prominent paradigm applied to several areas ranging = from medicine to industrial networks. It aims at connecting to the Internet of million of daily used objects. Important challenges in this area consist = in to propose mechanisms and protocols that meet security, device interoperability, quality of service and energy-efficiency requirements. Particularly, the Message Queue Telemetry Transport (MQTT) protocol has b= een prospected in order to provide efficient communication at the application layer for the IoT. This survey aims to present the fundamentals, tools an= d future directions related to MQTT protocol and its variation tailored for sensor networks, called MQTT-SN. We discuss such protocols comparing to other current IoT application layer protocols, such as Constrained Application Protocol (CoAP). Additionally, we present tools so as to support practical experimentation and simulation. Particularly, we carry out pactical experiments to observe the communication delay between MQTT and CoAP. Finally, the open issues and challenges in this area are examined.",= "author":[{"dropping-particle":"","famil= y":"Quincozes","given":"Silvio","no= n-dropping-particle":"","parse-names":false,"= suffix":""},{"dropping-particle":"",&quo= t;family":"Emilio","given":"Tubino",&quo= t;non-dropping-particle":"","parse-names":false,&q= uot;suffix":""},{"dropping-particle":"",= "family":"Kazienko","given":"Juliano&quo= t;,"non-dropping-particle":"","parse-names":f= alse,"suffix":""}],"container-title":"IE= EE Latin America Transactions","id":"ITEM-1","issue":&q= uot;9","issued":{"date-parts":[["2019"]]= },"page":"1439-1448","title":"MQTT protocol: Fundamentals, tools and future directions","type":"article-journal","volum= e":"17"},"uris":["http://www.mendeley.com/doc= uments/?uuid=3D2b517858-38bb-45b4-a9ac-d4c45aca593f"]}],"mendeley= ":{"formattedCitation":"(Quincozes et al., 2019)","plainTextFormattedCitation":"(Quincoz= es et al., 2019)","previouslyFormattedCitation":"(Quinco= zes et al., 2019)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}<= ![endif]-->(Quincozes et al., 2019)

(Plageras et al., 2016),(Medeiros et al., 2019),(Sánchez et al., 2019)

(Ignacio et al., 2019),(Qureshi & Krishnan, 2018),ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.3390/s20072131","ISSN":= "14248220","PMID":"32283841","abstract&q= uot;:"With the increasing popularity of the Internet-of-Medical-Things (IoMT) and sm= art devices, huge volumes of data streams have been generated. This study aim= s to address the concept drift, which is a major challenge in the processing of voluminous data streams. Concept drift refers to overtime change in data distribution. It may occur in the medical domain, for example the medical sensors measuring for general healthcare or rehabilitation, which may swi= tch their roles for ICU emergency operations when required. Detecting concept= drifts becomes trickier when the class distributions in data are skewed, which is often true for medical sensors e-health data. Reactive Drift Detection Me= thod (RDDM) is an efficient method for detecting long concepts. However, RDDM = has a high error rate, and it does not handle class imbalance. We propose an Enhanced Reactive Drift Detection Method (ERDDM), which systematically generates strategies to handle concept drift with class imbalance in data streams. We conducted experiments to compare ERDDM with three contemporary techniques in terms of prediction error, drift detection delay, latency, = and ability to handle data imbalance. The experimentation was done in Massive Online Analysis (MOA) on 48 synthetic datasets customized to possess the capabilities of data streams. ERDDM can handle abrupt and gradual drifts = and performs better than all benchmarks in almost all experiments.","author":[{"dropping-particle":&qu= ot;","family":"Toor","given":"Affan Ahmed","non-dropping-particle":"","parse-na= mes":false,"suffix":""},{"dropping-particle&q= uot;:"","family":"Usman","given":&q= uot;Muhammad","non-dropping-particle":"","par= se-names":false,"suffix":""},{"dropping-parti= cle":"","family":"Younas","given&qu= ot;:"Farah","non-dropping-particle":"","= parse-names":false,"suffix":""},{"dropping-pa= rticle":"","family":"Fong","given&q= uot;:"Alvis Cheuk M.","non-dropping-particle":"","parse-names= ":false,"suffix":""},{"dropping-particle"= ;:"","family":"Khan","given":"= Sajid Ali","non-dropping-particle":"","parse-name= s":false,"suffix":""},{"dropping-particle&quo= t;:"","family":"Fong","given":"= ;Simon","non-dropping-particle":"","parse-nam= es":false,"suffix":""}],"container-title"= ;:"Sensors (Switzerland)","id":"ITEM-1","issue":&= quot;7","issued":{"date-parts":[["2020"]= ]},"page":"1-24","title":"Mining massive e-health data streams for IoMT enabled healthcare systems","type":"article-journal","volume&q= uot;:"20"},"uris":["http://www.mendeley.com/docume= nts/?uuid=3D3b8b8776-9de3-4f43-a78a-549a18901523"]}],"mendeley&qu= ot;:{"formattedCitation":"(Toor et al., 2020)","plainTextFormattedCitation":"(Toor et= al., 2020)","previouslyFormattedCitation":"(Toor et al., 2020)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}<= ![endif]-->(Toor et al., 2020)

(Rubí & Gondim, 2019),ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.1145/3326467.3326496","ISBN&= quot;:"9781450361903","abstract":"The smart healthcare area is expanding its application to telemedicine, mobile health, EHR/EMR/PHR, wireless medical services, and precision medicine through a combination of Internet of Things (IoT) technologies. In the IoT environment, it is difficult to actively control packets and traffic using existing network technologies because multiple devices and sensors create different types of packets and cause variable traffic. Furthermore, it is difficult to apply various existing security technologies in the IoT envi= ronment because various services are provided using low-end sensor devices with limited performances. This study presented here aims to construct an IoT-based smart healthcare service security model. The security requireme= nts for IoT environments are summarized while a framework for designing secur= ity areas for IoT services is proposed and applied to smart healthcare servic= es. For this purpose, a medical information protection framework was designed= to provide authentication, access control, network and system security, integrity, and confidentiality by investigating the characteristics of the smart healthcare environment.","author":[{"dropping-particle":&qu= ot;","family":"Choi","given":"Junho= ","non-dropping-particle":"","parse-names&quo= t;:false,"suffix":""},{"dropping-particle":&q= uot;","family":"Choi","given":"Chan= g","non-dropping-particle":"","parse-names&qu= ot;:false,"suffix":""},{"dropping-particle":&= quot;","family":"Kim","given":"Sung Hwan","non-dropping-particle":"","parse-nam= es":false,"suffix":""},{"dropping-particle&qu= ot;:"","family":"Ko","given":"= Hoon","non-dropping-particle":"","parse-names= ":false,"suffix":""}],"container-title":= "ACM International Conference Proceeding Series","id":"ITE= M-1","issued":{"date-parts":[["2019"]]},= "title":"Medical information protection frameworks for smart healthcare based on IoT","type":"article-journal"},"uris":= ["http://www.mendeley.com/documents/?uuid=3D3f1362fb-39ea-41ac-a515-34= a4b7a824ff"]}],"mendeley":{"formattedCitation":&qu= ot;(Choi et al., 2019)","plainTextFormattedCitation":"(Choi et al., 2019)","previouslyFormattedCitation":"(Choi et a= l., 2019)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}<= ![endif]-->(Choi et al., 2019),ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","item= Data":{"DOI":"10.1007/978-3-030-37218-7","ISB= N":"9783642327407","ISSN":"21945357",&qu= ot;author":[{"dropping-particle":"","family&q= uot;:"Morzy","given":"Tadeusz","non-drop= ping-particle":"","parse-names":false,"suffix= ":""},{"dropping-particle":"","fami= ly":"Härder","given":"Theo","non-dr= opping-particle":"","parse-names":false,"suff= ix":""},{"dropping-particle":"","fa= mily":"Wrembel","given":"Robert","n= on-dropping-particle":"","parse-names":false,"= ;suffix":""}],"container-title":"Advances in Intelligent Systems and Computing","id":"ITEM-1&qu= ot;,"issued":{"date-parts":[["2013"]]},"= title":"Advances in Intelligent Systems and Computing: Preface","type":"book","volume":"= 186 AISC"},"uris":["http://www.mendeley.com/documents/?uu= id=3D727f228a-66ad-47a0-94d6-c86f0893aced"]}],"mendeley":{&q= uot;formattedCitation":"(Morzy et al., 2013)","plainTextFormattedCitation":"(Morzy et al., 2013)","previouslyFormattedCitation":"(Morzy et = al., 2013)"},"properties":{"noteIndex":0},"schem= a":"https://github.com/citation-style-language/schema/raw/master/= csl-citation.json"}<= ![endif]-->(Morzy et al., 2013)

(Chen et al., 2020)= ,(Nørfeldt et al., 2019)

(Cui et al., 2020)<= /span>,(Zanjal & Talmale, 2016)

=  

Terapias

(Yu, 2020),(Lam et al., 2020)<= /span>,(Sanders et al., 2019)

=  

 

El cáncer

Es una enfermedad grave que ha matado a muchas personas durante los últimos añ= os debido al hábito alimenticio de los seres humanos. En 2019, (Palan= i & Venkatalakshmi, 2019) proponen un nuevo modelado predictivo ba= sado en el Internet de las Cosas (IoT) mediante el u= so del aumento de clústeres difusos y la clasificación para predecir la enfermedad= del cáncer de pulmón; sin embargo, no se discute qué tipo de topologías, protoc= olos y tecnologías utiliza, pero propone una arquitectura, utiliza una topología= de estrella como diseño de red y para la comunicación de dispositivos IoT se realiza por WIFI.

 

Los dispositivos basados en WIFI necesitan una buena batería de respaldo si uno quiere utilizarlos por más de 10 horas aproximadamente, una sola red basada= en WIFI puede tener un tamaño de red de hasta 2007 nodos, el WIFI ha sido estandarizado de acuerdo al estándar IEEE 802.11.x. Existen varias versiones del protocolo donde la x se sustituye por a, b, g, n, etc. que son diferent= es versiones de WiFi, utilizadas para redes de áre= a PAN y WLAN con un alcance medio de 30 a 100 metros, = (Khan et al., 2019)= propone una infraestructura, en la que los mensajes no se envían directamente, es d= ecir, tienen que pasar por un nodo de acceso (módem/routers<= /span>), lo que podemos concluir que es una topología en estrella y utiliza la tecnología WIFI.

 

Dental

En 2020, (Liu e= t al., 2020) proponen un sistema inteligente de salud dental-IoT basado en hardware inteligente, aprendizaje profu= ndo y terminal móvil, con el objetivo de explorar la viabilidad de su aplicación = en el cuidado de la salud dental en el hogar.

 

La arquitectura de red del sistema iHome dental health-IoT consta de tres capas de red: 1) capa de se= rvicio médico dental; 2) capa de servicio dental inteligente; 3) capa de adquisici= ón de datos de imágenes dentales. Los datos de las imágenes dentales se cargan= en la capa de servicio dental inteligente a través de la red (Wi-Fi, 3G/4G). A continuación, (Alari= fi et al., 2019) examinan continuamente los patrones faciales, las patologías= y la discrepancia cefalométrica para tomar la decisión sobre el proceso de extracción y no extracción de dientes. Toda la información relacionada con = los dientes se transmite a través de la señal de radiofrecuencia, las redes Zigbee transmiten en radiofrecuencia, esto implica qu= e si se utiliza Zigbee como Z-Wave vamos a requerir = un hub, puente o concentrador= que será el punto del sistema que se conecta a internet. Esta señal Wi-Fi se compartirá entre el resto de dispositivos de la red sin necesidad de que cada uno de ellos se conecte al router de forma individual. Tanto Zigbee como Z-Wave funcionan a través de una red de malla.

 

Enfermedades respiratorias

Está relacionado con el sueño. La prueba de referencia para el diagnóstico es la polisomnografía, que requiere mucho tiempo y es cara. (Haoyu= et al., 2019), propone la siguiente arquitectura, todos los datos pasan po= r un nodo o Gateway esto significa que en esta investigación se utiliza la topol= ogía de estrella junto con la tecnología WIFI. La parte principal de esta secció= n es el sensor de pulso y proximidad MAX3010X conectado al ESP32 que puede servi= r como un módulo de transmisión de datos portátil a través de Wi-Fi. Para la comunicación se establece una frecuencia de muestreo de 60 Hz con u= na resolución de 10 bits. Una conexión en serie a través de Wi-Fi se utiliza para enviar estas señales al módulo de remodelación y detección = de errores, las ventajas y desventajas de esta tecnología se describieron en la sección de cáncer.

 

Enfermedad renal

(Arula= nthu & Perumal, 2020), presentan un sistema de apoyo a las deci= siones médicas en línea (OMDSS) para la predicción de la enfermedad renal crónica (ERC). El modelo presentado incluye un conjunto de etapas, a saber, la recopilación de datos, el preprocesamiento y la clasificación de datos médi= cos para la predicción de la enfermedad renal crónica, habiendo dicho que se propone un nuevo OMDSS para la predicción de la ERC y ofrece servicios sanitarios eficaces a los pacientes.

 

Los datos de los pacientes son recogidos por dispositivos = IoT. En general, el sensor conectado al ser humano recoge datos regularmente en = un intervalo de tiempo específico. El OMDSS presentado hace uso de la red 4G p= ara transmitir los datos observados al CDS. Hay dos conceptos fundamentales que sustentan el éxito de las redes de telefonía 4G, uno es el modelo de banda ancha móvil y el otro es la convergencia de redes.

 

Enfermedades cardiovasculares

(Huang= et al., 2019)  = presentan un sistema para la adquisición de datos de lípidos en sangre basado en un smartphone para controlar el nivel de lípidos en sangre, la propuesta de adquisición de datos fotoquímicos de lípidos en sangre basada en un smartph= one con la tira reactiva y la arquitectura IoMT par= a la gestión de los lípidos en sangre. Esta información se envía al smartphone a través del cable OTG. Esta parte puede considerarse como la capa de recogid= a de parámetros de la función de lípidos en sangre en la arquitectura IoMT. Los datos serán finalmente subidos a la nube pa= ra su cálculo y almacenamiento los pacientes y los médicos pueden acceder a los d= atos en la nube desde sus respectivos terminales a través de la conexión WIFI.

 

(Al-Ka= isey et al., 2020) también utilizan para la comunicación un nodo de entrada par= a el latido de las señales de ECG, también utiliza una topología en estrella, po= r su parte (Pirbh= ulal et al., 2019) proponen una arquitectura para resolver = un problema crítico en la implementación de la seguridad para la transmisión d= e la información de salud, esto permite proporcionar la privacidad de los datos = y la validación de la información de un paciente sobre el entorno de la red de manera eficiente en el uso de los recursos.

 

Virus

El mosquito es uno de los insectos fatales que sopla varios patógenos como el = Chikungunya, que es una enfermedad instintiva que se propaga rápidamente en varias partes del país, por lo tanto, hay una necesi= dad de medidas preventivas para esta enfermedad, los nodos sensores y los teléf= onos celulares se utilizan para detectar y recopilar datos para la comunicación utilizando 4G y una topología de malla (Rani et al., 2019). Estos datos s= on procesados antes de ser transmitidos a la nube.

 

Dicho lo anterior, (Song et al., 2018) utilizan una topología de malla y dise= ñaron una plataforma de cribado móvil basada en teléfonos inteligentes, sencilla y barata, denominada "smart connected cup" (SCC), para realizar diagnósticos moleculares rápidos, conectados= y cuantitativos. Esta plataforma combina el ensayo bioluminiscente en tiempo = real y la amplificación isotérmica mediada por bucle (BART-LAMP) con la detección basada en el teléfono inteligente, la transmisión de los resultados de las pruebas al registro del paciente y al consultorio del médico; y la comunica= ción de las pruebas se realiza con el Sistema de Posicionamiento Global (GPS) y = 4G, el uso de teléfonos inteligentes mejora las capacidades más allá de lo que = está disponible con los instrumentos existentes.

 

Glucosa

El suministro de insulina a través de sensores a personas con diabetes en un r= eto para el IoT, la terapia de reemplazo celular más prometedora para niños con diabetes tipo 1 es un páncreas artificial de buc= le cerrado que incorpora sensores de glucosa continuos y bombas de insulina, <= /span>(Leahy= , 2008) combina una bomba externa y un sensor co= n un algoritmo de tasa de infusión de insulina variable diseñado para emular las características fisiológicas de la célula, para la comunicación utiliza tecnología WIFI y topología en estrella, (Cappo= n et al., 2017) realizan la conexión de un sensor - App móvil - Transmisor inteligente para la monitorización de la glucosa en personas con diabetes, = los resultados muestran una mejora estadísticamente significativa de todas las métricas glucémicas.

 

Se puede observar un sensor de aguja mínimamente invasivo, generalmente insert= ado en el tejido subcutáneo, el abdomen o el brazo, que mide una señal de corri= ente eléctrica generada por la reacción de la glucosa oxidasa. Esta señal es proporcional a la concentración de glucosa disponible en el líquido intersticial, que se convierte en una concentración de glucosa mediante un procedimiento de calibración que suele realizarse dos veces al día. Los dispositivos se conectan mediante WIFI para enviar la información.

 

Implantes médicos

El mayor obstáculo para los implantes en red es la naturaleza dieléctrica del cuerpo humano, (Santa= gati et al., 2020) han demostrado que se pueden generar y recibir ondas ultrasónicas de forma eficiente con componentes milimétricos de baja potenc= ia, y que a pesar de la pérdida de conversión que introducen los transductores ultrasónicos, a partir de esta investigación fundamental, construyó un prototipo que puede ser la base para construir futuros implantes médicos y dispositivos vestibles.

 

Por último, (Mumta= z et al., 2018) se dieron cuenta de que el uso de un enf= oque de estimación de la transmisión para mejorar la precisión de la fiabilidad = de la transmisión y la estimación de acuerdo con la dinámica del sistema, lueg= o se optimizó mediante la formulación de un problema de minimización restringido= .

 

Signos vitales

Se está investigando mucho para reducir el costo y aumentar la eficiencia en la industria médica, (Awan = et al., 2019)  diseñan un protocolo de enrutamiento entre los nodos de sensores de tal manera que tiene un retraso mínimo y un mayor rendimiento para los paquetes de emergen= cia utilizando IoT y un consumo de energía óptimo p= ara una mayor vida útil de la red, así como la utilización eficiente de los recursos escasos. El rendimiento del protocolo propuesto se evalúa con dos técnicas de enrutamiento del estado de la técnica iM-SIMPLE y enrutamiento optimizado rentable y eficiente de la energía, esto es cruci= al para el seguimiento de la atención de la salud de los pacientes que no pued= en tener el acceso rápido a un hospital. Los datos fluyen a través de un nodo = de acceso (routers) y los dispositivos se comunican utilizando el WIFI.

 

Terapias

La lentitud, la falta de fiabilidad y la desorganización en el sistema de diagnóstico médico de lesiones deportivas, (Yu, 2= 020) lo mejora mediante una aplicación para el diagnóstico móvil y la gestión de datos del usuario. En primer lugar, la ca= pa de aplicación, la capa de red y la estructura de la capa de percepción IoT se utilizan para planificar la jerarquía general = del sistema médico de lesiones deportivas, y luego el sistema se divide en tres módulos, que son el módulo de adquisición de parámetros fisiológicos del usuario, el módulo de procesamiento de parámetros fisiológicos del usuario = y el módulo de diagnóstico de daños por movimiento, Por último, los sensores (re= d de malla), los servidores, los protocolos de comunicación específicos, represe= ntan un cambio inteligente hacia procesos de fabricación más interconectados en = los que las entidades individuales dentro de la cadena de suministro se comunic= an entre sí para lograr una mayor flexibilidad y capacidad de respuesta en la fabricación general y una fabricación más eficiente para reducir el costo de producción (Lam e= t al., 2020), esto debido a que un gran número de personas deben utilizar prótesis (Sande= rs et al., 2019).

 

Salud mental

La epilepsia se caracteriza por la recurrencia de convulsiones espontáneas y t= iene un impacto negativo considerable en la calidad y la esperanza de vida del paciente. La tecnología UWB solo transmite en distancias cortas (hasta 10 metros), pero tiene la ventaja de lograr un ancho de banda muy elevado (has= ta 480 Mbps), consumiendo poca energía. Es ideal para la transferencia inalámb= rica de contenidos multimedia de alta calidad, como vídeos, entre dispositivos electrónicos de consumo y periféricos informáticos (Sayee= d et al., 2019). Además, los métodos de evaluación de la Ataxia son engorros= os y no permiten un control y seguimiento regular de los pacientes. Una de las tareas más difíciles es detectar las diferentes anomalías de la marcha en l= os pacientes con Ataxia (Zilan= i et al., 2020). El estrés crónico, el consumo de alimentos incontrolado o no supervisado y la obesidad están estrechamente relacionados, incluso implica= ndo ciertas adaptaciones neurológicas (Racha= konda et al., 2020). En conclusión, los accidentes cerebrovasculares se encuentran entre las tres principales causas de muerte= en todo el mundo. Además, los accidentes cerebrovasculares son una de las principales causas de morbilidad, hospitalizaciones y discapacidades adquir= idas (Sarme= nto et al., 2020).

 

Presión arterial

La hipertensión es una enfermedad crónica que provoca riesgo de diferentes tip= os de trastornos, como ataques de hipertensión, accidentes cerebrovasculares, insuficiencia renal y enfermedades cardiovasculares (Sood = & Mahajan, 2019), lo más importante es controlar las prescripciones designadas y revisar constantemente la presión arterial para evitar el conocido "efecto bata blanca" (da Si= lva et al., 2019). Del mismo modo, la relación entre la tecnología y la atenci= ón sanitaria, debido al auge del Internet de las cosas inteligentes (IoT), la inteligencia artificial (IA) y la rápida ado= pción pública de wearables de grado médico, se ha transformado drásticamente en los últimos años. En el mismo contexto, (Farah= ani et al., 2020)  proponen una arquitectura holística de IoT eHealth impulsada por la IA y basada en el concepto de aprendizaje automático colaborativo, en la que la inteligencia se distribuye a través de la capa d= el dispositivo, la capa del borde/la niebla y la capa de la nube, actualmente = hay más de 3. 000 dispositivos de AP disponibles en el mercado, pero muchos de = ellos no tienen publicados datos de pruebas de precisión según los estándares científicos establecidos (Sharm= an et al., 2020).

 

Laboratorio de monitorización

Las operaciones ininterrumpidas y la continuidad del negocio son requisitos cla= ve para cualquier edificio altamente automatizado situado bajo el paradigma de= la industria 4.0, para lo cual la Calidad de la Energía juega un papel importa= nte. (Alons= o-Rosa et al., 2018)  describen un novedoso sensor de bajo coste para el Internet de las Cosas que mide y analiza la calidad de la energía a la entrada de cualquier dispositivo de corriente alterna (CA), proporcionando un sistema de detección y análisis temprano que monitoriza aquellas variables críticas que varían dentro de la instalación y permite anticiparse a los fallos con alertas en fase temprana basadas en el procesamiento del flujo de datos.

 <= /o:p>

El Problema de La Topología De La Red

Existen tres modelos topológicos básicos para la IOT: el modelo en estrella, el mod= elo en malla y el modelo híbrido. Estructuralmente, el modelo en estrella se ba= sa en la centralización de la computación, el almacenamiento y el control. En = una red Star IoT, un dispositivo final solo está conectado a un único nodo de red, que actúa como nodo central para el dispositivo. A su vez, cada uno de estos nodos de red = está conectado a un nodo servidor, que podría ser una conexión a otro nodo de red con capacidades superiores o funcionalidades diferentes, cumpliendo este úl= timo el papel de nodo central de mayor jerarquía (K. &a= mp; Desai, 2016).

 

De esta forma, para que dos dispositivos finales se comuniquen entre sí, la información debe viajar hasta el nodo central que comunica las rutas a ambos dispositivos y luego completar el camino desde el nodo central hasta el destinatario. Este tipo de estructura de red tiene ventajas en un entorno <= span class=3DSpellE>IoT debido a su facilidad de configuración, refiriénd= ose a ella como añadir y eliminar dispositivos finales y detectar fallos. Además, esta configuración, normalmente cargada en un dispositivo central que super= visa la resolución de todas esas complejas situaciones, permite que el rendimien= to de la red sea consistente, predecible y bueno: baja latencia y suficiente a= ncho de banda. La latencia, una preocupación para las aplicaciones de IoT, disminuiría con el uso de este tipo de topología= s, ya que se reduce el número de saltos necesarios para transportar la información hasta el destino. A pesar de todo esto, las redes en estrella tienen serias desventajas que afectan al rendimiento en entornos IoT= . La centralización de las funcionalidades resuelve muchos problemas, pero presenta una de las desventajas más graves: un único punto de fallo. Si el dispositivo central con el que se comunican los diferentes nodos de la red falla, el rendimiento de la red se ve completamente perjudicado. En cambio,= si los nodos más cercanos a los dispositivos finales fallan -hablando de una r= ed en estrella en forma jerárquica- el sector de la red que falla puede aislar= se rápidamente, mientras el resto de la red funciona correctamente. Las redes = en estrella también suelen tener dificultades con respecto a las interferencia= s de radio, el alcance de la transmisión (limitado al alcance de la transmisión = del dispositivo que actúa como nodo central) y el consumo de energía, que depen= de de la distancia entre los dispositivos conectados, recordando que los dispositivos de la IO funcionan en su mayoría con baterías.

 

Tabla 3

Topologías Usadas en IoT

Topologías

Re= sultado=

Start= =

41

Peer-to-Peer

10

Mesh<= span style=3D'mso-bookmark:_Toc38966068'>=

15

Hybrid=

4

Sum

70

 

En cuanto a las redes Peer-to-Peer, tienen una estructura en la que todos los nodos de la red están conectados entre sí, es decir, existe un enlace permanente entre cada nodo de la red. De este modo, este tipo de configuración permite una conexión adaptativa a la situación e= n la que se encuentra la red con respecto al tráfico de información. Las redes p= eer-to-peer no son tan fáciles de configurar, ya que es necesario establecer los enlaces entre cada uno de los nodos de la red añad= idos y los existentes, y luego conectar los dispositivos finales a ellos. En una topología de malla cada nodo de la red está conectado a al menos otros dos nodos, mientras que la topología híbrida se divide en topología estrella y topología anillo ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemDa= ta":{"ISBN":"978-950-34-1659-4","author"= :[{"dropping-particle":"","family":"Mont= iveros","given":"Matías","non-dropping-partic= le":"","parse-names":false,"suffix":&quo= t;"},{"dropping-particle":"","family":&q= uot;Murazzo","given":"Maria","non-dropping-pa= rticle":"","parse-names":false,"suffix":= ""},{"dropping-particle":"","family"= ;:"Garabetti","given":"Miguel Méndez","non-dropping-particle":"","parse-nam= es":false,"suffix":""},{"dropping-particle&qu= ot;:"","family":"Ros","given":"= ;Javier Sillero","non-dropping-particle":"","parse-na= mes":false,"suffix":""},{"dropping-particle&q= uot;:"","family":"Rodríguez","given"= ;:"Nelson","non-dropping-particle":"","p= arse-names":false,"suffix":""}],"container-ti= tle":"Libro de Actas JCC&BD 2018","id":"ITEM-1","issued":{"date= -parts":[["2018"]]},"page":"90-100",&quo= t;title":"Análisis de las Topologías IoT en Entornos Fog Computing mediante simulación","type":"article-journal"},"uris&q= uot;:["http://www.mendeley.com/documents/?uuid=3D8e33158d-3698-476f-bf= b6-9a5bbdb52034"]}],"mendeley":{"formattedCitation"= ;:"(Montiveros et al., 2018)","plainTextFormattedCitation":"(Montivero= s et al., 2018)","previouslyFormattedCitation":"(Montiveros = et al., 2018)"},"properties":{"noteIndex":0},"schema&= quot;:"https://github.com/citation-style-language/schema/raw/master/cs= l-citation.json"}(= Montiveros et al., 2018).=

 <= /o:p>

Conclusiones

En este artículo se presenta una metodología para realizar una revisión bibliográfica, como es la Ciencia del Diseño que es una metodología de investigación en tecnologías de la informa= ción basada en resultados analizando tres parámetros importantes como son el problema, el artefacto y la forma en que el artefacto fue evaluado, a travé= s de una macro búsqueda que permite identificar los documentos relacionados con = el tema de investigación. Las estrategias de búsqueda, organización y análisis= de la información, permiten tanto la obtención de l= os documentos referentes a un tema de investigación, como su sistematización y estructuración para analizar las principales características del conjunto de documentos en estudio. Se presentó un caso sobre un tipo de aplicación de <= span class=3DSpellE>IoT, el tema se denomina "Internet de las cosas médicas (IoMT) un reto en la topología", d= onde los principales problemas son las topologías utilizadas.

 

Referencias

Al-Kaisey, A. M= ., Koshy, A. N., Ha, F. J., Spencer, R., Toner, L., Sajeev, J. K., Teh, A. W., Farouque, O., & Lim, H. S. (2020). Accurac= y of wrist-worn heart rate monitors for rate control assessment in atrial fibrillation. International Journal of Cardiology, 300, 161–1= 64. https://doi.org/10.1016/j.ijcard.2019.11.120

Alarifi, A., AlZubi, A. A., & Al-Maitah, M. (2019). Study of soft-tissues border= line class I malocclusion on tooth extraction and non-extraction process using medical IoT device. Measurement: Journal of the International Measurement Confederation, 134, 923–929. https://doi.org/10.1016/j.measurement.2018.11.087

Ali, M. M., Haxha, S., Alam, M. M., Nwibor, C., & Sakel, M. (2020). Design of Internet of Things (IoT) and Android Based Low Cost Health Monitoring Embed= ded System Wearable Sensor for Measuring SpO2, Heart Rate and Body Temperature Simultaneously. Wireless Personal Communications, 111(4), 2449–2463. https://doi.org/10.1007/s11277-019-06995-7=

Alonso-Rosa, M., Gil-de-Castro,= A., Medina-Gracia, R., Moreno-Munoz, A., & Cañete-Carmona, E. (2018). Novel internet of things platform for in-building power quality submetering. A= pplied Sciences (Switzerland), 8(8). https://doi.org/10.3390/app8081320=

Arulanthu, P., & Perumal, E. (2020). An intelligent IoT with cloud centric medical decision support system for chronic kidney disease prediction. Internati= onal Journal of Imaging Systems and Technology, 30(3), 815–827. https://doi.org/10.1002/ima.22424

Awan, K. M., Ashraf, N., Saleem, M. Q., Sheta, O. E., Qureshi, K. N., Zeb, A., Haseeb, K., & Sadiq, A. S. (2019). A priority-based congestion-avoidance routing protocol using IoT-based heterogeneous medical sensors for energy efficiency in healthcare wireless body area networks. International Jour= nal of Distributed Sensor Networks, 15(6). https://doi.org/10.1177/1550147719853980

Cappon, G., Acciaroli, G., Vettoretti, M., Facchinetti, A., & Sparacino, G. (20= 17). Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics (Switzerland), 6(3), 1–16. https://doi.org/10.3390/electronics6030065

Chen, C. L., Yang, T. T., Deng, Y. Y., & Chen, C. H. (2020). A secure Interne= t of Things medical information sharing and emergency notification system based = on nonrepudiation mechanism. Transactions on Emerging Telecommunications Technologies, February, 1–21. https://doi.org/10.1002/ett.3946

Choi, J., Choi, C., Kim, S. H., & Ko, H. (2019). Medical information protecti= on frameworks for smart healthcare based on IoT. ACM International Conference Proceeding Series. https://doi.org/10.1145/3326467.3326496

Cubillos-Calvachi, J., Piedrahita-Gonzalez, J., Gutiérrez-Ardila, C., Montenegro-Marín, C., Gaona-García, P., & Burgos, D. (2020). Analysi= s of stress’s effects on cardiac dynamics: A case study on undergraduate student= s. International Journal of Medical Informatics, 137(September 2019). https://doi.org/10.1016/j.ijmedinf.2020.104104

Cui, F., Ma, L., Hou, G., Pang, Z., Hou, Y., & Li, L. (2020). Development of smart nursing homes using systems engineering methodologies in industry 4.0= . Enterprise Information Systems<= /span>, 14(4), 463–479. https://doi.org/10.1080/17517575.2018.1536929

da Silva, V. J., Souza, V. da S= ., da Cruz, R. G., de Lucena, J. M. V. M., Jazdi, N., & Junior, V. F. de L. (2019). Commercial devices-based system designed to improve the treatment adherence of hypertensive patients. Sensors (Switzerland), 19(20), 1–31. https://doi.org/10.3390/s19204539

Díaz de León-Castañeda, C. (201= 9). Electronic health (e-Health): a conceptual framework for its implementation in health services facilities. Gaceta de México, 155(2), 161–168. https://doi.org/10.24875/gmm.m19000251

Elsts, A., Fafoutis, X., Woznowski, P., Tonkin, E., Oikonomou, G., Piechocki, R., & Craddock, I. (2018). Enabling Healthcare in Smart Homes: The SPHERE I= oT Network Infrastructure. IEEE Communications Magazine, 56(12), 164–170. https://doi.org/10.1109/MCOM.2017.1700791

Evangeline, C. S., & Lenin, A. (2019). Human health monitoring using wearable senso= r. Sensor Review, 39(3), 364–376. https://doi.org/10.1108/SR-05-2018-0111<= o:p>

Farahani, B., Barzegari, M., Shams Aliee, F., & Shaik, K. A. (2020). Towards collaborative intelligent IoT eHealth: From device to fog, and cloud. Mi= croprocessors and Microsystems, 72, 102938. https://doi.org/10.1016/j.micpro.2= 019.102938

Garbhapu, V. V., & Gopalan, S. (2017). IoT Based Low Cost Single Sensor Node Remo= te Health Monitoring System. Procedia Computer Science, 113, 408–415. https://doi.org/10.1016/j.procs.2017.08.357

Gupta, A., Chakraborty, C., & Gupta, B. (2019). Smartphone Under IoT Framew= ork. 283–308. https://doi.org/10.1007/978-981-13-7399-2

Han, T., Zeng, M., Zhang, L., & Sangaiah, A. K. (2020). A Channel-Aware Duty Cycle Optimization for Node-to-Node Communications in the Internet of Medic= al Things. International Journal of Parallel Programming, 48(2), 264–279. https://doi.org/10.1007/s10766-018-0587-5

Haoyu, L., Jianxing, L., Arunkumar, N., Hussein, A. F., & Jaber, M. M. (2019).= An IoMT cloud-based real time sleep apnea detection scheme by using the SpO2 estimation supported by heart rate variability. Future Generation Comput= er Systems, 98, 69–77. https://doi.org/10.1016/j.future.2018.12.001=

Hedrick, T. L., Hassinger, T. E., Myers, E., Krebs, E. D., Chu, D., Charles, A. N., Hoang, S. C., Friel, C. M., & Thiele, R. H. (2020). Wearable technology= in the perioperative period: Predicting risk of postoperative complications in patients undergoing elective colorectal surgery. Diseases of the Colon a= nd Rectum, 4, 538–544. https://doi.org/10.1097/DCR.0000000000001580=

Huang, X., Li, Y., Chen, J., Liu, J., Wang, R., Xu, X., Yao, J., & Guo, J. (20= 19). Smartphone-Based Blood Lipid Data Acquisition for Cardiovascular Disease Management in Internet of Medical Things. IEEE Access, 7, 75276–75283. https://doi.org/10.1109/ACCESS.2= 019.2922059

Ignacio, J., Luna, V., Javier, = F., Rangel, S., Francisco, J., & Aceves, C. (2019). MONITOREO DE SIGNOS VITALES USANDO IoT. 41(134), 751–769.

K., J., & Desai, A. (2016).= IoT: Networking Technologies and Research Challenges. International Journal of Computer Applications, 154(7), 1–6. https://doi.org/10.5120/ijca2016912181

Kan, C., Chen, Y., Leonelli, F., & Yang, H. (2015). Mobile sensing and netwo= rk analytics for realizing smart automated systems towards health Internet of Things. IEEE International Conference on Automation Science and Engineer= ing, 2015-Octob, 1072–1077. https://doi.org/10.1109/CoASE.2015.729= 4241

Kang, S., Baek, H., Jun, S., Choi, S., Hwang, H., & Yoo, S. (2018). Laboratory environment monitoring: Implementation experience and field study in a tert= iary general hospital. Healthcare Informatics Research, 24(4), 371–375. https://doi.org/10.4258/hir.2018.24.4.371

Karthick, T., & Manikandan, M. (2019). Fog assisted IoT based medical cyber system for cardiovascular diseases affected patients. Concurrency Computation <= /i>, 31(12), 1–9. https://doi.org/10.1002/cpe.4861

Khan, S. U., Islam, N., Jan, Z., Din, I. U., Khan, A., & Faheem, Y. (2019). An e-Health care services framework for the detection and classification of br= east cancer in breast cytology images as an IoMT application. Future Generati= on Computer Systems, 98, 286–296. https://doi.org/10.1016/j.future.2019.01.033

Kodali, R. K., Swamy, G., & Lakshmi, B. (2016). An implementation of IoT for healthcare. 2015 IEEE Recent Advances in Intelligent Computational Syste= ms, RAICS 2015, December, 411–416. https://doi.org/10.1109/RAICS.2015.7488451

Lam, C., Van Velthoven, M. H., = & Meinert, E. (2020). Application of internet of things in cell-based the= rapy delivery: Protocol for a systematic review. JMIR Research Protocols,= 9(3), 1–6. https://doi.org/10.2196/16935

Latif, G., Shankar, A., Alghazo, J. M., Kalyanasundaram, V., Boopathi, C. S., & Arfan Jaffar, M. (2020). I-CARES: advancing health diagnosis and medication through IoT. Wireless Networks, 26(4), 2375–2389. https://doi.org/10.1007/s11276-019-02165-6

Leahy, J. L. (2008). Fully Automated Closed-Loop Insulin Delivery Versus Semiautom= ated Hybrid Control in Pediatric Patients With Type 1 Diabetes Using an Artifici= al Pancreas. Yearbook of Endocrinology, 2008, 55–57. https://doi.org/10.1016/s0084-3741(08)79222-9

Liu, L., Xu, J., Huan, Y., Zou, Z., Yeh, S. C., & Zheng, L. R. (2020). A Sma= rt Dental Health-IoT Platform Based on Intelligent Hardware, Deep Learning, and Mobile Terminal. IEEE Journal of Biomedical and Health Informatics, = 24(3), 898–906. https://doi.org/10.1109/JBHI.2019.2919916

Mavrogiorgou, A., Kiourtis, A., Perakis, K., Pitsios, S., & Kyriazis, D. (2019). IoT = in Healthcare: Achieving Interoperability of High-Quality Data Acquired by IoT Medical Devices. Sensors (Basel, Switzerland), 19(9). https://doi.org/10.3390/s19091978

Medeiros, V. N., Silvestre, B., & Borges, V. C. M. (2019). Multi-objective routing aware of mixed IoT traffic for low-cost wireless Backhauls. Journal of Internet Services and Applications, 10(1). https://doi.org/10.1186/s13174-019-0108-9

Montiveros, M., Murazzo, M., Garabetti, M. M., Ros, J. S., & Rodríguez, N. (2018). Análisis de las Topologías IoT en Entornos Fog Computing mediante simulación. Libro de A= ctas JCC&BD 2018, 90–100.

Morzy, T., Härder, T., & Wr= embel, R. (2013). Advances in Intelligent Systems and Computing: Pref= ace. In Advances in Intelligent Systems and Computing: Vol. 186 AISC. https://doi.org/10.1007/978-3-030-37218-7

Mumtaz, S., Bo, A., Al-Dulaimi,= A., & Tsang, K. F. (2018). Guest Editorial 5G and beyond Mob= ile Technologies and Applications for Industrial IoT (IIoT). IEEE Transactio= ns on Industrial Informatics, 14(6), 2588–2591. https://doi.org/10.1109/TII.2018.2823311

Ng, C. L., Reaz, M. B. I., & Chowdhury, M. E. H. (2020). A Low Noise Capaci= tive Electromyography Monitoring System for Remote Healthcare Applications. I= EEE Sensors Journal, 20(6), 3333–3342. https://doi.org/10.1109/JSEN.2019.2957068

Nørfeldt, L., Bøtker, J., Edinger, M., Genina, N., & Rantanen, J. (2019). Cryptopharmaceuticals: Increasing the Safety of Medication by a Blockchain = of Pharmaceutical Products. Journal of Pharmaceutical Sciences, 108<= /i>(9), 2838–2841. https://doi.org/10.1016/j.xphs.2019.04.025

Palani, D., & Venkatalakshmi, K. (2019). An IoT Based Predictive Modelling for Predicting Lung Cancer Using Fuzzy Cluster Based Segmentation and Classification. Journal of Medical Systems, 43(2). https://doi.org/10.1007/s10916-018-1139-7

Peng, Y., Wang, X., Guo, L., Wang, Y., & Deng, Q. (2017). An efficient network coding-based fault-tolerant mechanism in WBAN for smart healthcare monitori= ng systems. Applied Sciences (Switzerland), 7(8). https://doi.org/10.3390/app7080817

Performance, D. (2018). Five Requirements of a Good Strategy.pdf.

Pirbhulal, S., Samuel, O. W., Wu, W., Sangaiah, A. K., & Li, G. (2019). A joint resource-aware and medical data security framework for wearable healthcare systems. Future Generation Computer Systems, 95, 382–391. https://doi.org/10.1016/j.future.2019.01.008

Plageras, A. P., Psannis, K. E., Ishibashi, Y., & Kim, B. G. (2016). IoT-based surveillance system for ubiquitous healthcare. IECON Proceedings (Indust= rial Electronics Conference), 0, 6226–6230. https://doi.org/10.1109/IECON.2016.7793281

Quincozes, S., Emilio, T., & Kazienko, J. (2019). MQTT protocol: Fundamentals, tools and future directions. IEEE Latin America Transactions, 17(9), 1439–1448. https://doi.org/10.1109/TLA.2019.8931137

Qureshi, F., & Krishnan, S. (2018). Wearable hardware design for the internet of medical things (IoMT). Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113812

Rachakonda, L., Mohanty, S. P., & Kougianos, E. (2020). ILog: An Intelligent Device= for Automatic Food Intake Monitoring and Stress Detection in the IoMT. IEEE Transactions on Consumer Electronics, 66(2), 115–124. https://doi.org/10.1109/TCE.2020.2976006

Rachakonda, L., Mohanty, S. P., Kougianos, E., & Sundaravadivel, P. (2019). Stress-Lysis: A DNN-Integrated Edge Device for Stress Level Detection in the IoMT. IEEE Transactions on Consumer Electronics, 65(4), 474–4= 83. https://doi.org/10.1109/TCE.2019.2940472

Rajasekaran, M., Yassine, A., Hossain, M. S., Alhamid, M. F., & Guizani, M. (2019). = Autonomous monitoring in healthcare environment: Reward-based energy charging mechanism for IoMT wireless sensing nodes. Future Generation Computer Systems,= 98, 565–576. https://doi.org/10.1016/j.future.2019.01.021

Rajput, A., & Brahimi, T. (2019a). Characterizing internet of medical things/personal area networks landscape. In Innovation in Health Informatics: A Smart Healthcare Primer. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819043-2.00015-0

Rajput, A., & Brahimi, T. (2019b). Characterizing IOMT/personal area networks landscape. ArXiv, 1–29.

Rani, S., Ahmed, S. H., & Shah, S. C. (2019). Smart health: A novel paradigm = to control the chickungunya virus. IEEE Internet of Things Journal, = 6(2), 1306–1311. https://doi.org/10.1109/JIOT.2018.2802898

Rubí, J. N. S., & Gondim, P. R. L. (2019). IoMT platform for pervasive health= care data aggregation, processing, and sharing based on oneM2M and openEHR. Sensors (Switzerland), 19(19), 1–25. https://doi.org/10.3390/s19194283

Sánchez, A. A., González Guerre= ro, E., & Barreto, L. E. (2019). Modelo informático integrado AmI-IoT-DA pa= ra el cuidado de personas mayores que viven solas. Revista Colombiana de Computación, 20(1), 59–71. https://doi.org/10.29375/25392115.360= 7

Sanders, J. E., Garbini, J. L., McLean, J. B., Hinrichs, P., Predmore, T. J., Brzostowski, J. T., Redd, C. = B., & Cagle, J. C. (2019). A motor-driven adjustable prosthe= tic socket operated using a mobile phone app: A technical note. Medical Engineering and Physics, 68, 94–100. https://doi.org/10.1016/j.medengphy.2019.04.003

Santagati, G. E., Dave, N., & Melodia, T. (2020). Design and performance evaluatio= n of an implantable ultrasonic networking platform for the internet of medical things. IEEE/ACM Transactions on Networking, 28(1), 29–42. https://doi.org/10.1109/TNET.2019.2949805

Sarmento, R. M., Vasconcelos, F. F. X., Filho, P. P. R., & de Albuquerque, V. H. = C. (2020). An IoT platform for the analysis of brain CT images based on Parzen analysis. Future Generation Computer Systems, 105, 135–147. https://doi.org/10.1016/j.future.2019.11.033

Sayeed, M. A., Mohanty, S. P., Kougianos, E., & Zaveri, H. P. (2019). Neuro-Det= ect: A Machine Learning-Based Fast and Accurate Seizure Detection System in the IoMT. IEEE Transactions on Consumer Electronics, 65(3), 359–3= 68. https://doi.org/10.1109/TCE.2019.2917895

Sharman, J. E., O’Brien, E., Alpert, B., Schutte, A. E., Delles, C., Hecht Olsen, M., Asmar, R., Atkins, N., Barbosa, E., Calhoun, D., Campbell, N. R. C., Chalme= rs, J., Benjamin, I., Jennings, G., Laurent, S., Boutouyrie, P., Lopez-Jaramill= o, P., McManus, R. J., Mihailidou, A. S., … Stergiou, G. (2020). Lancet Commis= sion on Hypertension group position statement on the global improvement of accur= acy standards for devices that measure blood pressure. Journal of Hypertensi= on, 38(1), 21–29. https://doi.org/10.1097/HJH.0000000000002246

Silvestre-Blanes, J., Sempere-Payá, V., & Albero-Albero, T. (2020). Smart sensor architectures for multimedia sensing in iomt. Sensors (Switzerland),= 20(5), 1–16. https://doi.org/10.3390/s20051400

Song, J., Pandian, V., Mauk, M. G., Bau, H. H., Cherry, S., Tisi, L. C., & Li= u, C. (2018). Smartphone-Based Mobile Detection Platform for Molecular Diagnos= tics and Spatiotemporal Disease Mapping. Analytical Chemistry, 90(= 7), 4823–4831. https://doi.org/10.1021/acs.analchem.8b00283

Sood, S. K., & Mahajan, I. (2019). IoT-fog-based healthcare framework to iden= tify and control hypertension attack. IEEE Internet of Things Journal, 6(2), 1920–1927. https://doi.org/10.1109/JIOT.2018.2871630

Toor, A. A., Usman, M., Younas, F., Fong, A. C. M., Khan, S. A., & Fong, S. (2020). Mining massive e-health data streams for IoMT enabled healthcare systems. Sensors (Switzerland), 20(7), 1–24. https://doi.org/10.3390/s20072131

Ullah, F., Habib, M. A., Farhan, M., Khalid, S., Durrani, M. Y., & Jabbar, S. (2017). Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustainable Cities and Society, 34= , 90–96. https://doi.org/10.1016/j.scs.2017.06.010

Vellappally, S., Al Kheraif, A. A., Anil, S., & Wahba, A. A. (2019). IoT medical too= th mounted sensor for monitoring teeth and food level using bacterial optimiza= tion along with adaptive deep learning neural network. Measurement: Journal of the International Measurement Confederation, 135, 672–677. https://doi.org/10.1016/j.measurement.2018.11.078

Xing, F., Peng, G., Liang, T., & Jiang, J. (2018). Challenges for deploying I= oT wearable medical devices among the ageing population. In Lecture Notes i= n Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10921 LNCS. Springer Internation= al Publishing. https://doi.org/10.1007/978-3-319-91125-0_25<= /p>

Yadav, N., Jin, Y., & Stevano, L. J. (2019). AR-IoMT Mental Health Rehabilitat= ion Applications for Smart Cities. HONET-ICT 2019 - IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT, IoT and AI= , 166–170. https://doi.org/10.1109/HONET.2019.8907997

Yu, H. (2020). Research and optimization of sports injury medical system under = the background of Internet of things. Transactions on Emerging Telecommunications Technologies, 31(12), 1–14. https://doi.org/10.1002/ett.3929

Zanjal, S. V., & Talmale, G. R. (2016). Medicine Reminder and Monitoring System= for Secure Health Using IOT. Physics Procedia, 78(December 2015), 471–476. https://doi.org/10.1016/j.procs.2016.02.090

Zilani, T. A., Al-Turjman, F., Khan, M. B., Zhao, N., & Yang, X. (2020). Monito= ring movements of ataxia patient by using UWB technology. Sensors (Switzerlan= d), 20(3), 1–16. https://doi.org/10.3390/s20030931

 

------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Kai18BookSection{5CD1B299-06DF-4897-8745-69F3ACB57BBD}A comp= arative study of LPWAN technologies for large-scale IoT20= 18Kais MekkiEddyBajic, Frederic Chaxel, Fernand Meyer= ICT E= xpress1V= SA05ConferenceProceedings{288B= 78EF-20EC-4E30-B7E4-73E578BCFBB2}<= b:Person>V.S. AbhayawardhanaI.J.Wassell, D. Crosby, M.P. Sellars, M.G. BrownComparison of empirical propagation p= ath loss models for fixed wireless access systems20052005 IEEE 61st Vehicular Technology ConferenceStockholm, Sweden2Hen18ConferenceProceedings<= /b:SourceType>{97B7976C-B377-4B37-9F43-728CD81C5CF8}Hendrik Linka= MichaelRademacher, Karl Jonas and Osianoh Glenn AliuPath Loss Mo= dels for Low-Power Wide-Area Networks: Experimental Results using LoRa2018VDE ITG-Fachbericht Mobilkommun= ikationOsnabrück3Aya19ConferenceProcee= dings{950C19BA-A90C-4298-B65A-8C69984C6D0A}= ZigBee and LoRa based Wireless Sensors for Smart Environment and I= oT Applications2019CappadociaAyanle I. AliSibelZorlu Partal, Salih Kepke, Hakan P. PartalGlob= al Power, Energy and Communication Conference4Usm17Journ= alArticle{6C06B79D-957C-4ACA-98AD-89887E3104CE}Low Power Wide Area Networks: An Overview201= 7Usman RazaParagKulkarni, and Mahesh SooriyabandaraIEEE = Communications Surveys & Tutorials5Mas20JournalArticle<= /b:SourceType>{9A22F277-A607-46ED-BE8E-8AECA7CE59A9}NB-IoT vs. LoRaWAN: An Experimental Evaluation for Industrial Applicatio= ns2020= Massimo BalleriniStudent,Tomm= aso Polonelli, Davide Brunelli, Michele Magno and Luca BeniniIEEE Transactions= on Industrial Informatics6Ora17ConferenceProceedings{579AFCEB-662C-4E97-83AB-738CE7AE1EBA}<= b:Author>Oratile KhutsoaneB= asseyIsong, Adnan M. Abu-Mahfouz<= /b:NameList>IoT Devices and Applications bas= ed on LoRa/LoRaWAN20177= Elm19JournalArticle{6841221D-8591-404E-BA79-8C0610820D15}In= ternet of things in Smart Environment: Concept, Applications, Challenges, a= nd Future Directions2019Elmustafa Sayed Ali AhmedMujtab= aElbagir YousefWorld Scientific News8Gut19= ConferenceProceedings{300FC34F-0DEF-455A-B043-FE33A3= 5431F3}Gutierrez= S.,Martinez, I., Varona, J., Cardona,= M., & Espinosa, R.Smart Mobile LoRa Agriculture System based on Internet of Thi= ngs2019IEEE 39th Central Ameri= ca and Panama Convention9Lui19ConferenceProceedings{2D4EE58F-F061-45C1-BB64-6AA0B2BA97E3}L= oRa Communication as a Solution for Real-Time Monitoring of IoT Devices at = UNICAMP2019International Confe= rence on Smart Energy Systems and Technologies (SEST)Luis F. UgarteMaiqueC. Garcia, Enrico O. Rocheti, Eduardo Lacusta= Jr., Leandro S. Pereira and Madson C. de Almeida10Juh15ConferenceProceedings<= b:Guid>{E8442A92-3CE1-4961-A47A-3A7165DA4A92}<= b:NameList>Juha PetäjäjärviKonstanti= nMikhaylov, Antti, Marko PettissaloOn the Coverage of LPWANs: Ra= nge Evaluation and Channel Attenuation Model for LoRa Technology<= b:Year>201514th International Conference on ITS = Telecommunications (ITST)Copenhagen, Denmark11Dir99Report{DFFBFDCE-0724-4D32-8BA8-F03F1EF9D= 87E}Digital mobile radio towards future generation system= s: Final Report1999Commission)Directorate-Generalfor the Information Society and Media (EuropeanEUR12MHa801BookSection{D43727F4-C924-49A4-A44C-8B3F570807= DE}Empirical formula for propagation loss in land mobile = radio services1980HataM.IEEE Transactions on Vehicular Techno= logy 317-325IEEE13Har031Book{CE17E6C0-241A-46CC-B371-EBCB474EC430}<= /b:Guid>Fixed Broadband Wireless System Design20= 03Wiley= AndersonHarryR.14Con18JournalArticle<= /b:SourceType>{B852F681-AA68-499B-8A7B-B0CC890BE61F}A Survey on Security and Privacy Issues of Bitcoin2018= ContiMauroKumarS= andeepLalChhaganRujSushmitaIEEE Communic= ations Surveys & Tutorials39d= oi 10.1109/COMST.2018.2842460,1= Cac171JournalArticle<= b:Guid>{6C76A7E2-8461-4774-B413-2309320F3BBE}<= b:NameList>CachinChristianVukolićMarkoBlockchain Consensus Protoco= ls in the WildIBM Research - Zurich201724Julio1= 7arXiv:1707.01873v22Pap15JournalArticle{418C5A27-CBDB-4366-8E49-CED387529F44}Blockchai= n and Digital Payments:An Institutionalist Analysis ofCryptocurrenciesHandbook of Digital Currency201= 5153-172PapadopoulosGeorgiosElsevier Inc.doi.org/10.1016/B978-0-12-802117-0.00007-24Swa18JournalArticle{B1A78EF2-2F82-48C5-ADCE-E422DA9174E7}SwanMelanieBlockchain for= Business: Next-Generation Enterprise Artificial Intelligence SystemsAdvances in Computers201842Elsevier Inc.doi.o= rg/10.1016/bs.adcom.2018.03.0135Zha19JournalArticle<= b:Guid>{EED3C977-29A0-4E86-9A57-2630FDBBD739}<= b:NameList>ZhangShijieLeeJong-Hyouk<= /b:NameList>Analysis of the main consensus p= rotocols of blockchainThe Korean Institute of Comm= unications and Information Sciences2019Elsevier Inc.doi.org/10.1016/j.icte.2019.08.= 0018Vir18JournalArticle{2727D7EC-DE0D-4E29-9= 125-0325F1F548CE}ViriyasitavatWattanaHoonsoponDanupolBlockchain characteristics and consensus in mode= rn business processesJournal of Industrial Informa= tion Integration201832-39Julio29Elsevier Inc.https://doi.org/10.1016/j.jii.2018.07.0041= 310Sal191JournalArticle{AD3DF810-7FC1-46D= E-926B-D4ACEC398BEE}SalimitariMehrdadChatterjeeMainakA Survey on Consensus Protocols in Blockchain fo= r IoT Networks201915= Junio19arXiv:1809.05613v411Fai17Jou= rnalArticle{724728FC-B49E-4A62-A04F-4F1E5F6DD973}FairleyPeterFeeding the Blockchain Beast - If Bitcoin ever does go mainstream, the ele= ctricity needed to sustain it will be enormousBloc= kchain World201736, 37, 58, 59Octubrehttp://spectrum.ieee.org/beast1017<= /b:URL>13Gra17= JournalArticle{F1E1FBFC-6F38-4637-9DA2= -398940BF41B9}Gr= amoliVincent= From blockchain consensus back to Byzantine consensusFuture Generation Computer Systems201710Elsevier Inc.doi.org/10.1016/j.future.2017.09.02314Naw19JournalArtic= le{4273D245-8347-4012-855D-8C958EB77805}NawariNawa= riO.RavindranShriraamBlockchain and the built environment: Potentials and limitati= onsJournal of Building Engineering= 201916Junio04= Elsevier Inc.25doi.org/10.1016/j.jobe.2019.10083215Fru19InternetSite{10710359-6CC4-4196-A1EE-619CFAFF30BE}Invest = in Blockchain2019FrumkinDanielabril08https://www.investinblockchain.com/transactions-per-second-and-consensu= s-mechanisms-of-the-top-50-cryptocurrencies/2020emero2417Por19InternetSite{3D4A003F-D3A2-465F-9= 85C-0D3249403D05}The Cryptonomist2019PortaMicheleagosto17https://en.cryptonomist.ch/2019/0= 8/17/proof-of-capacity-poc-consensus-algorithm/2020= enero11<= /b:DayAccessed>Proof of Capacity (PoC)18Deb17J= ournalArticle{535C3331-56CF-424C-8C5B-A488308D3A51}<= /b:Guid>DebusJulianConsensus methods in blockchain systemsFrankfurt= School of Finance & Management2017Tech. Rep19pee20InternetSite= {8D7D662B-6619-4CBA-9FA0-781EC4EC6EF5}peercoinDocshttps://docs.peercoin.net/2020enero2420Lar14JournalArticle{8CD1D565-5983-4416-80A4-F9= CF6AEA03A1}Larim= erDanielDelegated proof-of-stake (dpos)Bit= share whitepaper201421Coi18InternetSite{0A1FAB5C-6E2C-4CB1-B60E-A261DEED9006}CoinsTelegram2018octubre30https://coinstelegram.com/2018/10/30/what-is-leased-pro= of-of-stake-lpos/CoinsTelegram2020enero1122Wav20I= nternetSite{34EF99A2-57A8-47AF-9770-27970179F4D5}https://docs.wavesplatform.com/en/blockchain/leasing.html2020enero11Leasing Proof of Stake<= /b:ShortTitle>WavesDocs23Opt= 20InternetSite{DC241844-E7AA-4= EC9-B811-2DFDC6E0D6E7}Option Fina= ncehttps://option.finance/proof-= importance-algorithm2020enero11= 24Nem20Inter= netSite{388CF69C-1D99-4C27-81B4-100EA3632683}Nem<= b:URL>https://nem.io/technology/2020enero11= 25Set18InternetSite{7B679471-EC3B-40E5-A3CC-E0B48786= ACFC}SethShobhit<= b:Title>Golden2018abril04https://golden.com/wiki/Proof-of-activity_(PoA)2020enero= 1127Pra19InternetSite= {281E23AF-7E8F-4D62-9AD9-15EA299FD5D6}Prasanna<= /b:Author>Cryptoticker2019sept= iembre25https://cryptoticker.io/en/proof-of= -burn/2020enero1128Bla19InternetSite{BAD37DA4-9E75-4944-96D3-55FBDF968585}BlagojevicDobricaCaptainaltco= in.co2019marzo21https://captainaltcoin.com/what-is-practical-byzantine-fault-toler= ance-pbft/2020ene= ro2429Com19InternetSite{AE7C458D-D07A-4CE1-803B-047521A5D5B2}CombenChristina= Coin Rivet= 2019marzo14https://coinrivet.com/es/delegated-byzantine-fault-tolerance-dbft-expla= ined/2020enero1130= Kol17InternetSite{6D9602C1-13A2-4D61-8400-0E7C771141F6}KollerMichaelItNext<= b:Year>2017octubre25https= ://itnext.io/the-stellar-consensus-protocol-decentralization-explained-338b= 374d0d722020enero= 1231Blo19InternetSite{35B456B1-316F-45A0-B780-1E6BE0145503}= Blockchain Support2019noviembre30= https://support.blockchain.com/hc/en-us/articles/360019105391-Stellar-conse= nsus2020enero1233<= /b:Source>Que20InternetSite{219AD164-DD26-46AE-8C79-AC86E152965B}Quest= ionProhttps://www.questionpro.com/blog/es/investigacion-ex= ploratoria/2020en= ero282020= 34McL19InternetSite{EFCBF3D2-97C7-4087-B938-155E1BDC= 86CD}McLeodSaulSymplyPsychology2019https://www.si= mplypsychology.org/likert-scale.html2020enero2835Cri19InternetSite{09215B29-688E-4A4C-8E3D-862A= 5DA1392D}Criptonario2019febrerohttps://criptotario.com/que-es-la-capitalizacion-de-mercados-en-criptomon= edas2020febrero2537HMoJournalArticle{76DD565A-881C-4359-ACD7-EB71E1AD8042}MoraHMorales M.MarioR.Pujol López= FranciscoA.Moll= á SirventRafaelSocial cryptocurrencies as model for enhancing sust= ainable developmentKybernates34Emerald Publishing Limited10.1108/K-05-2020-025940Zhe18JournalArticle= {9F5F166B-B367-4D4A-B6A6-DBF3622B4674}Blockchain challeng= es and opportunities: a survey2018Octub= reInternational Journal of Web and Grid Services352-375ZhengZibin<= b:Last>XieShaoanDa= iHong-NingChenXiangpingWang= Huaimin144DOI: 10.1504/IJWGS.2018.1001= 684826Gro19JournalArticle{1850D6BD-3143-4328= -AB04-7493560ECD5D}GrobysKlausAhme= dShakerSapkotaNiranjanTechnical trading rules in the cryptocurrency market<= b:JournalName>Finance Research Letters2019= 20Diciembre05Elsevier Inc.doi.org/10.1016/j.frl.2019.1013963Isl19JournalArticle{608B4894-669E-4C2F-9042-E67= 881A698D9}Islam<= /b:Last>NajmulMäntymäkib<= /b:Last>MattiTurunencMarjaWhy do blockchains split? An actor-network perspective on Bitcoin sp= litsTechnological Forecasting & Social Change<= /b:JournalName>201910Elsev= ier Inc.148doi.org/10.1016/j.tech= fore.2019.1197436Mor19JournalArticle{D4ECDB8= 4-D68A-4A11-8DCE-A97B0CBACD82}Virtual Currencies in Moder= n Societies: Challenges and Opportunities2019MoraHigini= oPujol LópezFranc= iscoA.Mendoza T= elloJulioCésar= MoralesMarioR.Politics= and Technology in the Post-Truth Era171-185doi:10.1108/978-1-78756-983-6201910127Ruo19JournalArticl= e{7133703A-698D-4E64-BA75-23B2EB9D53CD}RuozhouLiu<= /b:First>ShanfengWanZilibZhangXuejunZhaoIs the introduction of futures res= ponsible for the crash of Bitcoin?Finance Research= Letters20197Elsevier Inc.doi.org/10.1016/j.frl.2019.08.0079Duc18JournalArticle{D8C4AD1E-00DD-4174-AD12-A7E5= EEA7A216}Duchenn= eJamesBlockchain and Smart Contracts: Complementing Climate Finance= , Legislative Frameworks, and Renewable Energy ProjectsTransforming Climate Finance and Green Investment with Blockchains2018303-317Els= evier Inc.https://doi.org/10.1016/B978-0-12-814447-3.0= 0022-741Tah18<= /b:Tag>JournalArticle{3626D445-20F2-4F= 35-BEEC-B80D29A3B047}Tahar HammiMohamedHammiBadisBel= lotPatrickSerhrouc= hniAhmedBubbles of Trust: A descentralized blockchain-based authent= ication system for IoTComputers & Security2018126-142Esl= evier Inc.78doi.org/10.1016/j.cos= e.2018.06.00412You19JournalArticle{1F0820C8-= DFC1-40A5-B454-C588C1DDB847}Young LeeJeiA decentralized token economy: How blockcha= in and cryptocurrency can revolutionize businessKe= lley School of Business, Indiana University2019773-784Elsevier Inc.62doi.org/10.1016/j.bushor.2019.08.00316Che17JournalArticle{9969D752-C425-4279-A234-F602F63434F= C}On Security Analysis of Proof-of-Elapsed-Time (PoET)2017282-297<= b:NameList>ChenLin= XuLeiShahNolanGao<= /b:Last>ZhiminLuYangShiWeid= ong10.1007/9= 78-3-319-69084-1_1943= Dis20InternetSite{251DF= 0DA-4770-4DD0-BA17-6EB1830F9E3F}DistrictOx Education Port= alhttps://education.district0x.io/general-topics/ethereum-= scaling/what-is-casper/DistrictOx = Education Portal2020enero1144But19JournalArticle{E15C7771-D498-4A90= -A732-5C47E4987A9F}ButerinVitalikG= riffithVirgilCasper the Friendly Finality Gadget2= 019arXiv:1710.09437v445Din18JournalArticle{744F9D50-6CAF-44A7-97F1-2DB5DFBFCC09}Untan= gling Blockchain: A Data Processing View of Blockchain Systems2018julio01DinhTienTuan AnhLiuR= uiZhangMeihuiChenGangChinBengIEEE Transactions on Knowledg= e and Data Engineering1366-1385307doi: 10.1109/TKDE.2017.278122732Gil17JournalArticle{3B9471CB-074C-448D-A287-6E= E6D2DA8E21}Algorand: Scaling byzantine agreements for cry= ptocurrencies.2017GiladYossiHemoRotemMicaliSilvioVla= chosGeorgiosZeldov= ichNickolai<= /b:Author>In Proceedings of the 26th Symposium on Operating = Systems52-68ACMdoi.org/10.1145/3132747.313275746= Alg19InternetSite{219F6B12-84E7-4D62-B3B0-D594D2B24FBE}Algo= rand2019Algoran= dhttps://www.algorand.com/what-w= e-do/technology/algorand-protocol2020enero1247Han18JournalArticle{2B1AAB3D-42D4-4EC8-924B-167E5= C5A668A}Dfinity technology overview series, consensus sys= tem2018arXiv:1805.04548v1 HankeTimoMovahediMahnushWilliamDominic48Dan16JournalArticle{5D9F8FF9-546A-4B66-838D-1E2AEA955BD1}DanezisGeorgeMeiklejohnSarahCentrally Banked Crypt= ocurrencies2016dx.doi.org/10.14722/ndss.2= 016.2318749Luu= 16JournalArticle{C6662B04-D002= -4B97-B745-9552B7430001}= LuuLoiNara= yananVisweshZheng<= /b:Last>ChaodongBawejaKunalGilbertSethSaxenaP= rateekA se= cure sharding protocol for open blockchainsIn Proc= eedings of the 2016 ACM SIGSAC Conference on Computer and Communications Se= curity201617-30ACMdx.doi.org/10.1145/2976749.297838950Zam18JournalArticle{5C16A509-11FE-42EF-AC64-72C01E4850= 8F}ZamaniMahdiMovahediMahnushRaykovaMarianaR= apidChain: Scaling Blockchain via Full ShardingIn = Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communication= s Security2018931-948ACM51Kok18JournalArticle{49= 56718A-2A42-45F6-A117-94577DEC51DA}Kokoris-KogiasEleftheriosJovanovicPhilippGasserLinus<= b:Person>GaillyNicolasSytaEwaFordBryanOmniLedger: A Secure, Scale-Out, Decentralized Ledger via= ShardingIn 2018 IEEE Symposium on= 2018583-598IEEE10.1109/SP.2018.000-552Ong14JournalArticle= {E0F452F5-F6CD-4B72-933D-27D1ABE6B929}= OngaroDiegoOusterhoutJohnIn Search of an Understandable= Consensus AlgorithmIn 2014 USENIX Annual Technica= l Conference (USENIXATC 14)201430= 5-31953Dib18= JournalArticle{67611671-CC3E-4= FD0-83E9-38BAF7A6B86A}Consortium Blockchains: Overview, A= pplications and Challenges2018DibOmarBrousmicheKei-LéoDurandAntoineTheaEricHamidaElyesInternational Journal On Advances in Telecom= munications51-6411<= b:Issue>1 &254<= b:Tag>Cur18InternetSite{336784= E8-A0F2-4662-9CF3-80C0850910FD}2018CurranBrian= julio24https://blockonomi.com/iota-tangle/2020enero1355Fad17JournalArticle{52F38539= -783D-48D5-BA95-DCCC90AF6B43}Proximity Awareness Approach= to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network= 2017junioFadhilMuntadher<= b:Person>OwenGarethAddaMo2017 IEEE 37th International Conference on Dis= tributed Computing Systems (ICDCS)2411–241610.1109/ICDCS.2017.5356Mit17InternetSite= {438767B9-8A5F-42F9-A627-9683E816B108}Mitar's Poi= nt2017marzo21<= b:URL>https://mitar.tnode.com/post/proof-of-luck-consensus-protocol-and-luc= kychain/Mitar's Point2020enero1357MilJournalArtic= le{502DC832-7455-4A8C-8610-448282203E85}Proof of Luck: an Efficient Blockchain Consensus ProtocolMilutinovicMitarHeWarrenWuHowardKanwalMaxinderProceedings of the 1s= t Workshop on System Software for Trusted Execution (SysTEX ’16)1–6ACMdoi.org= /10.1145/3007788.300779058PalJournalArticle{= C47F1BDA-A2EB-4806-A97D-72764C0E7818}Estrategias de Ponde= ración de la respuesta en encuentas de satisfacción de usuarios de servic= ioPalacios Góm= ezJoséLuisMetodología de Encuestas175-19342200236<= b:Tag>Mor21JournalArticle{BB09= D4B7-F03D-420E-BC1E-60B37E132ED5}<= b:Person>MoraH.Pujol LópezF.A.MoralesM.R.Mollá SirventR.Disruptive Te= chnologies for Enabling Smart Government in Reserach and Innovation Forum 2= 020Disruptive Technologies in Times of Change202157-69Spring= er International Publishing38Cam20JournalArticle{D5D0FD1A-6023-4471-949B-1A065C887C4A}Métodos = de consenso sobre plataformas blockchain: Un enfoque comparativo<= b:Year>2020http://www.dspace.uce.edu.ec/handle/25000/21832<= /b:URL>Campaña IzaXimenaM.Zumba SampedroWashingtonX.Repositori= o Digital UCE8039Car20JournalArticle{348E36A5-E639-7D4E-B722-573B2249733D}T= ecnología blockchain en la optimización de una cadena de sumistro2020Mo= rales C.Santiago.L.Morales M.Mario= R.Trujillato C.V.= WPaucarJ.Revista Arbitrada Interdisciplinada Koinonia161-1805(2)42MarcadorDePosición1JournalAr= ticle{4237E4E3-6484-450A-BF58-09F9361855E5}= Tecnología blockchain en la optimización de una cadena de sumist= ro2020= Cardoso M.Santiago.L.Morales M.Mario= R.Trujillato C.<= b:First>V.WPauc= arJ.Revista Arbitrada Interdisciplinada Koinonia161-1805(2)14Alv10JournalArticle= {9FEFDAA0-6DB4-47AB-A6C3-2AAF7EB610D7}OrtizAlvaro<= /b:First>DiazTeoría de las emocionesINNOVACIÓN = Y EXPERIENCIAS EDUCATIVAS2010293Vin10= JournalArticle{B8124DAB-D208-4670-83A5= -878DB9A00C7A}Ansiedad, estrés, emociones negativas y sa= lud. Atrapados por el estrés.2010VindelA.C.Crítica12-169684Fon17Misc{CE1E2E59-3626-4F6B-9800-ED89E6628D51}El desarrollo emocional en el desempeño conductual de los Ã= ¡rbitros profesionales de fútbol del cantón Ambato 2017= AmbatoUniversidad Técnica de Ambato= . Facultad de Ciencias Humanas y de la Educación. Maestría en Cultura Fí= sica y Entrenamiento DeportivoFonseca MoraL.E.5Med19InternetSite{FA927F48-70CF-48F9-94C6-68FC4B6A785E}https://medlineplus.gov/spanish/Biblioteca= Nacional de Medicina de EE. UU.2019= 7MedlinePluses-EC7 ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQCD OzDMkQYAAFAbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZzW8cNRS/I/E/WHNvs5v9SBN1 UyX70UCbNspui3r0znhn3HjGI9ubdG+oPSIhIQriQCVuHBBQqZW4lL8mUARF6r/Asz0zO87OtgmN oIJupOyO/fP7fs/PnstX7sUMHRIhKU86Xv1izUMk8XlAk7Dj3RoNLlzykFQ4CTDjCel4MyK9K5vv v3cZb6iIxATB+kRu4I4XKZVurKxIH4axvMhTksDchIsYK3gU4Uog8BHQjdnKaq3WXokxTTyU4BjI 3pxMqE/QSJP0NnPifQaPiZJ6wGdiqEkTZ4XBBgd1jZAz2WUCHWLW8YBPwI9G5J7yEMNSwUTHq5mP t7J5eQVvZIuYWrK2tG5gPtm6bEFwsGp4inBcMG02W832VkHfAJhaxPXX+u1+u6BnANj3QVMri0tz bbXbzLAlkP1ZQbu31mvUHXyJfmNB5q2W/nPwBmTpNxfwg0EXrOjgDcjiWwv41vb6ds+lb0AW317A r9W2es01h74BRYwmBwvoWqvd6ObaFpAJZzuV8PVWc7C2mhGfoyAaiujSLCY8UctiLcZ3uRgAQAMZ VjRBapaSCfYhirs4HguKNQO8QXBpxg75cmFI80LSFzRVHe/DFENGzOm9fPb9y2dP0PH9p8f3fzp+ 8OD4/o+WkLNqBydhedWLbz/789HH6I8n37x4+EU1Xpbxv/7wyS8/f14NhPSZi/P8y8e/PX38/KtP f//uYQV8S+BxGT6iMZHoBjlC+zwGxYxVXMnJWJxtxSjCtLxiKwklTrDmUkG/ryIHfWOGWeYdR45t 4lrwtoDyUQW8Or3rCDyMxFTRCs7XotgB7nLOtrmotMI1zatk5tE0CauZi2kZt4/xYRXvLk4c//an KdTNPCwdxbsRccTcYzhROCQJUUjP8QNCKrS7Q6lj113qCy75RKE7FG1jWmmSER070TRftENj8Mus Smfwt2Ob3dtom7MqrXvk0EVCVmBWIfyIMMeMV/FU4biK5AjHrGzw61hFVUIOZ8Iv4/pSgadDwjjq B0TKqjU3Behbcvo1DBWr0u27bBa7SKHoQRXN65jzMrLHD7oRjtMq7JAmURn7gTyAEMVoj6sq+C53 M0Q/gx9wstTdtylx3P36anCLho5I8wDRM1OhfQml2qnAMU1eVY4ZhXpsY+D8yjEUwOdfP6qIrLe1 EG/BnlSVCTsnyu8y3Mmi2+UioG9/ze3habJHIMwXN553JfddyfX+8yV3WT6fttDOayuUXd032KbY tMjx0g55Qhkbqhkj16VpkiXsE8EABvU6czokxYkpjeBnVtcdXCiwWYMEVx9RFQ0jnEKDXfc0kVBm pEOJUi7hYGeGK2lrPDTpyh4LW/oEaOuBxGqXB3a4UT4YFmTMbhOaw2fOqKEJnJZZY+3NmNWtVEvN 5qpWN6KZUueoVqgMPlxUDQYLa0IDgqBtASu34XyuZYeDCWYk0Ha3e2/uFuOF83SRjHBAMh9pvRd9 VDdOymPF3ARA7FT46JIR/ZVWK3Fb12TfgNtpnFRm11zCLvfem3gpP5bPvaTz9kQ6sqScnCxBRx1v vbXa8pCP0443gTMt/IxT8LrUPR9mIVwM+UrYsH9tMhvDz725nisG0VfKuHotH19Q2KkDqZCqh2Vk Q8NMZSHAEs3Jyr/aArOelwI20v+GFI1LEAz/mhRgR9e1ZDIhvio7uzSibWcfs1LKp4qIYRQcoTGb in0M7tehCvoEVMLVhKkI+gHu0bS1zZRbnLPCWL69Mjg7jlka4azc6hTNM9nCTR4XMpinknigW6Xs Rrmzq2JS/pxUKYfx/0wVvZ/ATUEj0B7w4RpXYKTzteNxoSIOVSiNqD8Q0DiY2gHRAnexMA1BBZfJ 5luQQ/1tc87SMGkNBz61T0MkKOxHKhKE7EFZMtH3GmL1bO+yJFlGyERUSVyZWrHH5JCwka6Bbb23 eyiCUDfVJCsDBncy/tznLIPGoW5yyvnm1JBi77U58E93PjaZQSm3DpuGJrd/IWLFrmrXm+X53ltW RE/M26xmnhXArLQVrGdp/zdFOONWayvWgsarrVw48OKixjBYNEQp3Pcg/Q/2Pyp8Zt9M6A11xPeh tiJ40aCJQdhAVF+wjQfSBdIOjqFxsoM2mDQpa9qsddJWyzfrc+50C74njK0lO42/z2jsojlz2Tm5 eJ7Gzizs2NqOLTU1ePZkisLQJD/IGMeYV1rlt058fBcc3YP7/SlT0gQTvFMSGFrPockDSH7L0Szd /AsAAP//AwBQSwMEFAAGAAgAAAAhAA3RkJ+2AAAAGwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90 aGVtZU1hbmFnZXIueG1sLnJlbHOEj00KwjAUhPeCdwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2u LAguh2G+mWm7l53JE2My3jFoqhoIOumVcZrBbbjsjkBSFk6J2TtksGCCjm837RVnkUsoTSYkUigu MZhyDidKk5zQilT5gK44o49W5CKjpkHIu9BI93V9oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8W Xf5RQXPZhQUoosbM4CObqkwEylu6usTfAAAA//8DAFBLAQItABQABgAIAAAAIQDp3g+//wAAABwC AAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXW p+fAAAAANgEAAAsAAAAAAAAAAAAAAAAAMAEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5 lhaDAAAAigAAABwAAAAAAAAAAAAAAAAAGQIAAHRoZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQ SwECLQAUAAYACAAAACEAgzswzJEGAABQGwAAFgAAAAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUv dGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAAAAAAAAAAAAAAJsJAAB0 aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAlgoA AAAA ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/image001.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC+xdCVxN2R+/afEkeUiKUKkkZcqQouXpZZelkpCtEqlJqz0yZCeKrDHWrI19CTW2 ZGmQLWP72/fB2CLL//t7vdP04unNvJcX0/l8vu93zrnnnnPvOb/v72z33qfCcVwwwNzichy3HWDu YwOO692Q4wxbubXmOBXOME+Fu6HGcaosgVjGlOc4O8Q3VeG4jUWO8XaqcZkrynHIgLMEDAFk11BF oMIZwM8HyvF/u4RTuVliUFryTwAorbWgnCgdioCLcbYQcJwJfHoURFgkivgbCzgVln/BcUF9Vy7G ylWW89UEHKclPtEIkgd0AASANaAOGAJ03QQ+wFwS6nBHoXpkYWMkoDw/wtE9zgemA3SPpoL8PPLv kePqClQLyjcWqBX46wgqFPiNBOUL/JL3xBciW7HjCzelnnJ5ErfGRVPAxbB6o2ug6ybXdYZHmsHQ m86QTkYI0736AnStlIbOIaCuHUWiiJ9u1RQQ11cM8yOfGC/EWwMDAVtgEDL0hKT6G6PRX3WMhqN6 tC6B/P1V2blQqYJ8kFR03eJraImw2MUU+OkaqE77Uf4A1alknXxeT2RJYyaQbJuv0VY8AVfOAfdj DRA/ILiZ9AO3fp2FA90vA8WxNPB+5AlUVNvCQ+dTPNV1YUdtTWFxm6eRn3SApMipqKiMg6e6QKUQ 72TTg744zw5AE4gkRIGkWD2K+Ixj7U7nMT+uu0B/AhDfBBiMBKRTdE9FdYfC7Nx/oz/myJPpvLHY z7iag/AJ4NvRK0l93/XgkUvuyUQXNUEBTzkj3A8PMBBLee0b8VPMUQmbzMomfaX65QPMacLDZwFI dyAUbUx68AiVX+gQN4si4dQ49aqeXCD3EzeAi+AMuU6QwyDduSGI68+FIE1NUcp8+aHpz/1zx3Lc B2pMcuJj/2XhP1TU9AVco6rVBah9iKNVxX6KpzDFw5XzxM8GYCjQHHgJdAaobYs6PiI6FonMb4CP H4MR74F268+Fc37cILReS/gi0ap+GJPkt2tFpKkgBvgsumDSF+J+ZYDiyK8BUDrykySdJr8pQNdd CXbEXOyn+zEW++laWsNviEgd4FNuS/ajTI8tBPl6TvWCrJ1FoohfUWnMBCXZ90he+6NGQ4XKshGs bNIjajM+wFyZjWA18XWlPDaC7MQrgGzEO0CajSA+dgQKO2YjuiDSnGvchHiuaC4zfVMUT2XJ52ty +fKF0UrjMiu7jMuFtVq5fnm47I9Lfw8Ql01AWGlcVsNxaVwme9AYsxkbrhlH9rwwFM1tpn+ycFJR ab4mt3WD45XGbVZ2GbehxKXEycNt4qUpOE3cbvgFbhfXT1txwcEl0U8zfVMUT2XJ52tyeeZvc5XG ZVZ2GZdLCZFxGfJw2R/nW4q57PEFLqshXXH9dGP01IX7aPIrup9m+icLJxWV5mtye8dva5XGbVZ2 GbehuKXEycNtT9wD7WtQP93zC9zGIanc7oJjDbj6rf9JP22HDMmmFLc2xvRNUTyVJZ+S5bLk2t+z JTHC5KByrpqCv/fQcnJyCvbQbl1ySat2dpwz5L/eQ6uP9tEDqA3JIX+RZHaX4pmfh4VHL4StKQUO PAYSAE0QXh1RWvwrdbT4CYZW+gTyX6nDzkX7xzA/kv5n9tZYG/IE8uytlfvi3hrpADWJWBdEe2qk GxQncgV7a4X3tP/Z3hrZdDtxdkzKsrdG57F2h44U6M9HxD+C7swFKhboj6TukC6xc/+N/pijDC2A rsFY7Gfr7zkInwA+tTGS69NIInIWguLX30vWNkhe19ou84VZYzhXNVwX3SM5I4AHGIhlSe2tsbKp XqlsPsAcjdn4LADpDoSijSmtPHtrtJfGXNG9NRb/X5ZF+3mqb12A2kcPqCr2oyk+2Vujft4GB54B zQENnEznF3V0bscikYXXzUM4a2tpY3bKzxig62EclHUPjOmbLBxUVJqvyeWtXZKUxmVWNrVPGZdR CaXAycvlFmIut5KDy45cx0DaC2f9b+H9bHm4zPRNUTyVJZ+vyeWfXixXGpdZ2WVcLgUkFl+CPFzu hzxai7ns9wUu07Ox0vpl6tubYv8Lu2A21DczyMrrQyh3F/DpOFlyrsp0TxY+KipNyfJa8v4Mt1sI nV9yLjxBOdVfUI9zgHJ4zrEyJLmuM86InlPt4tFSNBfT+7Mz5JpVbw/1cq4d4riPJNKI5DEbkzQ6 Ts8/UnqSdD5JpBXJ7Ysq21C6zZB03kZIyoeO49hmSo9jmzkVVZHLF+M5HUG5GD6uRw1IT0//aA5J /TqasGB+4FsozgR+AqZmousXeQv5yZYUXSNAvqJkTIco72oAK6cF/DygFsAH4tGRvEMiW3E4tEp+ 2BvhJgBzbCypgYjnVd6p9KkaD2gD0xA25EIBlgflaYh0X8pDu6Iht1JzGqCtslIzXkW74juVeIBu lK7PQSydIPWAdQDdrxmu1RCy8D2xe0W0zGsXxJsNwKfckZzLIU+RsxAoe44pTeelr12MyrzZguqM gW6EeEESDs8Fq5ZqvlTHM+98XCjxhZwsfOiLdHYA3TNJckwS0/iimE9/mA7RecyvDn1qgTAPqAXw gdLOFwGuUQ9YA5Azh44bQ7J7KlurkeR38LJuwpUPUluqCfJtJNWZEUBtbiCWHSAFgDUAneAMAVSr CHxI5th7HUXDhfRW1P/kH49xZmWTzpF95ucfEP3SWKBw2B3hUBRKacvWalAJJeTkGRMG45rOAxpA HkA2g9qrqCMd6lgkkvWv3oj3wHPP9Bx0JBc6oCLClB89x0ySwLhc3LxP1vEh00MLQfF9nKLSmKEs Pu6F2XbTImFFvu90s/lE4eanlq7S+ruBieo0zOD69W0u4qf16Y6QMStpXJjoMEQ0LkSaNAqv6d05 zQbHBybGplF6knQ+SaR1JPmuQZ71WqT7C5LOuwdJ+dBxHNtE6XFs06fjQ9UYPq6D6oT2kswhyS6Q rTECeIAvwOIK2RWZx4ef20MqPJZqIS6HdJcPPKqCOUrDv8eHbjXyw9441gRgjukv6efzGk0bjtRL sRipxwN8GzyvccncDbDFMT5AeV7CzX0pj9ZVLpn/xvdt8BufZ/EbP8WidZWmDR8B0saHWqikGSDb ZMhtkIXvifEFRf9nxod/67w840M11V9QaXOAwvMp0l9EKZ0v1QVqEjZEFj6U9PiwtPNFgHbTAzTB k+ngyVRIeseXcaRsfCg5PtyokyQMSGuglL08Vjaap2x8iDooDU6e8WE/3ADt4SWiQXtAroekti3q VBEhbXzoiWOt8EajP9c6nMYB/3TNMBjl9gM+XfeQXF9gumch+D7HhLoGKsLz+t2FPIGa1Oc3vCZv Szt5oamz1+Qm6ScvbIfMD6PaRY7CHD2/gVU+HYFawdhNWWt7zIbzMM7xwhVaAzFAGNAJbX4BUh3Q 5DlpDtGuUv6MDsnBlSjMziX7L+/YifSLnk37VMckbSsuReRk0TEzwdebL/ytG/KMndTl16ux9M69 utLHOEyXcDl4oxrv+6BtL0LKoktMr5BcprG3ORKSXSO7aCz2s2cSchA+AXw7eiWp78uvmQoneNQR qgny7xG3UjCvM4AfvJX7myKFxsDOlH++i3FmZVO9Uv3y8w+IfpWx1vRyGjem0CX8J73yjCXWoMZW AzMAK/BxOSS1bVFXGREdi0SyuXow4rvj3XpfzhDv8AXg1wNv2wciJgRyAML582haeyIdIb5rA+gj RH5am6JjFM/SkGRxjPvFrVMZ4vp1gE95LTkmYTpsIfhexiSS9uF8rqtwloetUuwDK7vMPkCBS4mT xz6Mxj0cBlYBFcCtVMjP2Qfqc6TZBx8c88dKNK1G+wIRsAlkBxi/C3Oe8qGwrJyXdR7C9PL74byk TZu1Y4aw2tmFmIdIHy8u52biXQIV5+Wcdjo9R87CqG6Ro7BoHoIBmo5AvWAeoqw1ZKYD0ImCeUhN 6OBtXO1GSFtAHf5fq5zlC3S7aZ+qSdKjGoXZuWXzEL7wb92QZx6iKnUewvSoWL3C/LY07MWzeYg+ 9Ocm6Q9kMxl1iekVTvvPz0PeHVkhVL08RSnjDFZ22TgDmlhKnDzjjFDcQ1twUBUYB+gBnxtnaCCd tHGGN47RzGMIF8pFYZTB5hU01mCg8QXjsKLmE0wXv5+xheR8ov7lFS4H3+gphees7DKeQ3FLiZOH 5/64B3dgMjAMSAI+x3M1xEvjuSeOeeK5lijMI7Tgp3UENp9QNLeZ/n2v3G4+fIWwg5emUrjNyi7j NhS4lDh5uB2Me2iDfnsEZCjkTMjPcVsd8dK47Y1jrbFGECxaJcB7wwjTegD1+8Tzf7I2MAfXQM/x FLceyPTw++G45NrA77VVhTEeJlgbkD7/K/7bz6qqTVD/5gA9w0N7y+Qed/XfS5LXqUUakzsWVHCm dYSicz0jSgf4AmS30TQKeRZbD/l8zrG+gHSQ+aF7Md0RpvsIAJYD44HnAN0T7WHGahB0KrNzoHcx zI8k/3je1xonPQVuAZ/qouRYC0lEzkJQ/Nq0GdLwkVoNIGcqkAwr8tnHBj51BZqWc4Sagvz7pzqn 9X9qQ3L2jQ9gj3u7M6QT1e0/ad/6SE/5sbyQLUJ/txnFs/rnof69ELYGqF2fAScBcyRC23KGnE5l Q25M1ftaBPLL147Udv2Q97e8D83a7kv8L/4dDw2p6z+oIo7anknSBfIzSX7RuiJEdYGGhM6aII6A ZnUUiSJ+auO+gB1AfpLkmCSt4YtiPv1hOkPnMT90pEB/6IwnwGnAokB/JHWHdImdK68dMEY5xAvi DelVDnAC+HZsgqStmlpjZMupE8YrZezIyqa2pTrlA8zRXIDPApDuQCjal9KW4DsPYwoV+Z/0yjN2 PIUa4wOvgAygori94JVwugh1lIjJ5xNxajji22HPORLzwnDIAfAZYjWIdqQj8S34QMQNhL8lvuzv Cgk+F+xH07iShckPOyEC6RLFFw5rIEzxBIrXBiqLJYVNAdJJRa0vMV23EBQ/JlBUmpIdW0jaEdW1 w1xmTYhTih1hZZfZEShsKXHy2BF/3IMToK3Cge8cVw+S2raoU0OENDviiWNusB4RsBlV4S9sGxTN baZ/iuKtLPl8TW4v2HlWadxmZZdxu6j2Ky8sD7eJl4MB4nYkpDRu47BUbnfBMUcuO5zWlRTNZaZv snBQUWm+JpfHtX6oNC6zssu4DMUtJU4eLvfDPQwFiMsJkNK4TGtyX+qnbUT//vD3eJzG5LLy2g5l WwKfzr8l10+Z7imKs7LkU7K8lrw/Wh9KP7RHprU9I9QvD/AFaI6D6pNpDZe1CaVnfuRTsBZDvBbg 4EnI4ZDqkJih6RhyYTXuaxHIX16Hnftv1mJaI89+yPtbX8ujtuIJpK/lF7+WV15Ba3nlRXN2NdQr ORMxlLWW54S2PY1rGAGZrz+SukO6JI/+mCNv0nnSVWOx/3tZy2uf3aKlc+31SpmDs7KpXql++QBz ZM/5LADpDoSifSlt2VpeoYpRsFeevn0XroXakb5NOReyp7i9il5iVUR0LBJJfCIXivji1/IiCtbs iO+F5+n/ZA2P+jNmFxS1Zsd02kLwfa7ZGY2uLlSWvWBll9kLKG4pcfLYC0/cQyJA9mIhpDR7gcNS 7UUXHDPEvJ7sgKK5zPTte+Wy/uiaSuMyK7uMy1DcUuLk4bI/7mERQFw+BimNyzRnkNb3kz1ge3Ql vbfG9O975fb4aDeXVrV3KmVcz8ou4zYUupQ4ebg9GvfwI9Ab3KaHHcIhqW2LOhpPS+O2D47R3pq/ 6B/ZaUd+QMEeG8312Die7bHTOF7R/TnTy++V8/ZZ75XGeVZ2GeehuKXEycN56ovHAsT5KZDSOI/D UjnfBcfo4b6S2HNj+va9crlKI02hsvpvVnYZl6G8pcTJw2Vv3MNUgLicBCmNy9Te0vrvLjhmj6ev qa8myNo3y7rXxnTu++Hzp3ttlfvckrrX9mDoIdFz9JD/+v8eWZuQTWZ+XpG9ttk4SHttRyHVIQ05 vr4hN8HgvhaB/Hx9du5/ea+N2oon114bT+a9Nmp7NAXHJPn/fm6eV6r22uKgN6dxeccK9EdSd0iX 5NEfc+StBZAtMhb7aV+A9nBzgBPAp/v2ks+VIonIWQiKX4M3Qxo+UtO6BDlTgWRYvndpJK9rlcaD likzzihlTs7KLuvTRc1cKn7k6dMP4Q5qA4ng4S7I9ZDUtkWdDiKk9emROEYz8c89N/9TwVyd3sk0 FL2HSf0+9Rmy7LfRc/GUjs6hOT35eWI/5cFshKL23Zh+y8J5RaUxE0jaipK0HbGB8S23zbimFNvB yi6zHVDcUuLksR2zcA9VgRTYjGGQB6XYDpq3S7Md/jj297s1EbAQbOU+n+/MVpAkEPeJ9yW9rs90 VVEclyWfr2kHdms/c1GWHWBll9kBKHIpcfLYgWDcwwiA7MBaSGl2gHgrzQ544xh7Z8YQfrIr1Ndj 7ijifUn09UwPZeGmotJ8TY5fz20gVBbHWdllHIcClxInD8c9cQ/rAOL4NkhpHMdhqRzvgmMltY7P 9E1RPJUln6/J5W6CpkrjMiu7jMtQ4FLi5OXydtwHcZkWDP8tl21xLo3JTQEtoLg5+HSUFwN8uu4m ucbN9E0WDioqTclyWfL+3jbZ7rKpecIX14WL/54ST9USdW4I0PeUiJvkzBKOOr6a7OVAcp6Fg1P+ d5Qk136NkI4H+ALUbmgShbx7oYd8PueYftA1Mr86VKE7wiZAAGCGiwiCFEJSuliNMVVjNeR7X8cc +dD9UX607uuKvGkf6VP9k1xfRVKRk0W3vrbeXLX48rs78uiNdSZPpDcrNFp+Vm+orQhoOurGxe5v P9VzX8AOID9JckySpunlR33yy/SCzmP+ojoSJdaRhAIdCasRqyHfPpM5yiusIx2Rt+Ab1pHV4asU 8K023me/1TYlfokDNdy535o6Mflo971SpSvUnh3QfsshAyDvQdI7oPQfUwJdQjdtpl+YW8YwP5LE FNLvlgiLXUyBn3SzqL48Rdwt4Fu1KQet7gprLZDtu2yF6kcq/1l9ouoLeMxD3XohbA1k4cBfkItQ mQ3gB8e5qwbGla8aTK+a3IBAfmO5vp1Htr4f8v6W39Nk7cITyPOepvRv7qOKZPvmWin75v4JtOtT XPti6E/DAv2R1B3SJaaH8nLcGGVR//C97B0nZT0ULnqmnG+usbLRdKI65UMyR/MIPgtAugOhaF9K W/aeZqGKUbBXnnlkDq4lB230GpL+S1RL3F5FL7EGIjoWiSQ+kRuNeFne0yy8LwROF6wJF14jJj/1 JwTSJ0pXOKwhjqdj6JNEx0p6H4npvIWg+GdIFJXGDGXxcX9qADlTgWRYkc+i6IaXc132TDnfXmNl l9kTUTOXih957Ik/7kATjVkZdqQppIkUe0J6Lc2eeOIY20eqCn9h+8DGBMWtUxmiXB3g0zG95DoO 0z9F8VaWfMwEklwuSW6PmFlJadxmZZdxG0pcSpw83CZe2oq5LfgCt0E7qdzugmOOXIxzSbwHwvRN Fg4qKs3X5LJXP77SuMzKLuMyFLiUOHm43A/34CLmct8vcLn4b6815Wy5/vdpPM4gax8t6/sgTPcU xVlZ8ilZXkuOQWidSNnfXqM1PVozpzW94ZA057pqUF7nqkFYjeQGBPLLt5fzvazpyf/ttQoyvw/C /j+BSTRLofdBKkjMEU1wiIClWqlru8Xt7fBF53/6wzhN9p/5oSMFa8K0pucE0Joe+/ZaUd2hMDsX 83q51u2NcR3f25qesr6lROsbVDa1LdUpH2CObDqfBSDdgbI1vUIVUkJeefr2HFwTrenR91doTU/a 91dqIJ20OfhoHPve1/RI52UZCygqTcmOKSSff9h/NU9p74yzssvsSQkZh3+RrTz2ZALKy4UtoXfG 26JRpb0zTut00uxJPxwr+s0XQ8RVBeg86mcwnhD52Ro/2wtgYwZFrfkx/VQUr2XJ52tyv1GVqq7K +l4EK7uM+1DmUuLk4b4n7oE4T9x3/wL3cVgq97vgGE1ISmLNj+mbLBxUVJqvyeWKN3WUxmVWdhmX obylxMnD5X64B08xl8O+wOXi1/zsseb393of9d2y9tGyrvkx3VMUZ2XJp2R5/ema3wAt6d+AofUe 9l+qRqhfHuAL0PycbK2JGF9a62FtQumZH/kUrNnQmh99A4bW/DIh1ZHuqgFf/6rBSIPkBgTyy/ds 7vey5kdtxSt7jo90pEB/aM2PvgFDa37sGzBFdYfCTPfK1vwk5+hRcS+Et/2V8w0YVjaarmzND3VQ Gpw8ffsh3MB9cJG+ATMBjfpf/wYM029Z+n1FpSnZ8YOk7VjW7anwob9yvgHDyi6zHaXBauRfgzy2 YxayuA67Qe+StkajSnuX9N99A0bye1E0VyDQeJbGmyX97C7TVUVxXJZ8vqYd8NldxVVZdoCVXWYH oMilxMljB/xxD23QmGQHwr9gB9SQTto6vyeOfa1nd5n+ycJJRaX5mtxOP2egNG6zssu4XUqIjcuQ h9vEywgxt6O/wG1QXyq3u+CYI2dYIuv4TN8UxVNZ8vmaXF6cXFdpXGZll3EZClxKnLxcHivm8mQ5 uNwYX3z9J2v3sr5Tw/RNFg4qKs3X5LLH+dPC08kjlfL9VVZ2GZdLCZFxGfJw2R/nr0Sn+wCSvsP/ EZLatqhTQ8SXxtyeXDgXhe800/4Q1tlFvKbnZ9jae3HPzkxH2TFAce/LMf1TFG9lyadkuS25L3dp 33mh7bKxX9zrKf77PKqqlqh7Q6Bcoe86IcgZ9Mt0vHw40Mkm45hj/nedVCWe4TZCGh7gC1Bboklk 2usr7rluPeTzOcf0g3SO+bEuU/BdJ1pHrgicAvgApTtV8yz/qsEFPksv774O7RG6Im/aG/5U/yTX Pdk9lDa9MV1SwdUuTN7vgX1eb+g7YNkx40XfddKqZy/+Vo+k3pigYghoun/97P+/1ZHGUIr6aDt6 N5B9+0tYb3pVYT353hcxx90QB0jnvhcdkf/bX9J15NNvf5UuHaFvf5GOsG9/CeuF1RDWk+/5gqI6 0hFlCL5hO7JuxmmX4v5vRpb+pwk4Q3VD/Q89z1PUDWm6w6nVxEnOJD/XDynLntA1BwAZaENV4ANJ hGM1JhjEauyqq8XfVVeR/c63ri8tGlRyLe7ZFEXoi+HIXU5Vg+LSSZY2faFnmA4DZFuYvgjrjTQQ 1ttV10pfsfryrY9TGnn3FDaucawlTyD9m2Sy6Mvnxrc0TiE7Q/L68E6lSk/Int0B6J0nmmvZATSu GKc9Q2Wcdm9VRdqUb11HjO17CJ/ErXEpaR25ZdKl1OnIbeiEO3AfiABIR4ZoO6oP0a5SXpE6YlKL 4/SAb2W+42Zkao+qEDnyb0yYIwzvWt21oSB/jE4H6gg0RON18hsJ1Av8dQQVCvwWgvx5ih7SSMvT SFC+ID1PoKrqgLTWAI1l1CALuyifrLYUJvny2bHMCyO67SWJPmrcjwJVFZo/kDMRqBXkWfgaOp66 Td9BjSG4nbqd1vbH6cKAXrVceQJNdXN9zNcBKhfdyyeO4qZ06dSmkmZNTXgrtWvrSqpzEbjH08Cv 7/yWYyBUItzbuHApvxvcR0BtYEu3lhy3Oa7iu/7qCFcIbdsDiqYL5dI1VWnnbvIUijGnnWtLz+F9 HidZbdLZoxu732/tgV+s7bTKjVMdJ+xvPUhLc4rLDf4gk3KxyzfZaWnECpd14akFXH1/JykqpFNI /J+dho18OzC62547L/rGL/j9gUmLFtGNeqeNftNv68U/FrQK2Np0R4Dxnsj72eodkvy2Pt4/coql 6fzLTtFp0Xmvnj6+tPPgnmFPGi3225p0wLN8L2+L9FPNWyW23xbnOOZd7tMbh6epXk6Nerjrh7lp Wef/WDPqQkrvFj77Rr7Mbba0e4qPfbOZvdPHvB/e6NK7rOTfR7356/az+TuGXN4VNsYncOKbw146 +jXSR758YD5nqfPYOk7RbyPf5WUtanak86vo3KfXc5stf/v87smu3tfSxzqPfv/25dO8109ubm4x 7E9v/x0J+lFxS84diasb93JB5wkH6w99fifrZtj0JTWiFj7vkz4mesNJZOlkq2Mw0PnuPbv703Uv zvuh78wp6WM/fvDpwpt86Oji90/vnV5x8Ne+6dpI6jy02scP70dZ6l3eN+qC8dakQ2uG5ewb9Vq7 ch0HO4foty9y3zy9ftAv6bDdh1tHE27aj87uF+pz133skGtp0e96BYa+u7h14JGg1AdDkzPb6uw3 NKgwVSunzbTYdfuNt1qdWzPKymruwEFJxgk3xr7LDbsaH1h3eXxmzhHbBzsygzv8+KDuFZcM9+Af U24keDUwCDrtuzbFfUjTO9l2bhlpRzP8p6frBdl8yPae/me9nw9siwsxNbROTeg3+2Ki71nnqJeD DHP99x6uv++HdxqR1c4NuDW6pvaHOwYT2yxe8XD70iZtpmn5xUyan1sr13/R+3dZhrN+jrcZm2Cz dM3izkvKLZ537GDAooNrxjo8Ctw4PPdm15Wtlkd5vD+7y23jxfd5r+OO5LT2Hm3smnLXwTXzWu+o PeaNp6u5+BnoPnnot3bbTzvsrbr9kLzJs8+yqKmW24wqXAre8fGS4eyLwTuuv+q8InLz/a0Xg6td Op3Qf3rgxFYBHf0sG/vV9Jutf0Zv2on5Gd7+GU0yjH9cbaO7wGbG5szpgdNLb5LgAOh5WO6b53cv nh89+sM7UoRJB18/uXby1fzdmzJrPodSHkzuvFT75BLHFj67w2+H3s9etcJxdO7T4RuaQvebQ9tv OvR99ODc+kl3Ty6tG/sav1t/dGtouUXjHerZfEP9zkt81lzefAU0ezR16OXdEXcd0o9DWzP7trav YnDb9ozfbDde7801fuhj0rBxdQfbVxFjGnomel719na6iHRxvXv+WFv3otopTYfhT//nXN2222bh mRHbRnoIF0YfH3ff5+KKNnHafdNG23fImr7fuJbKDdD1fOyxBet+Mz0T5dFcqDfpXGL5M9v1KsfZ Z8zslWG8Xm1c7Fybbj2EDZOOjLF47nlKc9Vf7vr+z57lRF69eSTupLttU2//uf/bdm/dmnUrG494 E353HwyF5cuRV9PHjl3Sx6KyWkTeq8fPf+oxPGRQ8z/Pb6gzbUP84n4Hpk7puuza3hERV2ufzbEa lqWXLFy7KDNt03aTusfOnbtybky2bRSyXRN+x8J0yb6zh4bM4/8J3g+9E9pkwKz2NY7PyIM5Grr4 yJkRa4OuxJ/zm91t+ZvkXS7G8SlvVi++2znv6r5Rw4YGjD1g42vhljq7915U/AjHpUu2pRwxXm9y 7rHforYznYjIzhcaVgoedDwM5iJ4pJ3L298MeizWuERWq8XBs/1md4uvWuHSttBogeviusnLInmj HlTUTvBp7n3t/rjLw1x+W003c9ljae6htOvt6jqPceiT0L583tuXD8O0JiX8/Ky2X339S4+O6FTT X70sMjTkhenttwPz/ryyZ+DA+TUtt7R331j+Us6slD7X7Dc26tDbeZu6S8ewnsGjlgQb6PYwtazV rlvb4Mm1lkRE9Z7vNb/Pg+EhY4drDWzbd1C0h5XxpW1/UNlVU4N3azqtDBeue2if0Xb9r6qtb2VM Du5s0y5tIPIPNbtlcbtLjdFHKzQ+O0e78jgj64wOt0+m6aqcGHXAeP3Ks/tq3tDXsTN3n+vQZOZx 9yM2M89NX3ZrwpQzB9wTHqx21r3IC6+W3XR/2mRb7bCpM7o0ypo0d4PZ8o/n1nc/EnTzyc+Vkrb+ WGNzZmvBtLnr50dfyTVy7caPGndktn3DD2bu4/+sedNhscmuF4E9cgKcj9jHbTJ3CvLTCnzvfu1w hP9NnPZbTsP6W7ZHbXZXORlcrXJgRv/ZM2KO3tjluy781ZTqPpq7fxmwI7BbUM8Bz3+gysi6u7Gz /ezT0b0qanrPTJ+UdvzlwwvlRzXMSn/k4m9X7l7auZndfW9VsOx2Iq3l7g6CKu/WPvn5/p7zG7T5 7z4Mtw7bZP2734mj4b842nWztWqcal/z1PGn/7u+ydB3RUbFZMOelt2MbGZuDCw379qUtnkpTya8 jN6jW7nJGD/XVUdfzXm8f/OWwNmxP2fqN1sw9eCZvdsCpvr1vPrzXIsbpwZN00sNcOCFNp8e6Dgx 5m7jxS7m0emX7Sr173r16TBNq3kBWXtvLMzZkBlesZ7wzLNTa3J8amnObOR2TdNuh7rHBasmri0u LG9ndflQ+2sJwxYbNjnWalor/aiOukvqJtc7E5b22uviysxdz3o3a2abVLemlVEz59frxj1tfvW2 jYm1XZvF87KPHHZq9Tb6F9O5HZwtOwx6lFyDnzbSYVjIvLArs0xdgvwSjM/kWbg32/ZrbPX68xJn up270uCw9eCPPp1HW+y9qh9v0dl79dnNi+dmP2hxtVetRdUW3Elxb+aR53Fk4sLsBX/sP33Xyjui ebfU1Ljeq4P8jiftPGx3NGuKZfXOaxa17R6c+YvDwNSJmy+dveXV4ciIk/ctM/cdtxnYvHtGbqXN f3ErG/ZNbdM0bGmHgR7GZ1yO5WoMXprRJPL4vaHXewb4LLu55ekfOZGdjr8+9Lp6zd8n7r6zINWg XXOzg6pT7DwiErZ5Nf9hbsb5xYaLqvZoUG78m4UGk+MqBFilV7bqVH7Rzbo2XapEXKtvWfG0XoS9 q7vLGdvW02Irpp9cOTZkmUXeDtthO/RnN/BulhYW7NEjb2TKmk28+GPrX7gEnW51omWP9n5NOt5e +PB+3Ve6/rtr7E7MHBGzPW70jgMBrl6DDw8eold93uQqFs39Ys9beefMWNWt0pWbz15rut0d5L4v qkZ8W/0xHqnb/f7KHm/zMjo3a+cBM1evmtNsxm6P5Le+1yjO6l0n+2m/Gu3b3XOnzco7hi9r33nU dJt/NeOE58Z7u6b26LBxUGTfsMNHrmTntjjrPb/O/YST7vVHPotfndYs7/y2+GWHHrTKMOxV3SJq ReKulGmJ3a9c8rmYvMk6+q9ef9glb1s4LrrXlECffZnDXeaF6OzQWWaTeF+zcciAYwnvgrzqdqy0 MejPYac+bHzX4opbZI2XVednV1rUcKFjG7tliywGDro+Qniyc+15sXeTtnR7OHi/tdmvdO0aq6L6 /OE80M6d1yfd56J/80YHjQTDKtiYH3AcVnuJXauuExKb1z3zzOOQ5qsRhiGrFpnb1mtseMww6vmB Wt4L54S03DVom2cjrfLand+Ehu/WCVz2/sGHQHfHmb5Tfq3468YRbfyswsNXHlv53sFyZ8ZqV43e nd/bD/HflbHOs07PZXP29Py1XOfev77fHVbxfuzGXqOj52vcDq5w8072wdZ5C4bmGC+qpj/HYuer auXOhmd7zbX43dlSNTHiWOQIt81ON0+EWuolV1t9bl2rFXMfb60zZH258W5Ttc5GWV7xMbbouTd2 bRONM2OOdZ/6rMP7WiusKy13eevitOqaMC+5zorTx+78pfX8im8NG/+txuPjfzTZe9RjZJ0OVpNe DZtRcYHgh1Xj+g2+dzNy/rGH3uGnJ735KevobN8zxuMbnVwy0+06f1nQnOMd8iZFPnMP/N9Zvedp lQ9XvJN9JKP1y7uJWw69CT7q1tf3ufH4tM7nnDo0aT9ouf28Mdd0E9qnBN1osnp+2z+r/pETm7Cw /LQzXm+9QyxTWw01amwetT/y+RFXvVNZ7Vf9Gi3sdWxTUP1FjcsZX4g6m2ZzpbXj2QORc22v9+41 5da94yGuGtv4a01t1nlvt9Jv9CDbfdEfNjpzq9icaryNF4s76RaQ1vmnLmGBt5/zJ2V55czNFHR9 8izryKq+He4fnTHj8cQdP4evnb52S9yUWe02Tu9Xa9iHqzm9OySu8wyO059wd8I0q+hHs59P3JL1 el2r07XDFua4122+EZk0CdEcsjdkzGM7o2bn/RZNntZ01shRc9I8Ho90iB2/KvvF/OCDgzYtTX22 PeSZp/+kbJ/jx676jDa5tH224e4U80vTbV4fSnFNDN+8tfelG/zEuevbBo1q0+pBrOPbkO3XB9rX P3O+noPvUNMta4ekpk7tP7J9xE+dH16+rJs3eM/0Bk9ML42KGPOotf8qr2Qv/tph5S3iNnetFuER rnku9Ur1n6oltzlxb0nOjMz2cyd3X3RuVoTehpftkqYmDtyzo8XGzHg7xw23NSev2lxr9u0PVdQv Nb2akn3c/kLNFz3D91ywm9i+Tut9W0LWDjm9MD5rmpbK/b4NDjfzabZvddC8ihoBozaGjViVmGx2 Y8I1p04/dKy24mHbneH3ak2+cMis1cS8+WGJDgHLVoUMd1PPXnfbc2RQUnkL+/B7FbRaXe+29oV7 Rs3mdbr0Crpia9o4ZPCuiZa2V/6XG3BhemX33kardtsmTzq1q+nLpMF33rn/bvZTUN9c/ZoRC3tN 0bo4IXOQ/YHu2v2uz/DbMO7wTM0PZhkpEz1fTP6rV9BtczfDC61vT3r4xt+Bt7tu7w7jrVOGVDFw rL9eV/9GKiYusYviU3tMP7pr89qxMzzPVCp3+N2qv3qtv7uhSZZNwGL9YVfCRoY6t//B8UCk08Sc 82+f9lyVeU93dc+Uy24uPg72t5ffWdqFz3e4U+F+YrDd5WZjhvW0npAYdNTXY8GmPybdaNAjKfOA XQvLKA//5pNqrYvq4TFis4NZrfKV7dTa/LHs8IhJGc+CLqQkrdpUx6v+lrRmwtVv5q9tMKJGr1vN yps+8Z22c6TKEtee7c4/nx1n2Wj8sXEbHxvtsJh9v92lqGrWLuN6as9v16Kb7o68tON+gR0dO9vq TDgh7Dpi4u35eyw9tljMvp2hdb3SLx3s7vzUKbpBq9EbXn4cfNvYKXfxzWbVHTpGNDTbZH+8sfqi e422ZKUm765vs1N3z/xRA7iZK3YfrTBmxv7D66v1CFk79nH4XBs7zfTavXqabW0+e9Udr5yUGTp1 xxuor/3rbKOl9tXnNHvpuMnDLjzxhXXt4w/QBzje+bNRotmQfY1Tl2QPHzZjSO0+SZnudayvxHhE nr5VqcPcgQ92/7+964CPqtj6s5tK6maTTS+7m2w69YEGBFxJ4CkJRRIQQm9qAFEQBFEUUESKFCGg IihowNBDBwERlfYQFZQi4kMRpAlSFClPvjPl7t57996t1xj8dn6/u9POnDn/OdNn7t2KTi8/Pe3y iBO3Pn9ttml8/4efHXD4z3mvfzOx6GpxZdCQSQntzzVY0f+22bdoye0jWZsnVVS+XDmu1ul+w405 w7969cn7/CpXzN679lrjNSUhi/a+sKRO3ZMrNhYN6juwmz9I+MD+b/ZFvjmx9ct5P3drXRk8uXaj 2VUDvx+yz2dc9ITz9Y1N+uR/t2XBG/WjL47aXLHvtbPf7+zf51ZUca3iVa1nlN0oGBk5LLXFyVeG 9N347EjTkOAJO1+Ymtp2/vx1fU6cbV3UfUXRT80aTbk/7sMpz77x08ITR3ddr3yi0Y47C4sHVjaI eHFzq05ZDXb2qExYMPfhgd16di3rmF4ROadsyab07G2np/drFDZ71pxO/T97/IkBuz/f8Fr9ihGT Lv8QtaxDv00bP65qNarv6Q1DC+8tOVT/znaVpvPGF+oUPfdg055HDry/t8miU59PHDGlctnT7UxF n2W39K8ccrRz6tb6ve8zXR54J3ZB+eYRo3e1667+ZIDPU09f7dq36OzyIdrSZZ369b5eNHvzQ/mv Ddu5TL1obnnOtN8PD0sqvvRd+MFfUhusa1A5bO1H6+cGVn4wo94vpZ9krW61cmHn5bvHBEWMem8A zOV2bl5xq+TR0optU2fPKryv7cqvb06fVvpxSZNve6a+MDaww9mBPfefafzrcyefXzhlZHxEzvXo Xfs7NFuT33ndbt/Rw7Pj7h0fPbVOxIreW6aXtC9VDdb3Td/ZMPZY5R95HafUvzgwc/nkDsmjr5wd 9Vhap6HPT9+2P6ei/j2r85e+XXz2atfzyb0DA+Y+B73DoBb91s3aMXFVlU5/Tf3K2V03NHGvT+r0 VUnLc6N++WL4pT8Gj1r80Lmb9UL3Nvb3nbn337cO3UzeW3lk3W6zrv6yxCX64oLpw9Y9/sbUg6sP GH9de+ngqSm7pm78YlOPiMzKgf2bNF/v5zN6V0nyteTf919seeibt9pcfub913u1ONh4wan9fS+0 OHom7EDFlF2LKs/3a/LYvtiifZdvLZ93fHJI66td19YpHrm+xcq+2Su/fOXtyK7nunUZ+X1s3YW9 isr/M2d08drXu2433gr48ULr8v5LRjzzZWjI1ucrb5e+eSX1xb31/eKfPn3lrex31vWdMW/G+QNl /31j05rYtxMnDS861bh8/NmZPfdu6lCYNSolIeH4alPu6jHdoiZm7/86cuGUxS0yWmZfWhC9aPyM 5jeKuj8zfkTFlQ1rThqju5jLHsg8tORW/omBZ8ZPufpFl5EvDHr/cIN3O9VNbVNetvyrK8tX7VYP HTL628Ojfpx1rXDmFwvOJk75oNbsC+03RRxKjNzS3VCyeKTu0w5Vu/efuTLr8xvDDt0XUAyN8ox/ 9oUzJUNGV1z87Uiti7V7g7yj3lyUva9k8G3DsM+X115gTL1SErfuyeXnP1q003hrwnctPil+JLr0 i5JNO67Uv6dJx0L/igkH43sWfKuefCFl6MMXL9w3fOCC7cdKbpS06nFh1BLzsW73dr216I1rPe77 MKbLYGPprdn1xtStvbakS7vfFtVpf6PDqYVLt454pu7qDjmtHnk86+XCTh36Nxt+uOjq6CGbVm3d 8OiH0XFXeywJrNxbtdbvpd63+3b7vvijOrW7VSbPCVVdfLP75GXXBmyqf7zuzn/nFZYWvDuhvPHa qpVF737z6MWB+14yrRv04Kmc2rnHm3yo63J4zNb1q8cX3l9v/o/FI+Z09q28GNcpIePVeuuaNF37 7SO9z6s0f86/2ebwzT4Hso4s3936pd++rXpj3KOfDFvXZkydZ40XKz9489XT8aXLlj6y8s/Fy3o/ O3Bx7dZ912xdUfsYEJcv2PneB/Xey/s874mQx4LLR664UXvzyrWrRp0sz+3YtmjXkPUhFVHzvrj+ feqHUXHHa3d8f6OxfcSEhbWO5m2ddbZp3NgtJfsqFwddq3Ozc+fOS7pVnf1uQd+DdR47UHn6ats9 dVouenDSKu0HxnpVx0Y0bXW43dIlxWeHv7kiOPTjqZWv9p7TaG3Jn7DouDF19AuRvp1uvoOOJMcM vQjdTeDQjv4Lv/2wNHr2Z0/1yErqcm7koB9urDtfdWZc2J7I4KttknYN23LtUOV3DRbUC1VPur67 TsvZkzuG5PjOTrh9feL27Wk7DmyqOtst+5f2rZ+Mm9rmRq+Rf65tnjti69SKHttmzk2dvHL5jbZd e22YOu27rrN/nPTA0owzyee2Rnc/vCd/YvtPBvaDlpe4csitg9/Urkg6Pc2wd9XwoJips1c81rxo 8J/NH9h3ZP5/t27sOuOBR6633vXB85fTnjp7u/0b46oCbxWv1LWryO/1qyZ219lvS0Y16DGhTeHb CX2HT/Q/OKR0+4FNTdZfP7zjl9J+07tG6t6aer3x4nb9fJajcf8Z/tWRVkfyzQ03rdX47Dh3/uML A05Vbds1MGP9hk8vtvQv2fbU7VlLGjY+2Ght+0aDRw43nWxYNuSVd8sm1kuq6Hiw43unOl7/V/ng /cOaX53+3LW0Rat27++15Ztv/jexzc8N9pTeV/X2W23bb85fmB9V8U7rx4r6X7r1e9+in39IOn7y +c5hk3MXfvHp6ql99xW+9sCM3yqbvjLyZMnFvNDSM1W6+bPrxbyiOz2+zeVzl5b3nmF6NWNYcfnE y19HHV/w3TD1sSnv3VzYKa/tS/8rNhcmNR8z65GNrz29+3bM5Fyf8vsTZ758z/tXRjyQM/Otrx/9 cOXVlwZX7I1eXP+3SWWJLUsPGOeeG7umY+7qsF/VrX1LbkaXP7SgS5X5Zp3jcyY03NKjrGjrvlYn xv60YU+bI3NfrNodjcobmRosm7Zr6IXfFtWOPqqefquZaVbz/7S59k6fHwfWOtTs1Pkf993BdCdX v717c4+HHtn8zJmX15e91HK9ZujyiFZf+0Yk5eX1G/Sv5kWfTzv77Vst5zw6Knf1+PbawjmnVlwe OSiuc7/gsZ2yMuLfnDpn/8d52w6v61r4qbGrpnthx5vxZXlX+jQGAuOpSSkDuk37ZfSze15ftTu6 YGO3lrO1HQZdbrT21Udx/EuN1/yxzi8/ZM6d6WdGH0yePGjBibhPh087E9jb2HTS9v6wMfRz3s8/ 5F2+8nr/PnfjRihv3zZrwid30KAD7cOONX6oDA4t0EMt2xasaNFrHAo0Bwfis1V8nsOdk4jPaBLM QeaGEJ8JD36HFJ+pgfmIPl3yEXo8H9/xwAYfnuB/fDPAbyA8yfBg3vh/xqIg4UCwO4KtgzB8toPz 4rsfBv+U3Vb6AUCPv3kTC/YTLGMgoYc0YLeH5zt4ciG+1y5wgNGjfeT+5Rvw3zZYZnKgA7aKSIQp rKa21Yn/XwpfjUDvvPMOOnjwIFq8eDEqLS1Fzz//PKpbty6KjY1FOp0OhYSEoKSkJDRu3DiUmpqK Jk2ahE6fPo02bdqEysvLUVVVFfr999/R0aNH0f79+9GVK1dQXl4e2rBhA8rMzEQzZsxAO3bsQHv2 7EFLly5FHTt2RBcuXEDDhg1DN2/eRE2bNkX5+fnowQcfRGVlZahdu3aoZ8+eqGHDhmjw4MHoxIkT qKCgAMv6zzSgk38mMEDlxXZ3qtarN6/ealoJeOtkTdOIc/J49eZcOdU0Kq/eappGnJPHqzfnyqmm UXn1VtM04pw8Xr05V041jcqrt5qmEefk8erNuXKqaVRevdU0jTgnj1dvzpVTTaPy6q2macQ5ebx6 c66cahqVV281TSPOyePVm3PlVNOovHqraRpxTh6v3pwrp5pG5dVbTdOIc/J49eZcOdU0Kq/eFNBI ji4pIjI5OTkyIkmniVKAoWMW1aS3JHw5kWdSYhyL5jEF5OcxD8cM9BiWmjPYE+s4kccUkI3HPBwz 0FqBUYDwJQ3HqTylqB5ssWJsahTqqeSO01cLNg1XISE3VjFRvGPZPKWoFmx+BBFkRQ2Gh1COp6I7 TA+5OaTxmCADY4NL1/qYmBi9hiH185itIwbVgS2K1ESUwmRh3kxHonkcXx3Ykig2i6KoGmsZPRbe AYPqwEZGAF4DE/sdiOh2tILYtMEoUyMliIk0txBLVDTtWiItAXxHhDaR7/XErRi2HPz6Bv6Yp42J CibYrO0LPs6H+5YAG0qVKjoQeKRJlpAEtYMgYOWAwrlo/HIK6QxtBcuhMTzUqYQ01Yaz0YC5wBNn E+VOgELYQChARsChZJEckSQK+VqDDQRbsHg1kASfRWNMFJm1KIItJpWDRtClC3vAcIIE8Wb+ZITD Hz8XmFArE/hwuhi4gNQ5jxLYcmABQ8qb/iAUL5hzpBBsWTx5kgg5SuIFqTTQXq1M4B/6RMj5tE66 FcAWzQkFvDh0EVz2Om0aCUXWrkSl0tOgVB9rGURY03I8dBwPd23PsSUyqeAFuTgOHUJaLJBGGw8h VEkJPAnhTTgMAKKyfPQkPNwKjavfni+DgD8vUzecXIETODEpFqAGVSJ4OJHVSDCacWseTOAPVRNe wSPaghcCdSoOJxJWWtdlA+auJ+KloB081gEdcuEFRiYl3kUgTvwDbyjyEqn8+TEolVZbTEX6R1A/ 4yFIxGfglNtTbGxFjYK5puNLRmpS4XjIkEkgDVePGQSG1KIoXw6cZ4s8T7GRDl6NYmmzwQBi4NOb FlTggBwQMoi6dDzUC8mAzmRhoqlFWNgME4ICcuiBHBzS2CNgc3x/Po1lIKfAMpM5nfKJdH74c6XW UoD/kOFFa0gMvH/LC3PZ6Sk2VRgWjzfJxxJomczAPD1ROJDzBYyKwPCojuFvZ/lRyVRv6fwwl90e Y/OhUhgEOUOVw4Br+fAmIxyBng9Wr6XzLK4r4ohYiXm2GeYxNjapR5a2QsSDkQGFCbp9JnVSmHit kIzf80bCgTqOFpjtbJrD7pTtMTZVAJWD31og56hEyTLHozu80S4ULdKgFZaMKhDzRChCSOeqz3Ns GtbsReJJChJJaR3pgw5wKEySh/OBnmNTpVPFGRxn6kd7DhTogJS1Nqk67SClIFoBbPA9BNuuUpAJ 81jmLKL6K6Zl3ZN1E0JM4KRfAWyc4rg9OrmcE6jWYKC3P2pxvZOnalMpgY3OKcXduBiiZQqcxh8E xFTgJ6tytcOKK5FSFKQENk6aEHtCc6tqyxasSBCLly4HHZWUhdyOQxFstBapUbh8Rtw8DIVFCwZv 2xTxtGtyVMNtE9qEKIJNRXsJ+elfVDZra2SGGZwanijb5OjCQjSJsxHbqQBlsNFFidy0PRGWnkQZ ZOoIbmwyZbZY06ja7FQBp3BhIsjFaVp5QlaPkFSD84NZlhUZnRnDnAPmZH5S5LkUm3C9J5+zvRhF sNF+wmYuhfONqyWBjNNfLYk9VrYCkNqgtodDKk4JbHTwVqNsmww0GXLIGLwMjU0asuUHirWNsSF1 EKAENnKWoUa2QwBMH7nayHNAoDVUuEeEheU6Xf6mnwMQMtEKYIP1DGhBYsuNG9JI58jwIEO0Xzbe 2bM0PJvtcVl+MhBkgxXARhYkEscy3MYcwA5J0DCgtFHmJEAHQ9FBjykWLpNEibaPxERO+D3HxhWz eMSyblUGki4jgKJBrBZGBHKatJmp6EmMZdfLCRTSJO5gi9FEx/kkBKT7Z5hyczNCaCkLtjsgL05r 1o0QNn5blpyw4qFJbTSXQMMzYjQavT5GXGjSQCRCXccWiVsL3+C6ZbOOtFTBDOualS70rF2gHnpR klh8kcbIFEdzCQ7LyjBoI6OtjCRwSAVBcqlg+TCyK0CbCu/XZptAUmq2nWzd0rKUgGg9w028+EUI DVNqrJeX1PV5CZ2C8GCRkg8WZqHhoPkIw8kNBbUVG5uIWlXJyKNoemEusCEo5ObI56remNTCXNX0 2MaaFxvxbCYXxlwQWjAss7U4/JGuwISSyirOhX8+KSCX9riKje6ugXwCoxa2d7qXI3UfzYjPdiL4 olAUXO/JxXBHKAJ0rq7pICuOn1M227GDZPGppowUMKbUrHRhMzey3XyRLij/nGhhOahYPRVdpQF9 Cg1GaW+BKCE9MJAIlQ8izQ1laez1zOQ4G1QrRCzHU8/apmgQ0fn5RWKT7JNgyDRB34yxpcoxkQx3 ERud7AmOJWzZki04fo9hS8IPYTN/+7uRZPxAkosoPi+B20VsbBEqsTaxcqWHay7s5WQRnbDDSSsf gYtdbRBurQsobD0uYmPVTerQycKbTQcjLAGOHGzWZjOv5KeLpqO83ULl02O3i9hIr2a/arBqa7+K CcVg+8gxwlCBj454KEEQ6MDjIjbSqdm/JM6qpNZBxvxoMg1x0MOTaatro7eL2JzIganWbrXlAwM3 27y1WcnxyegNHEcnCfwUrtZJ2hX725vYxZKewSUhVHRksdvDsztgAuEdeFzTm56NRUgrGoCtubCG Ybt3YiWxdVHBRbMbAVkOmcbJ74AKiJnHNWzcVAhShWqk2MFdIKpa0UgsTWsJZT28DEuVypetBgVT UUtqOYdr2KAKsxkepJPePfWlnbXMzqqMGIk0ka9ktDEyDXIj+bq23ewiNhiKrOgyw7W2Y2kEFdOV rgR3Jlh04SSa4dQkQJaWPGtJopcJdBGbSgdrZZoTQqmGQJSVIKpI5Caos3NJTig94Wm7n6dLMGWS hsa05tpbPK5iU6mSYA2G0SGUnZ4KTlF+ZHYIfxjOie2UzcZ70Rm/FjbDMtPpOgHnhwKcm31zWUIK zum0nUR0h5DBgPt70Zs1yuktABdcuoHqDSMT1RCH8rqDTaXSpeN8QX0Ym1BHirU3okuaB84q3DWd YeCQyiF+KQI9rjC05Ql37lk/CZciXTCsnxRcSdGRZo0zgZadbG+2IJcRJJSLchSexG04CvpEDW2M oqbjgJfU+JbEYQsOsO2NHfCj0R5ggzcVKA6Bjti8xOBU7hwRnZcIb92Ryo1HUXdURhh7hI3NcYWL Knfmk4FYR6LlBdOlax0uV1ieY2Ndt3A5o9Q6gOw6oWCBtK55PNKbKoiUt3BLlPULQsD2hWLbyMJ5 mhuLGlEunmEjY4+oLjFlerzulio3kfAOvJ5hI7eVxQsPsusv2mG1KwVMUnFz8xcQ6WmgK+oXpAeP Z9jIJEQtusfPNhVixVnJ+mnvI9rnYt2koA+W5SAd4Rk21lEmCHnTjQfx0Y6QhudLphoSXbtjw4Lr sxErZ8+wqSiMNCs/7GJ3BF3cVxYd+dBtBte2JoRieFgnc2iDF6EwklC16Kw3KVyrEWVOvOzORZBw iGaXMu1uD0lx44d5pDfasqAbELUKuHtBFkH8i0twxVDyBJtePRSf43C6DxJx5ovu0O0JNnZ2JnGq QcYGCLfumpCWKbHdAYfeUAxqm0sJdMgDFq5NTAV4PcAG6yssFuTP1w/hrmESW8GxA4140f4YB83m CwS0TmLmoo5KIL19j/vYYAnHoFm1Y8mL9n082Kz6itogrZBAFmlJyTmslcLABblqu40NDkAptGDJ 3SmmVIRSWC+eysh5vYOe8RC+isMhSOIycG2jnEsOtrvYMrhalyYzUefuJHAtRs8lsGiZ6Ra0JpyR cNJpyOoAV8tMLsg1201sbIPG3tUBhh5Ei43AMvly4GjXFxFr0UuGjMhGfy6Je+Dcw0bHJBDbphfh ickkAyoUr4W1OZ02glejyiEvorLmKq01wsjAgRMuNXiZ2HO6hY11I+K3hsT5cB0pRocCDZGcssNA ZUxpEBUgTsb3WzobAz/USTdk4iSllcySoaXpWOMELmhRtAfBjUbgJiojobY9pICFltOcG0MB5Cjg 5YTHyGXneFjVmCzgGBqBBa9hSk7D+EKwsUByTsOnk3C7gU3PsDmGBvlFBln1JcCFNRnkQGlEXk5z Bgnp7Qe5gY2eBKpF6y25bIw+IVLoICzERzg9luNAVjtSt6HlEnDh7mBjU+Esjocjm7wfwAcIbpkT LilWdBNM8pBHitwa5g42ugUketVelegfZpKbtcckhqYGW5oe9I2JMiO+ShMZJ4oie3m2FzStEGRd bmGjM1zEW3LlhOOaZ3eTJIfctIA2Z+9CAlQJQK7jicv2ciVmnDwiaSewko6wG8oWn2zkztGmYpGI 2HKaU+loGkAWAuO4jCHDO7BK89NzFGS7U3xYxEXat93DxlocrEygtpE7vqwPlO2q2bVDgJYhqnM8 +djMBYhgjp1M4NG1jj1V89KLnO5hU5GtKXj/DsYvMLzOXaZaWqEZRALwvNzkGbPDbNMSoqNYRiYe mdNOYOE0LY8wmo1xAlwEovREjLU16UjGN0HEDMPjsuG3QJ4Y9p2Q2j6BTGw2X1lcQTNwBps0MZyM wm1xPp3ReumesKE/NBf7c04+F4HbXWy0+2JS4PKFLydY1ltZNr0FjoK3wmzCLbL4hjGtoXgYLIQF h4KdG+QtzJgD+IiDnPNz7Z60DJQZARshMYGcfDaXsGFLAXoR0WYJLyOuPkIjM0bBggEMMGa6c3IG xGNHncDEJsy5AFjoUBMfwL1hGcVNjQGHiImvIVN+1ZBjLZQUoiK9H6+TQgYRL2e97mPDq2K8KtPw s2IrO6iAom1iPpHYze5u41obYInTR4bDmxHYuP3xGUhrYeeqQ6PT2yTRctUyxSZKNoCe2GFoItXq 4sLj0wPkx0NZjjTCE2ySrOHDb7iZSLzEKEmOA8mRDSQJkdwxk03mMEJxbHDAT7A5tbqj4umJrhFt ag4ldp5AeWzsDN6V0ZaM7O7u1MljVR4bOzgTDElRCSnpCckRiTl6XWJEckJ2grCh0pNWt/sMOXTK YyMzQOHZhRH6eGLCyLwaOwW9KztadrvTkAEH2cjEuBlspF8JNfCTs0MZ3BNy47FgU5K8wCT+ZhCf gXtuxbFpaMfA783ZbJLOMuiv8BtyOtr9RLgHQTaV4tgk7vTS5SUfGmiQP3Gh4F0Z7mXx8CMUx8bu T/JmxTm0IkJOWD30FyzekoDVY94RD19Et92KYyMH+YI7lexAG2NjBqtQMJUiB1gyxzluQ1NBbu4n lkpJr3PxViV0yQ1Xf/U5Ol9fX10OfEKVgNNakxP4Lr7dZk0t51IcWzqpeNaLM9yy1GCVgKgWaqV1 HKCJlB7gFMdGjvF5PQURG4DwB694qjjrdJoq26UL8taiknUpjo0O3bnctIQuYUUzfHr4zZ2ogmzk RXxk750VWQB2IhTHRjcWuA1UPesjc4UiZFLFsVrpSy8HC3UrTOCWT3Fslh0tlAX3gEgNhRrJGxKw mBxkE7zSocUTMtK5iK4XuYWHn0hxbPRbRriTB0OBSuzc0a1IOMXPwmQYGU7Ab5N8Id10A2c3U8ok w7s+VFYsLRUa1CM21kHPSiyYY4oTuOFXHJsKtvKs6LDg/M7eIqFeSIO1bFJYbcqP3SB9Itmksuoj woKI56AdKCUCYChF9pSEl8g1J3B1LYFT1LoALC6rkQHSScg9cqJWoAwVdTbSSVwMBb4upnCO3BiR idGBSZNLEAvgCYUHrzfI8SbhwNxuvAeRMRHZsP0tfySlh21yFGTgNm49yEkm6V+IDeeYo5HJlwQn RrqyY2SPk2TcX4xNMs/qCvRiq66SVjYfr96ULc/q4ubVW3WVtLL5ePWmbHlWFzev3qqrpJXNx6s3 Zcuzurh59VZdJa1sPl69KVue1cXNq7fqKmll8/HqTdnyrC5uXr1VV0krm49Xb8qWZ3Vx8+qtukpa 2Xy8elO2PKuLm1dv1VXSyubj1Zuy5Vld3Lx6q66SVjYfr96ULc/q4ubVW3WVtLL5ePWmbHlWFzev 3qqrpJXN5x+uN4D3jzXcBdV/nA0a42ES+ngRd6WThwZXTB3+sZgaj8giqcDBiQ2BzAlfetQiFdIm oHBDZrgpPAg+k8NR1VAbpYYF1gqOD0FppiyUG5KVkuUfaMqgb5aAyDxs2iiNVuWj12tVSSrfaFWg iryVVkNhEbGQKT0lPSDdEOuflokyMtNDY9NTMtPpuyRCbBkpOZGqjBS9nypDn+1rvBuwxQerw9Tp QfBPmkidGoRCgoODURD7MJFAbyajb7Iqw6jzU6XoDXcDNkEj43m4qsark0k+yZGq6NDE5LsEG1zP N6Xj/0VEmWmZ/hnp8OeIJlN6Rjb/jSAGE74lqYlQaeHrXyr/qABddAz74BFXCjXPRj5x4XGhcXHx Pj5+keEJAYmBPuF+4QmW15KteqPvIVhU6x+gsnQ4NQ8WkQjVCkJB0MRqhaiDQ4KDgkPV0PKCpdob aXv0TQv4+xTk4+tnGR5qKDaRNixq4cTl6Y0LojamFIbcdb67H4F8kf/DsRkBH/4K4R0wrcA+Ai/F 7YOnZZtWOdlm6GkhDN55Qm0MpsZgEYPdy2fOyh/6sK4gzUzT44gcnjvZ7E/44nCD2c/iDjSH4P9z Q+QNR832YzgejAae+8ljzihAY2oXNDSHWNIkm2tZ3M7IZDAHSNIX8TBg9zKGgc8ToTFYDmasbmdo 0s0UiC9LbRL5U8w+FrmMZl+Lm49PTnbgnM/YgqXJvzx/TP7FNckFQWY0htPRkSNH7uB3GrH56ViL bZFfj70f7OaZ4Mc6xnGYFj+AsxmxRG7cjWXAEwsPxwv4Eir8ZiPHh3MHAqNOEF4PU0CCHsBgJtjP gQ19NgrRXDKFaCoyasfhB7svmbi08C7hGM4NpAQHk+0BzI6aMRY3lg3X0V7AvwQecR0FFneV7gLN SN0U8NSDR83awlRwY7N0SXZTjJd7cBhHA847gWZ/nwfBgdPjcFzWfIN1j/2sDmzDblwnsE0M7ASN BYcO2qkGbF8S6Fz96Am0efBg2bCNDWfjShBLg2x+OV3jdJwb5LbUnzsQ3h0iy0G3o8HGmMR1B/u5 tO7Un0zMEx4sg5G5LX0f+PfBc/fUK2F9r/jyrfzIXYkFvmaKEaAgAzyB8CQyuxBsMzz14MHlq4cH ips8GrA5Mw8KaD0uJGY4P6//ELQ1Lm+cBJevhqXDVhA8GuxgpgPYT0GmmPYCFD4Xju3pWBgwvshP W4LK0BOoP3oapGwL9giwO6AnIaw3Ggw0f7xISMnPn43G9cb+mws75bV96X/F8G3W5tbY/5+ufs8Q 1VvaGi7vaHiwfnAb1TI3LnLsx+Fg1CXwg597IKIPJLof7BFg4/Rig9MWiQJxe8KmPYRjPWH9c20W PnE4xl4b1APDKHhs26Bw/OPqW7bZOkcB1oI6CdkSoxRNupnWY1/GV9nxXSj7yi/f+dvaMpc31re3 LTNl/82Wp23ZDG0Kt+XWYLvblvGEET4goHhb5uqbUu3UGT7V2ZbLhlX8bW2Zy9vblv/mBszL3pO2 3Bn4FLK23MNOW8b6tjcu3wszQDwuuzI2T4H8xsDjaGzm6pwz7VApmr+2PQvnHgNC5udfTkMFgWbP 1m+5UP56ePD6DesLm/SZe5p9NnpsM2wXfB3YHH8MRrxGMwBdIDx94MHjM6jEqXV9T6DLgwfnhW1s ONudddsjkD4NngdBgABgWgR2NNiY/7yomfp5UfcYuHmfp2s1vO4vAP558NjWP+HcCUiJyTY7nhtW d73ZEhT5t9UbrCv8QCuW3fv5K+tIMasjvS11pI1pXpRn+0GZgAa3AVzn/il15NKspL+sjlyIv9MU 9y17VmZJ9i1/dx0ZyerIdEsdqciYF3UsU8l+ZApuAfD8lf1IoDnUNxbyIHWT7e35wPKxoTmUhEEU GZ/7gQ1dGnnmAua18Ij9WWgJJmdGuq/jYsW2EQKwDHg9jttHIjwaeDB2tZnGgRc+oAjrbuwAo4EH u/8PCfMtjyD7AQD= ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA64AAAH3CAYAAAC7GAJkAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AAN4USURBVHhe7f0JuB1Vme+Pn99zb2K3YAsIIfME YZ4DMgVCEkLm6SQnCSQhjBplEMEJRMBGGURRkZYWBUQGQbGBRppJRYlI02iDjbbd0v/m2nScaC/t 9fZFb997139/1jlrp06dVbtq7xp2Ve3v53neJzl77X1OrV1Va73f9b7rrb5//Md/vLphRiaTyWQy mUwmk8lksrLZT3/609sQrt5GmUwmk8lkMplMJpPJymBN4SqEEEIIIYQQQpQJCVchhBBCCCGEEKVG wlUIIYQQQgghRKmRcBVCCCGEEEIIUWokXIUQQgghhBBClBoJVyGEEEIIIYQQpUbCVQghhBBCCCFE qZFwFUIIIYQQQghRaiRchRBCCCGEEEKUGglXIYQQQgghhBClRsJVCCGEEEIIIUSpkXAVoqYccsgh pq+vTyaTyWSynjTmQSFEfZBwFaKmMGkLIYQQvYrmQSHqhYSrEDVFE7YQQoheRvOgEPVCwlWImqIJ WwghRC+jeVCIeiHhKkRN0YQthBCil9E8KES9kHAVoqZowhZCCNHLaB4Uol5IuApRUzRhCyGE6GU0 DwpRLyRchagpmrCFEEL0MpoHhagXEq5C1BRN2EIIIXoZzYNC1AsJVyFqiiZsIYQQvYzmQSHqhYSr EDVFE7YQQoheRvOgEPVCwlWImqIJW4j8uOWWW8wOO+xgfv3rXw+9IkRvkfYe+M///E+zbNkyc9hh h5n/+I//GHp1JK+//rqZPHmyufzyy4deSY7mQSHqhYSrEDWlbBP21q1b7TGFrRNnpJfAOQx+X3FO Xi8QvJa+/OUvD706kn/+5382O++8s31f1tdZlYRrL997Gne2w3cxevRo8+yzzw69sh13r7S6n8JI uAohikbCVYiakvWEfeKF301kUficJudUrly5cuiV+vGbDx2ayHzgGIa/M14LOnCtnNFOyeN3Brnr rrsSmw933WCtnN4LL7yw+b5KC9dvN+7lJBZBFe69vK65KvS9HTZ8/seJzEer77gbwjUpEq5CCIeE qxA1JesJ2ydSfRZFlNOEuKhK5KoTfCLVZ2GcsxbnXOfh8OfxO4P4BGqU+XDHd91110Uep/v+rrzy SuuQS7iW+97L65qrQt/bwSdSfeaj1Xcs4SqEqAISrkLUlKoIV5yf8OvBSBkWdlj4DJG2f/u3f7MO TdT7gL8b/F1hIeicr7/+67/OJa3UJ1J9FsY5a1ERRZdmF+xbuH9Jvsdw332WdWTKJ1CjzIe7lr7z ne9Eivtw38J9j7suwt9v2EF3v/9nP/tZ7DWYGp9I9VkE7dx7cd8LZHlPJbmOgynfzpIKrKR9T9Jv yLLvneATqT7zEfVdQFi4Rgn74O9Ieg9EfSdRqcLB75i/5e7zTr5HfocQoj5IuApRU7KesH0i1WdR RDlNYQeJn4MOinNigo4qjpBzasKOZ6vPOucs+B7f78oSn0j1mQ8nPKOcaGj1vXbyPULU78wKn0CN Mh/B4/M52M4h5nvznfO46yL4eQefCf7svrvg33avBb/jTPCJVJ9FEHU+w99d3PcCSd7TyT0VdYzu 78Vdy1FE/d5g35P0CZK8L+/xxCdSfeYj6rsA1xfXt6jvmO/NCU1fX93nknwnPuEa9R2Hf2dS+JwQ oj5IuApRU7KesH0i1WdR+Jwm59C0ckh8KbPuc62cKp/4AD7rExudOEVJ8IlUn0VBnzg+zBd9beWM Bmn1PYb7nvR3dopPoEaZj+DxhR1u8LW7Pia5LpKkJvL+8HeUJqWxJT6R6rMIktx7Sb6XPO8p3zFG /T0I3uutiOt70j7l2fd28IlUn/ngu+DYWpm7j3z9DV/frq+txmGI+k7c34gbs30LBEnh7woh6oOE qxA1JesJ2ydSfRaFz2kKO5Q+fM5M2Fl08Lr7nT5BA2FHNviZPPCJVJ+1wn0H7nsLOnA+x9xH1Pfo +2zS39kpPoEaZT6Cxxd2fiHoOIed3iTXRfD7jnKWfdeg7zvOBJ9I9VkE9M1dO87C5zfJ95LnPRX+ HRA+d0GS/o24viftU559bwefSPWZD9937PD1L9wXX1/jxmHfz47wvRu18JNmQYjzLYSoDxKuQtSU rCdsn0j1WRStnKYgQdEQtE6Fa/j3YEmcqqzwiVSfJcE5cMHjjfpek36Pvs8mPVed4hOoUebD50C7 n8NOblj8JL0uIBjtDl9vvmuwzMI17nwm+V7S3lMcR9RnfMfo/l5YLELw/e3+3iBJ+5S271nhE6k+ 89Hqu/B91+41d+/4IqlZCtfw33NIuAohHBKuQtSUrCdsn0j1WRRxDiSEHZnga0mFq3vd54j5iHKq ssInUn2WFOeku375vtd2vkdf35OcqzT4BGqU+QgfX9CxDV8bYWc46XURxH0m+Ht916DvO84En0j1 WQRJzmeS7yXPe8p3jOFzFyTp34jre9I+5dn3dvCJVJ/5aPVd+PoXHEdcIbzgufDdAxB+Peo7CY9T UQJVwlUI4ZBwFaKmVFG4+hzVdgRXMCKQ1NnJ29H0iVSfJSV8vEkd/joLV+Dc89rMmTOH9TH8XXTq BIf/Jt9dnYRrku8lz3vKd4ytvs9w9C+KuL4n7VNZxhOfSPWZj1bfRZQwd/3xPXoqqq++yKzvfWHh GnW+feNZUiRchagXEq5C1JQqClfnHAYdF5wg+hJ8DUeI14K/j9/Pa0HHy70v+BrvS+JUZYVPpPos DMcZFkbOgQt+Fz6nrp3v0df3NI5iEnwCNcp8+K4ld/7Dr/v6EnddhK+RsIMN/I46CVdIer/kcU9F XXO+v+d7LYokfU/SJ8ir7+3gE6k+89Hqu3Dff/g7dWMJ/Y76PoK/k78R/o6ivpOo+yr4eXdcvCbh KoSQcBWippRtwk7iQELQUXHOCqIrLLgQDeHnj4adLnCOlDOf85Wno5mG8LFjPufNOXuY+56Sfo9R fff9zrLgu5Z8TjBECaIk10Vce2HCNSVJ7z2I+14gyXfXyT0Vdc2F/147vztp35P0G/LqexG0+i6i hCu4Ra9wG32l/y+++GLLcTjqO4m6Z4PXAffYtm3b7PskXIUQEq5C1JQ6T9g4NmHRIIQQInsQrlUd byVchagXEq5C1BQJVyGEEGnwbTuoEhKuQtQLCVchaoqEqxBCiDREpflWBQlXIeqFhKsQNUUTthBC iF5G86AQ9ULCVYiaoglbCCFEL6N5UIh6IeEqRE3RhC2EEKKX0TwoRL2QcBWipmjCFkII0ctoHhSi Xki4ClFTNGELIYToZTQPClEvJFyFqCmasIUQQvQymgeFqBcSrkLUFE3YQgghehnNg0LUCwlXIWqK JmwhhBC9jOZBIeqFhKsQNWWnnXayk7ZMJpPJZL1ozINCiPog4SqEEEIIIYQQotRIuAohhBBCCCGE KDUSrkIIIYQQQgghSo2Eq8id3/72t+bVV1+VyWQymUwmk8lkGVgvIuEqcuWf/umfzE9+8hOZTCaT yWQymUyWkf3v//2/h7zt3kHCVeTGz372M3tjbdu2zfzHf/yHTCaTyWQymUwmS2m9KFpBwlXkws9/ /nMrWv/bf/tvPXtzCSGEEEIIIbJBwlVkzv/6X/+rp9MYhBBCCCGEENki4SoyBaHq9rVKtAohhBBC CCGyQMJVZIoTreTfCyGEEEIIIUQWSLiKzHDFmHq1RLcQQgghhBAiHyRcRSaoGJMQQgghhBAiLyRc RWp++9vfWtGqfa1CCCGEEEKIPJBwFamggnBcMabf//73MplMJpPJZDKZLCPrRSRcRSriijH9j//x P2xEViaTyWQymUwmk2Vj/+///b8hb7t3kHAVHeNE67//+78PvTIcxCw3FlHZ//zP/5TJZDKZTCaT yWQprRdFK0i4io6IK8aEWEW0/s//+T979uYSQgghhBBCZIOEq2gbBCmilYirT7T+n//zf3o6jUEI IYQQQgiRLRKuoi3iijEhWt2+VolWIYQQQgghRBZIuIq2SFqMifx7IYQQQgghhMgCCVeRmKTFmHq1 RLcQQgghhBAiHyRcRSJ+9rOfNYsx+VAxJiGEEEIIIUReSLiKWF599dWWxZh4DdGqfa1CCCGEEEKI PJBwFS3JohgTv0Mmk8lkMplMJpOlt17dlifhKlqSthiTa5fJZDKZTCaTyWTZWC9mOUq4ikjiijE5 UeqLxEKwWBPCViaTyWQymUwmk6WzXt2aJ+EqvLhiTNu2bRt6ZThOlEYVYyKNoVW7EEIIIYQQQiRF wlWM4Oc//7kVrVQQblWM6Xe/+51XlKpYkxBCCCGEECJLJFzFMIiUpinGlKRYkxBCCCGEEEK0g4Sr aIJQbSVaIWkxpqh2IYQQQgghhGgXCVfRJG0xprh2IYQQQgghhOgECVdhaacYkw8VYxJCCCGEEELk hYSriC3GxONsWolSPkN7VLEmIYQQQgghhEiDhGuPQ6QU0Rq1rzVtMab/+3//r/0bMplMJpPJZDKZ LL0RVOpFJFx7GC78vIsxuXaZTCaTyWQymUyWjfVilqOEaw/jRCv7V3040RknaqPa3b5YVoUQtjKZ TCaTyWQymSyd9erWPAnXHsUVY3r11VeHXhmOE51EZX2oWJMQQgghhBCiKCRce5C4YkxxotMVa4oq xsTvpB2TaBVCCCGEEEKkRcK1x0BMIlqj9rWmLcYU1y6EEEIIIYQQ7SLh2kPEFWOiAnCc6HTt5Nf7 iGsXQgghhBBCiHaRcO0hkhZjihOlUcWY4tqFEEIIIYQQohMkXHsEJ1r//d//feiV4SQtxpSkWJNS hIUQQgghhBBZIuHaA6QtxhTXzu+kPapYkxBCCCGEEEKkQcK15iAoEa1EXH2ilWJKvAfzic60xZjY N4vwlclkMplMJpPJZOmNJ3z0IhKuNYYLu1UxpiSis1U7uPa4fbEymUwmk8lkMpksG4vyzeuMhGuN 6XYxJtfOqhB/QyaTyWQymUwmk6WzXhStIOFaU5IWY4pKNWinGJMPPufae/XmEkIIIYQQQmSDhGsN +dnPftYsxuQjTlSmbVexJiGEEEIIIUSWSLjWjFdffbVlMSYnKjGfqMy7WJMQQgghhBBCtIuEa40g EpqmGFMS0enaya/3EdcuhBBCCCGEEO0i4VojsirGFNceV4wpql0IIYQQQgghOkHCtSbEFWOKE5V5 F2sSQgghhBBCiE6RcK0BrhjTtm3bhl4ZTlBU+lKA0xZjQuzSrmJMQgghhBBCiDyQcK04P//5z61o pYKwL5rKa61EpWvHfO1p98Xy+zlGmUwmk8lkMplMlo31IhKuFSbvYkz/9//+35bt4Nqj9sW645PJ ZDKZTCaTyWTZmM/3rzsSrhWFi7WVaIU4UZlVe9TfD+675T0ymUwmk8lkMpksvfUiEq4VJW0xprj2 pMWYotrdvtuoFGYhhBBCCCGESIqEawVppxiTj7TFmOLaaeP4ENcSrUIIIYQQQoi0SLhWDDZjt4pk xolKPkN7VLEm9r3SjkW1u2htlKiNS2EWQgghhBBCiHaQcK0QiEIEYZQoTFuMKYtiTU60EvUVQggh hBBCiCyQcK0IcZHMoKgsQzEmIYQQQgghhMgKCdeKEBfJjBOVce1uX+zvf//7oVeG004xJiGEEEII IYTIEgnXCuBE4auvvjr0ynDiRKVrz6tYU9y+WyGEEEIIIYRIg4RryUlbjIkIaqt2fiftmK89rlgT fz8uhZn3yGQymUwmk8lksmysF5FwLTGIRQRhlCiME5V5F2uCpCnMMplMJpPJZDKZLBuL8s3rjIRr SWElJWkxpqgL17XnVawprhiT+zzHzzHKZDKZTCaTyWSy9NaLSLiWlKSRzE4rAMe1u32xUcWa3L7b bdu2Db0ynLh9tUIIIYQQQgiRFAnXEhIXyXSiMCq/PWl7XsWY3L7a3/3udz27IiSEEEIIIYTIDgnX kpG2GFNcO7+zlah07VjU72+VwpxkX6wQQgghhBBCtIOEa4lA7CEIEYZRorCVqMy7GBPH1Eq0gvt8 VAqzEEIIIYQQQrSLhGtJSBvJLKJYkzs+Uo19uM9HiVohhBBCCCGE6AQJ15KQVBTmVYwprj1pMSYE uBBCCCGEEEJkiYRrCXCiNa4YU5SojBONrj2qwm/cvti0+26FEEIIIYQQIg0Srl3GRTIRhT7iRGHa doQo7VHFmvg8x4f5RGuSFGaEs0wmk8lkMplMJktv+Oe9iIRrF3n11VdbRjKdqIwShYjGuPZWojKu nZui1b7bdvbVymQymUwmk8lksmwsyveuMxKuXSJOFKYVnUFR2a1iTMF2jlEmk8lkMplMJpOlt15E wrVLZFWMKa9iTS6FOW7fbVSqgmsnRVkIIYQQQggh0iDh2gXiijHFiUonCn//+98PvTKctKIybTGm uHYhhBBCCCGEaAcJ14JJ+liZTkVhXDtit1U7bRwf5hOtaffVCiGEEEIIIUS7SLgWSFwkk9cQfFEV fl17K9EY195KVCJ60+y7TbKvVgghhBBCCCHaRcK1INKKwnZEo68d4kRlVvtuff0TQgghhBBCiE6R cC0AhFwr0QpJRWHa9qi/H7fvNu2+WiGEEEIIIYToFAnXAogThXGiMq49TjTGtbt9tyrGJIQQQggh hCgjEq45004xJh9pRWNcO20cH+LaJ1p5jfdgvs/H7aslhZk+ymQymUwmk8lksmysF5FwzZG0j5Vx ojGqWFOcaIzbF8vfb5XCnOW+WplMJpPJZDKZTJaNRfnedUbCNScQhQjCTkVh2vYkotKJ1qhVG/f5 LPbVcgwymUwmk8lkMpksvfUiEq45EBfJTPLYmCxFo4+0+24Ru7TTVx9x7UIIIYQQQgiRFAnXHEga yYwShUlFY6eiMliMyQef4/N57asVQgghhBBCiHaQcM0YJwpfffXVoVeGkzRSiejzkVY0xu275TU+ n9e+WiGEEEIIIYRoFwnXDElbjIlnpLZqTysq+ftpijFlsa9WCCGEEEIIIdpFwjUjEGsIwlaikPd0 KgrTtnNMRRZjEkIIIYQQQoiskHDNgLhIZjuPjcmrWFNWxZji2vkuhBBCCCGEECJLJFwzIKtIZpQo TCoqSTX24fbdbtu2beiV4bjP57WvVgghhBBCCCHSIOGakrhIZlwkMml7p6Iybt9t0n21mK89LgWa aDN9kMlkMplMJpPJZNlYLyLhmoK0xZji2p2ojCrGFCcq+f0cH+Y7vrz31QZTpGUymUwmk8lkMlk2 5vO9646Ea4dwwSAIibj6RGGSSGWeopG/32rfLbjP57Wv1rXz9zlGmUwmk8lkMplMlt56EQnXDiCS 2UoUthOJjLrw0orGpPtu40RtVDu/l/aofbWune9KCCGEEEIIIdIg4doBSUVhkkikj7TtSYsxRYlK 195pinNcuxBCCCGEEEK0g4RrmzjRGleMKS5SmUQ0+ogThWn33fIZ2jvdV0u0uVW7EEIIIYQQQrSL hGsbuEgmotBH2khkWlHJ5zk+zCda895XmyQFWgghhBBCCCHaRcI1Ia+++mrLSGacqIyLRKYVjYjW Vvtui9hXG9cuhBBCCCGEEJ0g4ZqAOFGYZaSyU1GYdzGmuPa4FGghhBBCCCGE6BQJ1wRkVYwprr1T 0ehSmOP23UaJyrT7auPahRBCCCGEECINEq4xxBVjShqJ7PSxMXGiMm0xprh2fiftnaZA83mEtUwm k8lkMplMJsvGehEJ1xZwUSAK4x4rEyUq04pGxG6rdto4PsS1T7TGicq0Kc5x7RyTE/4ymUwmk8lk MpksG/P5/nVHwjWCuEimE5V5PTYmThQiep0ojBKtrT6fxb7auPa4aLUQQgghhBBCJEHC1UNaUdiO aPS1Q1JRSNTXR9znXXvUak1cu4s2R7XHRauFEEIIIYQQIikSriEQYq1EKyQVhWnbo/5+XCTTicq8 9tXGpTjHRauFEEIIIYQQoh0kXEPEicI4URnXnlQ0RrW7SCai0EecqIxrj9tXS79ox6J+P8eHSbQK IYQQQgghskDCNUDSYkxxorNT0RjX/uqrr9rjQ1z7RGGcqEy7rzauneOPi1YLIYQQQgghRLtIuA6R 9rEyTjSmKdaURhQWsa82rt0dHwJeCCGEEEIIIbJCwrUBohDB1akoTNueRFTGicI4UZm03dd/iGt3 0WqiwkIIIYQQQgiRJT0vXOMimUU8NiZOFLrj63TfbdIU57j2qGizijEJIYQQQggh8qTnhWvSSGaU IEsqGjsVlXkXY4prj3teLW0cH+brI8KfPspkMplMJpPJZLJsrBfpaeEal97KRYEwSxKJ9JFWNMZF MnmNz+e1rzauneNPGq2WyWQymUwmK9L++Z//2Vxz3Q1m7qKTzawT11j7wm13mN/85jfD3nfTzV9s tgftjC0XmV/96lfD3iuTlcV8vnnd6VnhmrYYU9LHxkSJSkRhqwsvThQWsa/WtUelOCeNVkd9Xggh hBAiD/C/FvWfbfrGzDNTDl5l9jlywIye2m9GT15hLrn82qF3DTJ/2UbTN3mD6Ru7cJjtc8QK88or rwy9SwjRbXpSuCKmEFytRCHviRJ1aUVjXDvHlFYUJm339R/i2t3xRe27jYtWCyGEEELkxS9+8Qsz e8E68/5Lr7L+yssvv2wuveJa0zdhUMTys4P39Y1fbj5y1XXmySefbNrzzz8/9A4hRBkoTLg+9d1n 7IoWxv/D8BqDC4PH0tVnmGuu+4x5/fXXh1qzo5301k4jkWnb40RhnKh0ojGuPUpUuvaoFOi00Woh hBBCiLx57bXXhv43CEJ0zL4rrQVFqROun/vC7UOvCCHKSCHClYFj1oJNjUFhhembuMYK1CBPfONJ M23mWtM3Zq6Zcshqs9s+y+0AcuY5l2QuXrOKZEaJwqSiklRjH27f7bZt24ZeGU6cqIwTjWnbaeP4 +B59feQ13oNJtAohhBCiLHzpzntsqvDM2euG1TdxwvWTn/6sjcSSZiyEKB+FCFeip3avwMxFdmAI Clf2Dux/1Gq77+DaT3zGiqKnn37GHHbCBtM3bmmmq19J01ujRKVr7zRSGScK4yKZee+rjUth5vhb RavjPi+EEEIIURQEP/BB8TtPe/tFZvz+y2y09ctfeWDoHYNY4TpxwOwxs9+mER89b719fzCdWAjR fXIXri+99JLZ8/A15uBZa03/+rNGCNf7H/y6GT1pqZm3dNOwKOenbrzZCtfF/WdERj/bIfhYGZ/o ShuJjHtsTFwkkt/P8XUqCtO2J3lebdpotRBCCCFEUbz44otmzIy5pm/XWQ2fcokZNX6uWbRqs/n+ D4bvXX33+y43Bx27xgpYorGIW4TsocefrOJMQpSIXIUrAuZt515iRk9caG686VZz8mnnjRCu73rv FXYw4d8gW7dubQjaxSPSOToBMYXg6jS9NW/RyN9vFcmEOFGYVXvU308arY76vBBCCCFEkeDz4E9S aOnyj3zCrFy/xbxh6hq7LS0oXonMUswJ8Dmfe+65wcy/Cf0jtrcJIbpHrsL1O09tNTvPWG5mL9pk I5E+4WpfawhXUjmCuA304cpv7RInCtuJRPraIa1oTBrJjBO1Ue1OVHaaAh2MVvuIi0YLIYQQQnQb /LB1m8+3lYW3nH/x0Kt+bGClIVwpGCqEKAe5CVeEKoIV4YqABZ9wjarklpVw/cMf/mBXz+JEX6eR yLTtThRGRZXjRKVrRzT6iBOVce0clxOtvj7wGp9vta+W70Amk8lkMpms2/bu95Hpt9RsOP18b7uz d77rEuufxr1PJuuGRQW76k5uwpXUYFJ9Tz37oqYo9AnX/pO32NdI4QiSlXBtBSce0RUlKpOKxqj2 OFGY9rEyaffVIipbtfP300Srg+0ymUwmk8lkRRnpvmdsuch897vfNT/96U/Nb37zG/PMM8+Y2Ys2 W+F6zXU32PexD5b/8378sn/5l38xjz3+DXPgrFNsBeIbb7plxO+WybptUb5/3clFuPL4m7fOWWdG T1hgI6rO9nvrMvs4nEOOWW7WbXqnjeaRqsEAEt7jyuCyw7Slmexx9REnCtO2x0UiaUMQZiEKO2lP kgKdNIW50xRpIYQQQog8oPjnqLGzbRCEAqHHn7TeTDhwlfU5F6w6u/mMVx6R07frcXbfK9WE8V/H 7LfKjJ6y0tZpkQ8jRHnIRbgiNE9YtMFGS4M24aDVpm/yBjs4HHJsvxVFtnrw+OUjqgqTOsze16yq CgeJE5WIPtqjRF1a0RgXySxiX21cuzu+qGJM7vO+4wcXjY7aVyuEEEIIkRf4N7fcdpcVrM4P5f9k +AUDIghYMgERrbzngGPW2mALmYMUbRJClIdchCtQnY0U36ARZUWkUnbclRcnRYMVsIkHD5hHHn3C DjS0zVqwyQpXVsKyJMtIZVpRGBfJjBKFadvjUpzdvttt27YNvTIc93mizT7iotFCCCGEEEWAL+b8 0Ci/DAhm8B49/kaI8pKbcPXh2+PKIHLhB640b5g2+NwsVsNY7eJ9Z55zSearXWlFZ1rRGBfJjBOV ce1xojGuPW7fbdp9tUIIIYQQQgjRLoUK1w9/9OP2Ac9fvOPeoVcGQSRecvm15tj5g2ka/Iu4zUu0 xkUiO31sTFwkMm0xprh2Jxo7FZX8/lYpzGmj1UIIIYQQQgjRCYUKV3APePaBUCVNI489BXGiMq1o dJHIqHbaEIQIwyhRyHuwTkRh2naOqZVoBff5TqPVQgghhBBCCNEJhQvXbpD3Y2PiRGHaSGYW+2rj 2uNSmN3n40RtVLsQQgghRLf5/o9/bpafc0cu9jd/l8/jG4UQg9ReuCL6EFRYJ6Iziwq/ThQS9fUR 9/k4URjX7qLNUe0qxiSEEEKIurPt17+1AvPwtX+WuR249ErzF4//7dBfEkLkQU8IVyKunYrOtKIy LpLpRGFe+2rjRGXafbd8hvZW0Wy+I5lMJpPJZLJuWm6iddlVZr+Fl5m7H/ye9+/KZFkb/n8vUnvh 2gpOPKIrSnSmFZUukoko9BEnCuPa4/bVxolKfj/Hh/m+g7hodDvtMplMJpPJZN2yMy79mld0prVD +z9pRasTrr6/LZNlbVG+fd3pWeEajFRGibo07TzcGkFIxNUnCp2oxKJEX1x7GlHJ8bfad1vEvloh hBBCiLz58Ge/6RWdaQ3ResDiDzeFq1KFhciXnhSucZHIJKIyjSiM+3wW+2rj2pPuu/UdP8S1u4WB qHYhhBBCiLyhGJNPdGZhQdEq4SpE/vSccE0bqUwiKpOKwrSRzE5FpUthJirsIy4FOhit9hEXjRZC CCGEyBtXQdgnOtMaxZiColXCVYj86TnhmrdodKK108fKOFGYV7GmtMWY0u6rFUIIIYQogryLMUm4 ClEsPSVc40RjUlEZJRrbeayMT9TFicakojJKNNLG8WG+PhJt5j2Y7/Npo9VCCCGEEEXw9ivu94rO tHbIyo97RSsm4SpEvvSMcI2LRKYVjXGRzLhIpGvHOhGFce0cf9JiTL7Pg2vvNFothBBCCJE3t/3l 35tjTvty5nb05jtH7GsNmoSrEPnSE8I1TnTGicq4SGScKEwrOrMQlVntu/X1D+LahRBCCCGK4GNf fsmceOHTmdvxWx7yClZnEq5C5EvthSuiD0GFdSIa49oRaq1EKyQVhXmJxrh9t3Ep0Enbo6LZQggh hBBFIeEqRD3pCeHK3s9OI5Vx7XGiMK3oTCsq3b7bTosxxbXH7avlb9JHmUwmk8lksiLs6rt+4hWe aS1OuN794Pe8xyOTZW34/71I7YVrKzjxiK440RhV4bedYkw+0orGuHbaOD7Eta+PvMZ7MN/n00aj g+0ymUwmk8lkRdhHb/97r/BMa0mEq+94ZLKsrVef3tGzwjWtqIwrxpT2sTGIPtqxOFHoa+f4W6Uw x31exZqEEEIIUUWUKixEPelJ4ZokvZX2KNGGKEQQdioK07YHRWVcCnNUKkHc5127r3+Qtl0IIYQQ Ig8kXIWoJz0nXNOKRoRYq0gmuM93GolM2h7199Puu3XRaAS6j7hodbDd9x0KIYQQQuSFhKsQ9aTn hGta0Zg0khknauNEY9S+2jhRGSzG5CMuBTptO/2ivVdz74UQQgjRXSRchagnPSVc04pKJwpfffXV oVeGEycqg5FIH2lFI8flRKuvD3Gikmgz7VhUu/uOOmkXQgghhMgbCVch6knPCNd2RKVPdMUVY4oT lWn31caJSv5+mmJMce1J9tXGtQshhBBC5I2EqxD1pCeEa5yojItE0oYgzEsUtiMafe2QVTGmuHZf /yGuXQghhBCiCCRchagntReuiD4EFdaJaIyLZBbx2Ji49qyKMXW6rzYYrRZCCCGE6CYSrkLUk54Q rgiyTkVlVpHMTiOVcaLS7bvdtm3b0CvDiROVcdHouHaXAh3VThvfoUwmk8lkMlkRdsUtL3iFZ1qL E66fvf1h7/HIZHlYL1J74dqKONHIRdEqkpk0EpkkUtmJaIzbd5v3vtp2otXBG00mk8lkMpksL7vi Cz/0Cs+0JuEqK4tF+f51p2eFa1wkMm0xprh2Jxo7FZVBUeg7viL21br2TqPVQgghhBBZo1RhIepJ TwrXJOmtLkoYJQp5T5SoSysa49o5plaiFeJEZVbtUX/fHV9UtFoIIYQQIg8kXIWoJz0nXONEYdpI ZhHFmuJEoft8nKiNanfR6Kh9tXEp0G7fLdFqIYQQQogikXAVop70nHBNKgqj0luTis5ORWNce9Ji TFGi0rV3muIc1/7qq6/a4+N7jOqDEEIIIUReSLgKUU96SrjGicK4SGbaSGRQNPqIE4Vp993yGdrT FGty36Gvnb/fKlothBBCCJE3Eq5C1JOeEa5xojIuvTVOFMa1x+2rjROV/H6OL0oUpt03m0UKdFy0 WgghhBAibyRchagnPSFc40RlXHprkkhkXHsa0cjxt4pkBkVlp/tmk7b7/j7ERauFEEIIIYpAwlWI elJ74YqoQ3BhnYjCtKIT0orGuEhmnKhM2540Wh2171YIIYQQoigkXIWoJz0hXEnTjRKVSUVhXpHK uHYnCokK+4gTla6daLOPuGh0XHvcvlteo48ymUwmk8lkRdjVd/3EKzzTWpxwvfvB73mPRybLw3qR 2gvXVsSlt3JRtBKVThTmVawpbTGmtPtq41Kg+ftJo9X8DZlMJpPJZLK87eo7/sErPNNaEuHqOx6Z LGuL8u3rTs8K16SPlYm6MNJGKp2o5OLztdPG8bUShbwH830+bYpzXDvHlDZaLYQQQgiRNUoVFqKe FCJcX3nlFfPyyy/bf+Pgfb/4xS+GfsqHJOmtCK4oUenaOxV9ce1xkcwkFX7jRGPa9rTRaiGEEEKI PJBwFaKe5Cpcn/jGk2bp6jPMAcesNfscOWD/ff+lV5nXX3996B3buf6Gm83sBevs+w6etdZ+Lg8B 2056ayeiMwtRmTaS6dqjRGNcu4s2R6VAtxOtFkIIIYQoEglXIepJbsL1pZdeMtMOWW522nOpeeuc dVaU7rLvgOmbsMqKVwfi60+v/pR504w1ZsJBq82x89ebmbPXmb6Ja8yshadnKl4Raq1EKyQVhWnb o/5+XCQzTlS6dgS6jzhRGZfiHBetjttXK4QQQgiRJxKuQtST3IQracHrNr3TfOeprea1116zr33k mk9Z4YowdVVyEbh7Hr7G7L7/avPQw4/aaCxtSwa2mL7xy83lH/mEfV8WpE1vjWtPKhqj2l0ks9Ni THHtcftq+Zu0Y1G/n+PDfMcXF40WQgghhMgbCVch6kluwtXHk08+afrGLrQpw26/6+e+cLvpG7fE pgYH+dKd99jX5yzZ5E0tbpe06a1pRWNcO20cH+LaJwrjRGXaFOe4dv5+2mi1EEIIIUTeSLgKUU8K E65E+bacf7Hpm9BvVq7f0hQ39rWGQA2mD8Mzzzxjdpi21O53TZsunPaxMk40RkUqEX20R4m+OFHI 328lCuM+X0SxJnd8CHwf7vNRolYIIYQQoggkXIWoJ7kKVyoEE0llf+vR89abUePmmKPnbzQ/+vFP ht5hTP/JW6xw/dSNNw+9Msjzzz9vxuy70hZr4vd0CkIKwdWpKEzbnkRUJhWFne6bTdvuotUuvTtM XAq0EEIIIURRSLgKUU9yFa7PPfec2eeIFVZ8kiL8xklz7f7WBx96dOgdxopa9rKSMhwkK+H6hz/8 we5pjRNtnUYik7ZH/X0nWjvddxsnGpO2R0Wb00ar2Vfr+iCTyWQymUyWt3309r/3Cs+0Fidc737w e97jqZP96le/Mi+++KL5l3/5F2+7rDjrRXIVroDoxNjfSjrwm2asNRMOXGWeffY5237yaedZ4RpO Fc5KuLYiThQmFY2dVvgNFmPyEScK07bTL9qjUqBp4/gw33fQTjSavyGTyWQymUyWt119xz94hWda SyJcfcdTF/vlL39pVq1/u9nriNVm7pKN1n/1vU+Wv0X59nUnd+EahtThvvErmtWC3/XeK0zfuKV2 r2uQrVu3mtGTFttH6biqxFnSTiTSR1rRGBfJjBOViELasTjR2Ek7x99q320W+2qFEEIIIbJGqcL5 cM11nzF9YxdZvz3PwJIQUeQqXH3VgG2EtXHBO+E6WD14qX1+a/D9tPM678+aOFEZ9yxSJyqjRFuc qIwThWlFZ1BUdprinLYYU1y7EEIIIUQeSLhmDyIVsUrR1LwzIoWIIjfhiiCdt3ST/ZdceJ7Xetvt d5mJBw+YXfZeZR559An7PncjkELMSg7v++a3njT7HrXO7Dh9uf1/lqQVhWnbIatiTJ3uq41rj9t3 mzRaHdUuhBBCCJEXEq7ZQ2bk6IkLzXs/8CEJV9E1chOud99zn3nj5Pmmb8w8u6d1z8PXmL7d51vR +oHLPjZMdH3xjnvN7gcM2Hbe98ZJJ1rRev0NwysNp6WIx8bEtceJwjhR6URhp/tqXXtUCnTaYkxx 7UIIIYQQeSLhmi3feWqr2WnPpWb+ijPtVj4JV9EtchOuCDeipazQUDkYO+3tF9lIq0/UUWnYvZd/ H3p4e+XhrEgqOjuNVMaJSleMadu2bUOvDCdOVKYVjXHttHF8iGtfH4km8x7M9/kk0WYhhBBCiDyR cM0Oaq0sGdjSEK6LrYAtoniqEFHkJlzLRtJIZFx7p6IwLpLp9tVGFWPiM7RjUaIxrr2VqOT4XTQ4 SrS2+nySfbVCCCGEEHmTp3Dde+57zC4zFpg3jj/STDp80zDh+ud3fN3MX7axGbAJ25oNb8+l4Gie kEE5asJ887ZzL7H+nYSr6CY9IVzjRGVcuxONnYrKtKIwbTvEiUp3fAh0H3Gfd+2+/gkhhBBCFEUe wnXeBU+ZfRd8yPzxxNn2MY7YuIPWDBOu1914p3nztPmmb+zCkTZpnZlyyGrra1WFX/ziF7YYEyKV x1oiVJ944ommcH3mmWesbyxEUdReuBIJRFBFibq8RSNCrpVohaSiMG171N93xxdXjKnTfbVCCCGE EEWRh3Dde/6l5r+MnWtGjz/B/NHYt1oxGhaupAoj5hB5QfvwlVfbJ2XMWbLJ+8SNrCEqGj4GZ1u3 bo30F8PYJ3+MXWTG77/MClVnb5i6xuy452r7/1PPumDo3ULkT+2FKyDYfKKyiGJNSSOZcaI2qj2t qHT7bklh9pE2Ws1xuT7IZDKZTCaT5W0fvf3vveIzje2z4DIz9qC1Zs/jzzVvnnqCV7je/eD3RhwL W8WOPekUM3ryMvOF2+4Y0Z614dPtNXPZ9khvyEaNnW0effRR72fD9tjj3zCzTlwzwnaYvsKM2a/f /v+cCy72flaWv/UiPSFco0grGuPakxZjihKVrr1T0RjX/uqrr9rjQ1z7+sBrfB7zfZ5oc1y7+45I JZHJZDKZTCbL266+4x+84jOtueJMrYRr+Fhu/eKdDdG6whxy3IANEoTbs7Zf/vKX5rS3XThCbGJv 3mOx2WHqEvOtb33L+9kk9vTTT5vd9llu9jpitfnxj3/sfY8sf4vy7etOzwrXdkSjjzhRmPaxMk40 cnG2asfiRKOvnb/fKoU57vNZRKuFEEIIIbIm76rCUcI1XFUY/2fl+i02Tfia6z4z9Gp3oMgSUd/Z izZZ37JTSEPeda/FZq/DV6k4kyicnhSucaIxrajk8wjCTkVh2vYkojJpCnOnKdKu3dd/IYQQQoi8 KItw5fExO++1sutFmfBXEawI6M994fahVzuDqsiXf+QT5iPXfCqVABaiE3pOuCL6EFRRoi6taIyL ZBaxrzau3R1fVDEm9/ko0emi0SrWJIQQQoiyURbhetrbLzJ941eYLedfPPRKd3js8SfM6ElLbYVg KgULUVV6SrjGiU7IShTGRTKjRGHa9jjRmHTfbafR6Lh2IYQQQog8KYNwxdci0krElchrt8BftenK DQH9/kuvGnpViGrSU8I1qSjtVDQ6UUjRIx9xojIoGn2kFY1x+255jc/nta9WCCGEECJvyiBc3/Xe K0zfhH6zuP+MSL+zCJ577jmz84zllXuGrBA+eka4OlHYaXprnKhMW4wprj1OVMalQPP70xRjimtP kgIthBBCCJE3eQjXuec/ad664RYzY/b55k+mzLbCdez+y+3Pe899zzDhSjouablUE6YoUjchTRkB 3X/ylqFXhKguPSFc04pGxC7tUaKRNgRhK1HIezDf59OKxrh2jqmVaAX3+U5TpF171O8XQgghhCiC PITrXidebP548nzzhvFzzKhxc03fpHVm9PgT7M87TjzW7DP/A03hSgXhvgmrzNHz1ne1gBF+Xxbp yhuuuc+c+L7bM7d1l9029BeESEbthSuRQARVlKhLKwrTRjIhqSjstD1tMaa49rhotRBCCCFEUeQh XA9e9Unz5uknmjeOP3KE7TRtjtn3pEuawvXd77vczF6wznz5Kw/Yn7sF1X8R0GkegXPR5x7zis60 NufCz5s1l9w89FeESEbthSsguHyiMYsKv0mLMXUaqUwqGqNSoNspxuQji2i160M79tOf/tR8+9vf Ni+++KL5zW9+431PlY1z4vrna6+60S/6Rz997VU2rkfXP65T33uqbL/61a/sc/q++93vmn/+53/2 vqfKxrYO9nw988wz5l/+5V+876my0Sf6h9FX33uqbPSPc8c1yrXqe0+VjXuOe6+ucx9jpuufrz0r ++jtf+8Vn2nN7XGNshtvfcD2rwxzH9/1gcesGXwEzudv874nzq6688mm0MzS5l10i5n1to+Z/vfd 6P273TA3t1dp7utFekK4RpFWVMZFMuNEZVykMq2oTLvvls/Q3um+2mC0md+RxChsdeY73msH251m LDN7HbHanLR8s/2ufe+vmv3rv/6rGdj4DrPfUdv7x8+87nt/1YzztHDFqbZf9I9+cj45r773V83+ 5rnvmxMWndzsH9fpey7+iH2une/9VbPHnviWOXrugJl+WL/ZbZ/l5pDjBszV193ofW8V7Yt33Gve esKAmXzwKjPugJVm5vED9jXfe6tonCv6RP8w+so59b23iub6x7njGj1+wSn2nvS9t2rGGMJYwj3H vVe3uS84t7v+5Tn3XX3HP3iFZ1qLEq57z3ufLdg06YCltn9lmPuu/cSNpm/X48wBR/V3dB399Ysv m1Ou+qpXeKY1ROsxZ11thavvbxdtwbndzX1ln9ujfPe607PCNalojGp3kcy8ijHF7at1ohKL+v0c H+Y7vrQp0nHtwWh21MJAGN73tnMvsUUE9m4MHqTZsD+kb+IaM2vh6ZV/9hjnsn/DebZ/Bx27xvZv 5ux1tn8rTj7PDpBVhgl69pIzbFrSW+ess/074Ji1tn9nnnOJef3114feWU1efvllc9Bxp5jRU/vt dUn/Zhyx1rxh2oD5wGUfS3ydl5Xv/+B5M/WwNWbHPVebY+cP9m/iwQPmTTPWmutvqH4614MPPWp2 P2DA7LLvgDn+pMH+8f+xB3Y/nS8Lbrr59sa5WmN2339w7KSPnLtpM9eap777zNC7qgt7Bukf1yj9 4xrl3jv4+I3mRz+udqVUxg7GkDdMXWP2OXLA9q9Ocx9jP3MAcwMFi+hf3nNf3lWFw6L1TVPn2/7N OGyZ7V8Z5j7mrCeffNL6ge3yy//+u9z2tR635XorWq1wff9nh/5i92D8YBxhfAnOfW+Yts5ccvm1 Q+8SZaEnhWtaUUkbAwErWD5RGCcq8xaNHD/HFiVaIU5UZtUe9fd9uJLtTNxuoGVCY29G3/jl5lM3 Vtt5vv/Br9sHgB89f6N55ZVX7Gv8O1h5cJltrzKf+8Ltpm/sIrNkYIsVsUDajS0M0TivnN8qw/Pv SLk69eyL7CIEPP30M2bCQavNnoevMS+99JJ9raqcfNp59j6jn87R4prccfoK62S6c1pFGKfmLd1k Fx2u++RNzXHrs39+qz2nc5ZsqvTCCuMki0UIcSLIQB/tNTt+ReWrieKAMy/gTD7xjSfta5wv7kWu WR47UmWY7xgn9z1qnXnhhy/a1xhjFqw8w16fVZ/7KArEHHDE3O1zH+MJ12xec1+RwnXCoevN/zd2 gdlxyjzzxa9+y/595gOu2arOfbmJ1nM+3RStZRGutupyYxwhcBKe+1iAcNesKAc9J1wRfQgqLA9R GPf5LPbVxrW74yNq7MN9Pk7URrW7aHSnKdBR2GeeNZwsHOggVhDVwLnEefQ9ALwOziXXIs+q6xu3 xJ6vIIOCaEWlnUucSCIgLDw89vgTQ69uF0RVX1hhYmaCHrPvSrt30OEEUdUXVlhAmXDgKutIIoIc ThBVfWHlm996suFkLbfnKhi94lxyTqu+sPKlO++xYwv3WnDe417knqz6wootoNOY4+o695329ots P4qc+4oSrvsuuNTsOOk4e33yTNePvfN088xVG6yd9NbDbf/WnXBU87V27KUnvzrUm2LJsxhTULSW Qbi6uS88B9Rl7qsjPSVcsxCVSUVhp6IzTjTGtbsU5qhJPE5UunaizT7iotFx7a1Yutq/urx169aG c7J4hFNWJXA6SEEhIvnwXz0y9Oogg07ZUpueUlXcIO8TAFFOWZVwAscnAKKcsirhBI5PAMxfttH2 L7wgUSVIl+OZi6TPBsdetyBBG++pKi7bISwAohYkqoYVOI3+hRe/ohYkqoZd3Gv0r45zHzC3FT33 FSVcSRP+4/GzzH8ZN99MO/os8+G1J5mHT93T2ikzpwz2b59pzdeS2pcGppnn7vnkUG+K47p7G/30 iM60hmh1+1rLJFzrPvfVkZ4SrmlFoxOtnT5WJqloTCIqfaIwbTGmtPtq46LZcdjJbfzyEYOEG1iq nLLhhJ3PQXZONQ60S0GtGk7Y+RxkFzVgEqgq7hr0OcjWqW70DwFbVdw16HOQrVPd6B8LEFXFXoON scXnINtxp9E/nOiqMhi5Wj5icciNO4gfRFBVsddgo3/hxSE37iBeEbFVRXNf9nNfUcJ1rzkXmj+a MNsK1+nHvG2YcD332Ml2bDl0WnvC9WunTDc3rZycWrj+9l+/3Zb949993Zz5oYsTmU+ctjKfaC2D cKVC+Q7TlkbPfZ5xR3SXnhGuTvR1KiqDxZh8xInCtO1ONEaJSto4PszXx7hoc97tSdDkLeFaVnpe uFZ88o4Vrp5xp0rECVffuFMl4oSrb9ypEnFzn2/cqQpJ5j7fuJOWooTrjNnnmzeMnxMtXBvn9cAp yYUrovXm/qmpheu/N4Tos7dNNd/5dF/m9qnL9jYrr30isc0+70avaMW6LVzrPvfVkZ4QrmlFY1wk M05UxkUi04pCjr/Vvtsi9tXGtSchavJutSJWFVpN3vd97YGG8FnidaqrQisHkmqg9C/sVFeJVg6k LezQ6F+VJ7dWk/dgCv/IvctVwgnXcKrw9hT+agu7QeE6cq8g1Wgp/lZ1YTd4jy0dkSrMnEdRoyoL O7D3WOP8hbMa6jD3Ne8xT1aDG3fymPsKSxWe+x7zRxOOs8WZph552kjhSv/aSBV2ojWtcM1LtH71 w33m0x85wmz8/I8T29x3j9zb6qzbwpWtTWxx8gVGrHBtzH34MKI81F64ItoQVFGiLU5UxonCtKIz C1GZ1b5bX/8grt1Fq6OKNSUlapCowx5QsMK80T+EahD2NbH/p8rCzglznCycrSC26Fajf1UWdk6Y 4yRzrwWxRbca/auysHPCPDx5M2Yg9nxOZ5VwDnJ4HxP/57Wqp9JGCXP2Y7Mvu+qptFHCvJXTWSUG IzsjC9ixJ5SxpcrZODC4KL1ixB5eO/c1rts8snGK3uPKeZp8+MZhwnXFQVMH+7dfMuF625rtojWN cM1LtP7FR/rMHZfWS7i6uS9cv6Iuc18dqb1wBQRXJ6KSz5W9GFPcvtu4FOik7Z1Gq3EM3THG2cUf utIO8kfP6Tc/+tGPmq+vWn+WHTzOesdFw95fNTv1zPPt5L2kf3PzNfp54tINdtL78EeuHfb+qtn8 pafY/gXP0w9+8ANzxOzVZtTEReYLt9w67P1VshdeeMEcecJqex0GzxNiZ58jVpi37LXU3H///cM+ UyX73ve+Z/Y/coUZNWmpufGzn2u+/vDDD5vx+y8zkw9abh577LFhn6mScez04Y+nLDb33HNP8/Uv 3XGX+ZM9ltm+8x0EP1Ml++pXv2r+ZPoSe644Z+71j19/gz2nXLtcw8HPVMkYO0ZNXGLvNe459/pF 77/M3pOMPcH3V80YU5j7Djt2+bDztP7Ud9j+MXcE3181Y07gGacnLFjbfK05941bYuf+4PuzsA/e 9H2v8ExrYeGKvXnqCbZ/O+8xvylc7ztlujlg2t7mv447yXxo7qQRIjVsFGMKilbskc9c4u1bK/ve HW/1is609tjH+8zdl2cvXJdd+GlvP4oyfJRDjllhr8NP3/Bnzde/8Y1vmOmHrij93NeL9IRwjSJO VMaJwjhR6URfXHsS0egjbTGmuHZ+J+1RKdCuHYv6/e475Bjj7Nvf/raZcvAKs8Meq82ll19lHczL //RaM+6AVWb3/QYHD9/nqmJ/+Zd/ad68x1Kz27795rpPfNr274L3fMjstNdqs9fhK22k0ve5qtjN n284lw0neeJBK80XvnCr7d95777EjJ6yyhw+e8D83d/9nfdzVTGuRZzLfY5cY+68807bv1PPusA6 LHMWnWyvdd/nqmJnvP3CRl/6zZHzTrF9w5asPtP2b2DDFu9nqmQLV55q+iYOmIWrzmr275j5LLYs t/eh7zNVMebuo+cN2P4RvaNvt33xdnPwrAEzavJy87GP3+D9XFXsb//2b80BR60yo6etNe84/wO2 fzf9+efNnjP7zRunLjV3f/ke7+eqYr65jzmiznMf/cxz7rviCz/0Cs+05hOuk2ZuMP/fuMVm1IQT zSmzZpprTppg1h82xYyauNTsP20/85X1071i1dm960eKVuwbf36Ft29R9v2vn+sVnWntm9dvF615 CFdfX4o0/BQW3asy9wWDQVH6os70rHB1ojAqvdUVY9q2bdvQK8OJE5VpRWNcO20cHxew78KNS4FO m+LcTrS6nRvry195wKZt9O12gukbM69hc+3PvF4Hrr/hZptO27fb7KH+zbPpp099d3h6bRVhAegD l33Mpl0O9m+utYOOO8X86MfVXxlkr9aZ5zQmuLELB/s3dI3OWni63UtYdUj3XnHyeaZv95OG+tew 3efb16q6vy4I54hzRZ/sudv1ONtXzmmVn5Hp4B7jXnPjJv0bPXGhvSejFmerBGMkY6UbV7g+d5i6 2I6pdWD43DfYv/rOffTvhFznvqJShTGe5brrPsvsPlc7rgxdo9OmHmY+u6J1mnCwGFPY2kkVzrMY U1C0Zi1cu50qDARn7NxekbnP+dbokF6kJ4VrnCiMi2S6x8ZEfZ7P0N5K9MW1txKFwUhmlGht9fki ijW544uKVreCPQcUqWA/E/9WuaiID1aX2bNF/9jPy/dUF7geHnv8CbtXi8gPe5iqXDQlDAKHPcoU i6GKMHsL6yBaHUzS7Oehfxj/r4NodXCuOGecO65RzmUdRKuDe417jnuPMYZ7sQ6i1cFYyZjp+hfe T1913NxH/+o899G/vOe+IoWrE69TjjjVnHDwIebE/aeb84+bar568nSz9W17t7Qo0Yq1I1zzLMYU FK11FK7APFCFuS+Nb10Xek64xolKRCEXBdaJKEzbHhSVcaIwarUl7vOu3dc/SNseF60WQgghhMiL ooWrszvfucz85rJDEtkrHzjQK1idJRWueRdj6gXhWgXkWw/SU8I1TjQixFpFMiGpKEzbHvX341Zb 4lKgXTsC3UfaFOi4aLUQQgghRJ70inB94b4TvKIzrVGMySdaMQnX4pFvvZ2eEq5xojFpJDNO1Ea1 pxWVbrWFC9dHnKhM206/aI8q1sTnOT5MolUIIYQQ3aAXhOvrv3rSvPZwXy4W3tcaNAnXYsG3jguq tQLNE3wMXJiqbXfqGeEaJyqTFmPiAvIRjFTmIRq56Dg+Ll5fH5yoxHyfJ9oc1+6+o07a095YQggh hBBZ0BMR19eeNOY7fbnYX3zUL1oxCdfiwJ9O61ufe+Gl9nnlT3yjcb2EuPhDV5mDjl3jbSsrPSFc 40Rh2sfKONHY6WNj4kRlnChMKzrBtXea4uyOLypanZQN19xnTnzf7ZnbC//086G/0D1++d9/V+v+ /d3/75e59e+Xv+n+w/d7oX++Y8vCytC/x7//T95jy8LK0L/r7m041p5jS2sX3vSo+lcAF33uMe/x pbW69+/ae7879BeGUwfhet4Zm83tj78w1CMPNRCuDz/9w6HOdJey+mbOt05TjGn2gnX2sW8UJgzT qq2s1F64UuwIwdVpemtaURjXnqTCb5wojBOVSdt9/Ye4dhetbpWKkIS8Bo5Hv//S0F/oLupfZ1YG UQ5l79+zzz5nK3Z28ughLTp0bmXpn+/YsrAy9E+LDp3Zhqu/Vuv+tRLl7QjX486+30w/7gJz8KpP etuDVqRw/fxH39v6/FVcuL7zY3cNdSQd3//B8x3PfZDX3BC1qJKUrIoxSbhWEARXlGhtFcks4rEx ce1xqy1xotKlMOdVrCmrDeNabe7M0g6MWZHXwN9ytblA8upfFosOr732mn10xoSDVpu+cUvsBN4u Ze5fFuTVP2Vy5I8WVTq3MvSvW4sOSYTr3POfNAcuv9bsyPNlJ/Sbnfdc5H1f0JQqnI1wRbT+/N/S PdKFgBRz39TD1nQ895U1kyPLYkxJhSvf59nnvM8+rgq/Isi99z1g5i/baBcJuk1PCNcokkYyoy6a tO1xojHpvttO983Gtbvn1UZFq2nj+LA0N9aXGuLEd+OntV5ebS4SLTp0ZvQvLawwz1qwyT4sfeIB SxrO16q2J28tqnRmyuQohjqLci06dG5xc0OccD3hnMfM7gedYv7LuJPMH01aaPomrpFwDVjewjWt aGXum70o3dxX1kwOfPMsfGtHO8LVfqfjlg57L68fPW+9GT15mbn/wa8Pvdo9ela4OlEY91iZTiOR aUVj3GoLr/H5KFHp2jFfOynMce1OeEcdf6todVKUwte5laF/SuHrzLJaVLGrzQcvtf+u2/ROOwG1 M3lrUaUzq3v/lMlRDHn1T4sq8cL18HU3mVFjZ5vxh20ye86+wI6dEq7bLU/h+oN/+NlQBzon7dxX Vt8zK986iBWnE9eYo+astv8P2p6HLh0maq+57jONn1eYeUs3NTNBn3vuObPzjOXm4FlrS1GBOHfh Sie3bt1qnnzySfP888+b119/fahlOLz+8ssv2/c988wzuX45aYsxxbXHico40Rh34Raxr9a1x6Uw R0Wrk5LXwFH31Wal8OVPFfrHOPnSS4NOHOk97UzeWnTozJTJUQxadOjMssjkyIK8xs6kiypxwnXe BU+ZIzd90f5/nwWXSbiGLC/hmlUxptdee63juQ/K6ptl5VsHscJ18ilmz8PXmH2OHBhmu++/ephw 5W9POWS1mXDgKvPiiy/a19713ivse057+0X2526Tm3BF8Fz3yZusQh89caHpGzPXjNl3pVm+dssI UYpoPfOcS+yX2LfbbPPGyfPt55767jND78gOxBgnhosjShTynihRl1Y0xrVzTHGrLXGiMqv2qL/v ji8Yrebn+772gB04uAFYpIgjr4Ejj9Vm+vOlO++x/eNf+htHlfrHYhHnjf5xHllEiqOsA38YrnMW zz514822fw//1SOxC2NVTOFrZ/Ku0qID8wMLmqysY/w/agHUUaX+4YDRJ84bq91cq1Fjs4P++Y4t C8u6f9xr3HP0j3uQsSaOvLaPYFn3j7HSzX30L8ncV6VFB+Y6N/cxRySZ+8rQv3aKM0m4jrQ8hOuV t+STZtqucM1rbkibyZFVodMwVrg2vp9PfvqzdrwKmmtzwpW5Z+X6LfY15lvmp7fOWWd2nL7cfPNb jeutBOQmXFHqY/ddbBU+G3q5sGYcsdb0TVpvBjad33Q8+HfjmRfYjfGHHjdgtpx/sVm3+Xzzphlr 7YbrLDcCp41kBiOVaUVhVLtPFAaJE5Vx7UlToKPa3Y0VjFazwMAKTd9uJ5i+XWc1Fym+/JUHbLuP Kq020w/6w6LKYP/m2f62WlipUgrf9TfcbHagOIU7f7vPNwcdd0rLCn15DfxZi3Lusw9c9rHBxTPb v+Ns/2YtPL2leK1K/4K0M3nn1b+sRTlZKyxqcs/Z88c9uPtJ9rVW4rUq/cNBWXFy47w1xkzXv9GT FttrNmqOqJIof+WVV+y9Nti/xrlr9JGxhjEniir174UfvmjHSts/xpbGdRo391Vp0eFb3946OLfb /g3ODXFzX1kyOSRc01nWwjWLYkxRtDP3lTWTI8tiTGHC4jSIr+3ue+6z+1nZ7/rgXz5kRSviFRFb BnITrnSQ1WMXyofHHn/CfgGIWfc6q5MM9ERbUf/AhH3q2RfZL5MQdVY4URgVgk8qOtOKxqj2doox +YhLYU7bThvHx/fo+sA549ztuOdq+5BjFzlg4YEJjveHqVIKn7s+Sae49Iprbf/edu4l5g3T1kXm +1dpNf2hhx9t3JMrzMSDB5r9Y2Gpb+KAHbQQDmGqlMJ34023mtFT+82+R62z4xGRn0Wrt9j+saro u9ertOgQJOnknZcoyGPfIBUOKboxd9kZdmIl8nPw8Rsb/Vxhz6ePvPqXx6LK8rVn20VbMpHoG32c NnNtw2lYYZ0HH1XpHz6ALfTROH8sThOV5JyNPXCd2XmvleY7T20deudw8upf1osOiHKbUdYYX7hO XVSZuS+YZhekSpkcHP+Ug1eZXfYdaM7tbu474Ji1tv9hyrToIOGazrIWrnmJVkg695U1k8P51ljW ohXaFa74tYxt7Gs99cxzTd/YRYkWBYoiN+Hqw4mcoKBhIqOMNRdeECYBviwqWfmc53aJi2Q6UZjX Y2PiRGHafbd8hvZO99XGRZv5+75oNRd739iFNkruRAD/Lu4/w94MYeeSmxsHCSc3a8ta9AA3K9dh cAGF73iwwtpI55Jj8B1bFpZH/+yA3+gfKW4OHBIcE59zWaX+cR1SYGD0pKXDKuHhkOFY+hZWcP58 x5bWHn3upVzOX5Akk3de914e/XPzRXChExB4zBm+hZU8+5c1blFs5ux1w1LDSM/iPPoWVqrUPxaq iR7PWbJpWHScfVIsPJBdFSav/r3wT9nXzLBzX+M6ZK4bOfetsOcxTJX6Z+e+cUuH7Wtzcx+vcx+G yat/nYwtEq7pLE64fu37v05sv/7tH4YOOB+SzH1cQ2W6Ph1RvnWWtCtcgfGZcWy3fZbbeSq4BeLd 77vcfs5lxN508+32Z/6FJ77xpP3ZNwZmQaHCFScYZzg4UdtJrDEIhi84V8UqamWvHYLprT7iRGFc u3tsTJyobCUKOb6oCzftvtl2UqB97RAVrSYNPFw6G+yCROOip72qNAVqQ/jghAVxN3VZNqt3ghOo 4UEJlq6Odr6qghOowWwOwIk+dn6081VVkq46VwUnUIPVDYFxiEWHqKhWVbACtXENhhdt2QNKOm0W c183iZrbibxyXrNalO4Wdu5r3G/BRT+o1dznefxFVeY+Cdd01kq4Pn7LCUMHUA6qPPdF+dZZ0olw dXqtb8qpwxYfyaQhbZhMIecfWn9x8in2X+A8UMU4rzG+MOGK4zGY/jt8pdV2uDGJhb80XwpxJyAE uSi4OHyiME5Upo1UxrXHrbYUsa/Wtfv+PrjjC0ermwJg7EKbRhTERcy5KaqKS5fwCTucFfoXdjqr hBMAvnvMVpFr9K/KIsgJAN/ejP6Tt9j++QbyqlI34RqVjcOiJ4ufvvuySlgB0Ohf+HwRXXbVH9PM fd3GXo+NuSF8j7lF6TLtmeoE6/DVdO5zzmnk3DduadNJLSsSrulMwjV/onzrrEFgMh75agZFtTWz Kxqazbc4x/3vPsOWM34HkVbgdRbuwp/LisKE6xfvuNfsuMcqc/T8jcPSoqJWLbMSrsBF4RNlWUQi 04rGuNWWOFEZ1+5SmDtNgW4VrXYOpG/y5mder7Jz4hxI3+SNM8Z1W2XnxDmQvnvMrpg1+ldlYe4c SN81WBeRxwTBNYjtezgPYe83hxwzeF0ijFoVMCo7gyX4V4y4Bp1T7Rt3qoRdPGn0L3wNci9yT1Zd mHMNco/ltSjdTVpdg3WY+1pdg1WZ++KE6+x3/JXZbf/VVqy+efpJdi/2H088wf68y97LzLFn3ef9 XJHC9SvXvMvcf//9kfYXd3/S3P/ZFYnsb+7czytQo6zswrXV3HfqWReUPpsjz2JMWeAy1sJbdcpA IcIVFU5xG1+V4CgH0k1ueaZLpRWdaUVlXOnrOFHp2klR9hGX4hzXHndjJZm8ichW1XmOnbzHLa10 OlgrB9IK10b/qpwK3cqBtONOo39VToUG0mlnzBxcfAgb916rysllJ2rxxI077J/cutVf4KcKRM19 btypeiq0XZRu3GNRwrXKqdDNaESLua/KqdCttpHURbgedeod5k3TFpgdpi0ZYW+cfKI54uSbvZ8r Urhe9/bl5rLLLkttl1xyibnrEyd6BWqUlV24Vnnuw+/Gt47KBC0DditL4z6PKmLZTXIXrpRNp0ri 7gcMmAcfGvmokijnJOviTGGSRirjRGMSUdmJKIwTlWn31calQPP3W6UwQ6vJ2+1Pq7KwazV525u6 4ZSFr9sq4VbUfA5y1P60KoGoQdz4HOQop7pqsCiE0PFZlUUr2JTE8StGOMit7ssqERVRZsyNSuGv ElHCvFUKf5XguqR/4THE7eEtu7BrRatF6agU/rKRJFWYqGqU+d6PVVG4nnfeeeb2a+d5BWqUlV24 VnXuS+Jbdxu+20WrNpv9j1rt1W3dJlfh6kQr5e+jnms2WHlw5CQ2uP9naaaPw3HEicK07U40Iux8 7bRx0UZduHnvq41rh7gUZsdgqvfIR1PYBYnG5Bbcz1w1msK8cR2Gi/hEOWVVwgmAcPEpVtcoiFN1 YeeEeVjgbI/YjSy6JcqDEwDhucFF7Kou7FwRn3Dxqag5sWpECXMbsWuMLeF+V42oVG8793kW46sE jisFWXxzQFXmvnb2uLZjVROuiNZ3vvOdtROuVSWpb91tyAQNL/iXhdyEq9sfyCND+tefZQe5oLkH WPPlHDnvFPtcxf4N59hIK9EsxK7vcRVpiROVeYvGuNWWIvbVxrW740uyYdwValiw8oxmSrDb+8oz e7/5reGrtVXDOV/Bx/3gLOM0Vz3iA9b5mrBq2ALRs88+ZyYcVP2IT9P5ajhZwT307tm1VRcGdad5 n+23yjz99OB8AcwfVRcG4AR4cA8RY4wtYtgYU+lnlWHsZw4IPkWAe5K5ggWJqmc7uKwiX8XNOiyK uayi4NxXpWwHCdfLzLve9S4rWiVcy0E7vrWIJjfhagf13WabvjHzTN+us4bbW44Z5nS88MMXzUHH NcSrfe9x1nBYnLjNirSiMwtRGbfaEvd51x6VYhDX7lKYo4o1uX2327ZtG3qlNUxkh52wwS48sK8A Z4uJm1LY/RvOyyXNu0j4LlhA4aHrRAgQeLYgVUPs8TD2qPNUFdz+cx6aT5U4IuQ4Jm+YusZccvm1 Q++qLrYo3J6r7UIYIp0U6BlHrLWvuWeOifJiM28aY8u+R62z545zuMu+A956CVUDsTOw6XzTN2md rV5OX3kG6JtmrLHzYZUXjYCxf/6KM23/mBMYOxF5jC2zl5wRWduhKpCOePyizXauc3MfzxZmbqjD 3MdiyoHHrm/MfQN27qN/VZr7el24XnjhhU3RKuHafeIeyymSk5twZeWRvRFRFp6U+ZnUMAZH/s1j 0k4qCvMSjXGrLU5UEpX1kbS90xTnTquc/ejHP7HVolmFZWGCCAKrtHWJZrGAgmO5055Lm4sqOJlu lb3qkMaPWN1h6iIzatwc+39Ea9VFueP6G26252zUhPnmjZNOtOeS1+rCL//+i7nY7/5794UT99iZ 51xix5S+3U4wu+612IqgrBc1uwVjJCKHxTEWesfvv8yKH8bUOoC4m7vsDJuyz9g55eBVNuJa9f3X juH9m2X2mNlfq7nPze277bPc9q9Kc18vC1eKMbkU4ToLV9+8lYVte/GLQ38hG1ik68S3Fn5yE65l I2kkMq49iWj0kbYYU1w7v5P2qBRo145F/f5WKcxxcGOSOsSiBCu1dRE9DhwUHh/jW3SpA0TOKZqy devW0u5rSAPnjL7Rx7o4zfDCfSeY73y6L3N7+No+809/e9vQX+kuOMmMKdx7jDF1EQUOxmzGXfrH vuyqR+rCcL7oF/2jn3VZ8HME+1fHuS84t1dp7utV4frBD35whGito3BFYPrmrizsW7dl17+0vrUY SU8I1zhRmVY0xrXTxkXLxeu7cPPeVxvXzjHpxhKiWvzD46d5J9209tjH+8zdl5dHuAohRLv0qnD1 ida6Cdd//9dvm2dvm+qdv9Iac1+W/XO+NTpEZEPthSv7UhFsnUYq04rKuNWWuM8XUaxJN5YQ1YKJ 2zfpZmFM3DgnEq5CiKpSF+F65ZVXJrZgMaaw1Um45iVa/+Ij2fbP+dYqxpQttReugGDsRHS2Iyo7 FYVJRWdUJDRte7vFmIQQ3SXP1eavfni7cyLhKoSoKnUQrrdecrq56667EptPsDqri3DNa+5je0yW /ZNvnR89IVyjSCoaOxWVcastLoU56vOunaitD9feaQp0p8WYwoQ3tmdlOOhlwHdsWVjd+/f6b8ux H8p3bFlYt8h7tdnZL14ux6OsfN99FlYGft+4R3zHloWVAfWvcysDVe6fhOtwy1K4Pn3f5qFvuVjy 3h6TVf+y8q2Fn54VrnGi04nCqMfGxInKuNLXcaIybTv9oj0qBZrPc3xYWtHqGwiysDIIn7wGSsRH nfv3wn2zS9G/vIoXdat/eRZjKoNjEiYvkf7f/vryob/QXfLq3y9/XI5oufrXmf37v3Z/0QjRWuX+ SbgOtyyF6+9eK37uy9PXDIrWtP3Dt261PVCkpyeFa9pIZVx7XOlrJyox3+fT7quNa8/qxsozZbEM oqfu/dOiQ2fGNdGN/hW12vzYF2Z3xTEJU7dFhzB59q8M5DV2/sPj9V5U0aJDNki4DreshGs3MnHy 9MWyFK340xKt+dNzwpUIKoKu08fGxInKOFGYVnQm2Vcb1+6ODwGfhrwGEq02548WHTq3bvSvKqvN WfHf/voK77FmYXVeVCmLKFcmR2dW9/4Vuegg4TrcshCuL/2gO4sqec3lwZoOWFpR7nxrFWPKl54S rlmKRl87xInCtKLTtUet5sS1uxTmtDdWXgOJVpuLIa/+lUGUQ536V5XV5qzohUUV37FlYWXonzI5 OjOu+Tr3r2hRLuE63NIKVzJxukFec8FfXj28f2m3x6gYU3H0lHDNSjTGRTKjRGGcqEy7rzYuBTqr DeNabe7M6p7ipn2DOfEPp5nXn2g47Rnbj28fPnF3azU9TF7nT5kc+aNMjs6tDP2r06KDhOtwSyNc u7Z95Jdf9M5dWViW22NUjKlYeka4xonGpKIySjTGrbbEicq4fbNx7S4FOqqdNo4PS3Nj5ZXChzNQ holbKW6dWS/0r2s0hKvPsUhr//Tl7RN33Ysx1T3Toe7906JD/tRNlEu4Drc0wrVrmTgN4eo7tizM 9S1t//DNs/CtRXJ6QrjmLRrjVlvy3lcbl+LM8bfad5sUpfB1bmXon1L4OrOui/KchauKMRWDMjk6 M2VyFEPdRLmE63DrVLh29bFoBQjXtKI1C99atEfthSv7UhF0UaLTicZORWXchVvEvlrXHpfCjIBP Q90mtiBKcevcytI/37FlYV3vX87CtQyiVfsGOzNlchRDLTM5AuQ1N3RzUUXCdbh1Ily7vn0kZ+Ga VTGmtL61aI/aC1dAUHYiGuPa+b1xqy1xojKr9qi/745PxZhao/51ZkrhK4AchWsZRGvdF1Xqnumg CtCdWVlEeV37J+E63NoVri/8VQkyOXIUrmlFudseyOMvRbH0hHCNIq1ojBOFcaIyrj1uX21cu7ux stgwzgSUh5UF37FlYWXBd2xZWFnwHVsWFsWLL75oXnrpJfP6668PvZIzrzeOJQ8rCb7vPgsrC75j y8LKgu/YsrAy4DuurMwHjvDzzz9fmEPsO66szMcrr7xix8/XXntt6JV8kHAdbl/60pcaJ7txTtqx MuA7rgwszaKtijF1l54VrklFY1R7t4sxxbXTxvEhrnVjCZEdn7rxZjP+gBVm+qErzTXXfWboVSGE SAeibtaCTWbMvivNghWb7RamOvHCD180B89aayYcuMqs2fD2oVfzQcJ1uFnhKlLjfGtMvnV36Enh mlZUxq22xH2ez9CepliTE96+dv5+XAqzEKJ9Xn75ZbPPkQNmpz0Xm77xy837L71qqEUIIdKx5fyL Td/YRWb05BXmrXPW5R6VLBIy11au32JGT1pq+iasMrMXrBtqyQcJ1+Em4Zoe+dbloOeEa9xjY+JE JRduq9WWtPtm49qTFGtyNxYCXQiRHTiWoyctNguWb2w4mAslXIUQmfCdp7aanWcsN8ctOMVGXOsm XO++5z47di5atdmOnRKuEq5VQ751Oegp4ZpWNMattgRFZdpiS3HtUas97vjSFmOqOvfff38u9uyz zw79BdFrOMdy9qJN5vyLLu1YuJKp4bu2srB/+7d/G/or3YP9eb5jy8KEqCMslC8Z2GJ22nOpuf6T n66dcGW/7tHzN5oph6w2N3zmRgnXIZNwrQ7yrctDTwnXtKIxbrUlTlTGtbsU5rh2BLSPYDGmXub6 6683l112WeZ24YUXmocffnjor4heIuhYPvLoE1awdiJccUTzuj7f9a53dX0MZ+zJq3/nnXdeKmH+ i1/8wmzdutU8+eSTdpyMGueFKJpbbrvLRiPXbT7fPPfcc7UTrpd/5BN2vHzXe6+w95+E66BJuFaD LAudivT0jHBNKyrjSl/HiUrX3um+2rh2VTkb5NZbb/U6vWntkksusY6zhGtvEnQsETydCtc8F1Vw Tro9hucpyulfJ8KVys84zhSFGTV+rukbM89Gfk49+6JapWKKasKCCtcm1yRzOBkLdRKu9Im+0Uf6 KuG63SRcyw9+N9cwgSuJ1nLQE8I1rahMW4wp7b5aUphpx6JEbasU5l6BVEKf05vWPvjBD1rRyuAv 4dp7hB1L6ES45rmo4pyTbo7heYnW97znPc3+dSJcibKOGnucmTl7nTnt7ReZ/pO3mIkHD5i+iWva XngQImsGCzItbFYor5NwZZFvsCDTYrvHFSRct5uEa7mRb11Oai9c2XeaRFRGiUbauGijLtw4UZl2 X21cO8cUl8LcC+SdougGfwnX3oP0Nhytd5z3Hut0YedcMOhs8i+pfXHktajiMgHc9dmtMbyo/nUi XKkEzSOMgtkyNnVxQr85dv764p7FK0SIp59+xorUI+edYr761a/aseXLX/5yU7g+8sgj1jepKg89 /KjZYepiM3/5ZvPQQw/Z/t12221N4cqiUl73n4TrcJNwbR/51uWk9sIVWPXrRBTGrbYkqfDr2qP2 U6Vtd8fXyxvG8943GBz8JVyrAVFSxAkRNZ/hMCYBp/HoeettdA5na5hNPsX+++Zp880zz0T/PhZV fNdWFhYUdVg3xnAiRL5jy8LC/cuq+BRCtm/8CglX0VXsAkrjOhwxtjDejF9u+nafb8698NKhd1cP MhxYIBrRv0nrTN+4JWbUhPltPwvbFWqLs3dc9bhXeKY1Cdd0+M5VFpZ14Uz51uWlJ4RrFElFYdRq S1LRGZViENfuUpiJCjs4Hhf1+eu//mv787Zt24Zae5O89w0GTcK1GiBO+8bMHekwYQ2nMGmaGvc2 jiPvD9qhs1baZxHy79LVZ1ih7CPPTIDwogpW9BheVKaDs7TFmYi+vvjii2bWwtOtMGjXaS4z9M3N DcwLovw8+NCjI8YWbMfpK8zkg1bY/3/5Kw8Mvbt63HTz7SP6hnHv7XnoUvv/p76bbBERECi+scJn J7/vK17hmdYkXDsnr+0y73//+zPtnwqdlpueFa5xojFutcWJyrh9s3HtUftq+ZxrJ5qL03XyaefZ fXbOAZ8xc4X56DWfjOxDL1DEvsGgSbhWA5yhcJQVs88QbDhN3Etp4HdxD/JvK4pcVMGKHsOLFOVY p8L1iW88aQ46do3Z58gBM/6AFdbO2HJRLaKtZJyQzk7f3NzAPMFriiZXj7oVZwrDwgrXKKK1HdrN 7JBwHW7dFq7tLDq0Y247SVb9Y0uJE6297FuXmZ4UrnGiMm0xprj2uH21/E3aMdeOEzJq/Il2Mjtu /oA5/LjlZoc91phd9l5lvnb/1+17eo28B0Lf4C/hWl1ckaXRk5aaxx5/YujVzrDCdczclsI1z9Vl 37WJFTmGFy3KsTTCFUeZAk17Hr7G9O16nBV6VY5mOT73hdtN326zbd9cRGuXfQfM6Kn95sabbh16 l6gKCLRd91psDp89UF/h2hg72xGunWR2SLgOt24K1yK2k2TRP3z3VtsDRTnoOeEaJypp46Ll4vVd uD5RGSSvYkw4XlTl+/Wvf22P7Uc/+pHZeOaFNl2RfSS9BhPZlVdemYtFiVZMwrW6DO5rXG5mL9qU uuCJi+j+6Mf+lMyvf/3r3msrrV1++eUtr8+ixvA77rjDe3xpLa5/afe4spr+0ksvmU986iaz456r zYQDV9nU4Srz/R88P6L4lF1YmdBv5i3dFLmVRZQTxCp7X1l0qOO5YwGR6/OLd9w79Eo8nSySSbgO t24J104WHZJacK7Ion9x2wPjYBGRa5v7t9WiE34D78PaSZUXg/SUcE1bjCnu80UUawreWNY56TDt 0W1oz9qKWiGmGI5v4E5rn/3sZ4cN9mErwz3CROD77rOwMpBH/6jUuf8Ri0zfuKV2csmbb3zjG97r K61dffXV3uvSWVbFi+J44IEHvMeX1orqHym0FGZi/Gz3eiBi5LvG0hq/Nyse/qtHTN/YRbawWLuL NHn172//9m+H/kJ3Uf+SG+Pm+95/ielfd7o57ex32QWSoqPAnYoeCdfh9r3vfW/oGy2WvERreDtJ 2v4537rTYkyvvPKK2f+o1bboGH4Gj7nygW/PgiLjcxbblnqRnhGuQVGZRBT6SCo6o1IM0ra7DeOu GBMXPBUJSSNuh7wGkm9+85tDfyEdRA6YfKMK3kA3hGtWAz8DHP3r1AHI6/xl5XgR0aJ/ne6vy6N/ /WvWm1GTlzcfgp833RCuRY7f3RCunYpW7rPwvdasFt1wHhB5SckzepClIBhc1Fxhn1nbDnmm9GXR P8aUrVu32kJUncC45Du2LCzL89cpiE3fsXVi73jnOWb6AbNN35h5NhW9b9dZ9t8ohzwP0my3kHDd boxZWcDczv2XdG7Pa6wMb5e5/fZ0i9Fh37oTGJPYfsL+dOyAY9ZaXy8Mj8/bac+lZvw+8yVcO6Rn hGucKIxbbXH7YqM+H7dv1rUnLcYUJrzvlv9TgKPdVLe89t3dcsstmUzcjzz6hDl6/kb7GIBWKdBF C9csBn4WPO697wE7oLHHh3SSdsnr/H3ta18b+gudw2RGepvdQ9hwcL505z1DLcnJY6K79NJLzZxF J9u0+nYXeTqlaOFa9Gp60cI1zdyEiGO/IBWEES7YqWdfZN4wbcAcMXdj4oUMxre8HLFOhZgPt5eb yrQ8RzMpZRflzHnL124xoyctNvOXbRx6NTlVWXToFPrnO7ZOjH3m4/c+wfyXSSvNwW890dz+pbvs fcM9xBxWBGkXGSRcB+1DH/pQ6kyV4Nw+auxse27iyHIRJWjhGiTc02n6F1fTJilB4Tpn0SmR2V0s /PTtfpJZ0u8vFInYxXdi3iLDgcUCMZyeEK5xojKu9HWcqEzbzs1Ce1SxJto4Poz3MogwgXPRtyN+ yryazucRFaxE7TB1kX1kSauVqCKFa9qBEXAmcZZ5GLvtX0NEMTC1Q14TQRaLDgza1qmcuHCwfx2k YOZXzOhis9OM5Xahh3uoCIoUrmlXmzuhSOHKfuE08EiO3fZZbvp2O2EwaoTtPt+Ku3b2F+UlerJM MWVx7G3nXmLHl3Wbz4/MDvKRV//SinLmO+Y5Hg8zODcMtF2RFsravyzIWpTPW7DCOt77HDLbLuoX TRb9kXAdtLS+S3Nun7DA7NyYR6kIHSdciyjGlEX/8M1d0CqNaIWgcL3ovQ1x2rh/wjUG3HsIXpz9 jgtHCFfmo8NO2GD63nJMc55isaAORQSzpPbClRThVqIxrvR1nKhk3yvtWFS7i/Z20h6+sbgJzrvo isYFv8IMbDo/ccpG1hNb0LJYbWaFadTY4+wAeZbnhg5TpHBNO/ADjtcbJ821zuSaDW+3/WtHuJY9 hY/o+JunL7CriTiV7QrXvEQ51/yaU7ZYZ7fdtMkgz1y1wTx86p6Z29dOmW6+/IUbvdeiz8LCjv5l cX22S1HCNav+cf+wes09hzHetJMynmemSpZc98mbzOgpK+1zatvpX15zQxaZHIz1fzxhtpm/4kzz nvdfZseWdoVrXv3LatHhmxed4B0f0tqfnX2i97hbGRGtSXsfYxchP3fz54eOsHP++0+eza1/N79j obnmmmu8duoH7/cKz7RWJeGahU/PvDl238U2sGDn9hjhSrrtn//5n3vPSVrLUrTiT2clWiEoXB96 6CErThH6pAY7yFjg+8NPYh4K+rloEbINJxy02vpOfMd857vvv9r+3jIskJWF2gtXQOwlEYVh0orO JPtq49rd8RE15j0fuOxj5g1T15jZS84YVkUyjrwm7qxuJn4PVZMR4uEb2kdRwjWre4IqcqTtcQ7p VzvCteyLDsBK4Xee2mr/365wzbN/f/M3f2MjrTvvtbJ5fO3yw8+/3+s0pbUHN+5hbu6far5082e8 16LPwsKuG6IVihKu3epfkDJnOgS5/oabzZtmrDX7HrUustq1j7L3j9/BQgOLx4wp7QrXsm+PyUvU fWlgmrn+9LneY29l559/vtl1jzlm7D4NUfixT1rhwveNs81WnnbJs39fuGCVdxzBtnz0Ma/wTGtV Ea5ZbR958KFHm9vRkgjXH/7wh95jS2vcb8H+pfXNnG/daTGmMEHhykIpi/kEmNyecMYvnmiAmMUX Cfu5dmzb/aRhW+TwhzstIlhnnF6t/R5XH0FR6COt6HTtUas5ce0uhZkbqyla29yXBWVfbQ5TFuGa 177BdoVr2RcdwrQjXHH88uwfK5aknc9ZsilxdkKQXKMFDdGKc9KpcM1a1PH9uMJa3F+txpgihGsZ RCuLKr5rKwvLQ7ROm9le+nPZMznCtCtc88zkyKJ/eWZyML50Ilzf9ra3mT+ZtsDsMH2FTVecdOCy wboFDaeaBUAyF5KSV//uXT/Njp0SrsPNjZ1cn3lQFuFahmJMYcLC9ZvfetLsOH17QUieHc/+fOeL hP1cu/e1IXQPnbXSfs/O9nvrso62ltWZnhWucastcaLS7Zv9/e9/P/TKcOL21bp2Uph9hDeM/+nV n7KilQeTk0rLReyM9IMop7zsq80+wje0j7yFa577BtsRrnmJuqwqQPuwk1tC4ZpX/1hU4fpkEthh yoKOCor8r1+/kptovW3NoGjFOhGuWS+qMH6cec4lgw7qrseZN05uvQc0b+FahrmI6yfPRZWs4HmY PJOW/fObzjhv2NyARS1AVCGTI0w7wrXs/cs7k4OxpVPhyp5wHPAb/uxm64ewoHXtJz5j09CTVmbP q39OlNM/CdfhxtjJNZ/Xop+d27ssXNP2L6tiTGHCwrVZuX7cUnPb7XeZleu3NL67RU2/iLE56Oda v3BC/wjh6uyJb7TeV9xLFCJccYpuue2ulg/lZSDkZuBkIsQQJnkRt9oSJyrjii3FtSN2W7XTxvEh rt2NxYXLgNEsSx+0Xd7qHUjKvtocRfiG9pGncM1z4IekwrWKiw5gr9UEwrWIfYNMIJ2OJXmmuAWd k3aFa9aLKozPG8+8wK7qzjxutY1Sc40SwYsqaJWncC26QnIUeYmerDNVbEra7vOHF59qzg1HRt6H efUvr0wOSCpcGd/K3L8iMjmwToTrU089ZZ3v8L46qp2yb2+HaUtjx9R/fepr3mPLwoL9k3Adbgi7 PH0X54d2U7im6R++OfMZlqVohbBwBTQP8ypVhnkCSHDRJ+zn2p8bwpb5V7Qmd+HKSp2tSDZlpY0W uhMahAGRYhJ24kWYNf5lcCT9KWviVlucqIwqxsRnaMd87WmLNUXtu+VnBosoC0dcmbj/4i/+woqD rC1P0QNJhCuD4+OPP5653XfffbkO/JBEuPId+777LCzv85dEuDIO+I4trVEMJov+5ZnCF3ZOHnvg K95r0WePPPJI5tcnxSPYdxN87hxbE+wK8fgV3uv06aef9h5fWsujf5Bb5HzDAd7rMMqyKFYUBofJ Nyc4890Pec0NeWZyQFLhmlf/slh0KCqTA7v13f3efkQZ15ITqOHCMjjcON7h18MUJcqxez640TuO YBd92i8801qRwvXeq8719i3K8go+OZIIV/xX37GlNQoepRWtPt86K3zClb/F4i/ZksH9rhD2c+9/ 8Otm9ORl9tFtbh4Gxm8WipiT8fMJ7AWDgIyJ/C5X14A9yfzczpaRqpGrcOUxBNMPXWkfcUIp++AJ dfDls2GZEDkVV+/72gN2D8XEgwfafg5dHHEXbpbFmHzt4Nqj9sW644vad9sLhG/oupFEuFaZJMK1 zBSR4ha03/7qX4b+cnew+4Abk2r4fnMigeIQ4YWxKpHnIsQ9W44d+iuiCJIK1yJhLucZl4znOI1x FJXJgX3zUxcO/dXk0B8e40GkCAfZwZ499rjOnL2uZWHIokR5XP8+9uWXvMIzrRUpXJ+755NDvSkH SYRrWcnbt/YJ1+YC8OQNIxZ8wn4u7x3YeI59jYUjvmvsrXPWmTF7nWh/J8ePluobM7e5KInQJVKL oIWlq88Y9nvrSG7ClZPAl04Je8So/fI9wtVtYKY9uDKctXhBqMattsSJyqzao/6+O76sqpxVFQnX amMnt0b/qihciRb4nKYszCdasW4L16jr0UVi4xzVMvPT+2/wnou05vYR3vW2Y4b+kiiCMgpXquHz jEuEHk5k0I8JU2QmB9aJcAVqAuy4xyoz9sB1NhWdMWLqYWvM6Mkr7COXoshLtLpiTO30T8I1e+zc XkHh6rYH5jmP8bspvMQYgIh1cC/tf9Rqux0nqA1Y7Joxc7m59Iprh14Z/B0sJJPZgAjG0EbMzSwe 0z5/+Wb7Gtms/L4Np59nDjp2TTPIx+/b6/BVbRVRqxq5CVfgiyXlloE8SrjaHPCxi4aF0IEbgxsk LGg7JU4UxonKuHa3L7bTYk3uxiKFuRfhHHMtcIO6FaPjT1pvf+YGj1oMqAqkWdEXjH7RP/rJzxRX qTqkqbj+HXLM8kb/VtgBlZ+TRCHyYNuvf2t+8ONtbdmt795o/mzjCbHmc65amS9a4KzbwnX+so22 gER4oYGxmjGbyTM4EVeFIlIWJVzzx6XHMZYwpjB2UsCEn4Mpc93Apc/aomYx/krRmRxYp8KV+faS y6+1+/LYujVq/Ik2CoRojZqLy9Y/CddsIOXUze3cd/jr51ww+BzSbs3t7ZBXMSYfCEu3hzUIqb9o oSDcR8yrvvuJ30EbFh5P+DkowBkfg3/T/d46k6twdfBFRwlXu9rfcJqCKSmQpdOUtBhTlKh07Z0W Y4pr5yLk+BDXed9YZcUuVOzy1u1FRRpOANVN+f/O02aPuG6qho0U7HLkUP8a/bL9G+zr9IMXVn6g YRLre8vRg31in3qgf0x23XAul59zhzl87Z9lbgcuvdL88Lz9EtvXG86Xzylx1m3hGhUhr7pwLSJl UcI1f7gOmQPceMJjWZqFqCIKExaFTbNvHM/b33lBS+H6Hy895x0bsrAoUYd1KlwdPL+T73fr1q3D 9t2FKWP/JFyzwT6m5S3HDN5v3Hfcf0P3YpkyH3zgd+NbY73qW9eRrgvXvFf7EZ2tVlviRCWfoT1N sSYXrY0StXEpzJBnlb5/+tZXh/5K9+AaYYL0GZNm1CpvVWBFzNc3LM8K2kXBPerrG9aNRYfcROuy q6xz4nNCouzR0/fyOiXOSpEq7Fk8rHKqcFH7CMsiXPPq7/3ndH8PL2M/c4BvbMG6tf/6+z943hZe mbVgk63g30q4/v75v/SODVlY8HoMW1rhmpQy9k/CNRvKNrcnJalvLapH14WrSwt1G4sdWQlX+MMf /uC9cNMWY8qiWJO7sRDYUeSd8vaTb3YuXDlPLsUXI5+/6iJTVJu3X3G/V3SmtUP7P2kOWPxh65z4 nJAoK7twtY9TCVU8BGoT9I1b0rXiTCz2sKDpxhbmCF8aVpgi9xGWQbjm1V/2FSqi7Ic5jqIrPP2A OQ8nXsLVf3xpzdcvZxKufgi0UKXWjZ0YfmYvkcS3FtWk68LVOk3jltobK4hb7U/6sOt2CYrKKKGV VXvUao+7seKKMeWd8tapcMWR3G3vpcal9PIsQQo6fOCyj0m8iq5w81ee84rOLMyJVsznhERZ2YWr K8PPw9KD+3CixuYieOGHL5rD55xsqycOpqjNtgucR8/f2DJlMa99dq4YU/jcdVvY5b2vUMLVjy3I NGmxFa/MdRKuEq7Oui1cuf7sIygpGDaU0ss4PuXgVeaJb1SvGnAnJPWtRTXpunAlWsdqP5HXIHa1 f+wiW6Urj9X+OFEZ1+72vca1k67gI2kxprxEa7BKX6fCddGqzWbByjPsuWLi/sg1nzI77rk69jlv QuTB93/889xShIOiFfM5IVFWduHKwqAViRMHTP+Gc8yX7rzHRl932XfApkJ2Y6WeY9jrsCVWNDO2 MMYcdsKGxjGuiXxAe5HPj3TWTWFXRAVsCdeRcL8cMXejvTdIF4Y6Cldf8booe+bhB82T71mUyP7+ 4uO8/YgyX7+cSbiOhH3Jex++zG4B4brEBjadb/omrcvNny4TQd86yj8X1abrwtVFVoMpwaxg2mcf jVs6IoU4C+JEpWtn36uPuH2xce1Jq5wVVaWvU+FK1ejgIOjOM+cNx1OIIsmzGFPYOfE5IVFWduEK RDgPOu6UwQgnBTgaxpjcrYeYM5aEI6uIWJ73TV0EHz/905O8xV3S2t0Rj+LAuiXsihLpEq4jwSdh UX3WiQP2msSosspr+x25yrzn4ittlfUgVROuH/7sN71jYVpju8XHzz7F248o8/XLmYSrn/Bio1tY qWqhvaTgd9N3Iq4SrfUlV+HKAE/VMYyH5u44fUXz55tuHizGRGoaaQ2sBh14dL9dTV/cf4Z5w9Q1 ZtbC0zNPE44TlTzOplU7NwPtUcWa2PdKOxYlal0aQ6sbK89iTOHoQZo9rkEYEBkY2ffTbsGhPJ+3 WIbiU3kuQvzqR90v7pTnvsLXfx2dGurIuxhT2HxOSJRVQbgC9+/Df/WIdcT5t2wOji0i1RCupDCH +T+vbfN+91nY1zbs4T1vWLeEXV6itdeKTz12+fqhv5Acm0K/+/ztaZjOJm8w7Amnunq40FmVhCuZ K76xMAsjc+W6s9Z5+xFlvn45k3BNhn2qwfjlkRkBrcgzs+P5r3xq6K+kJ6lvLapPrsKVZ64hZMK2 9xGrzTvetb0QCDdS/4bzbOoN+yURuaSgZi1a40RlHsWauImYxPpP3mLedu4HzNUf+6R54YUXWm4Y LzrlLY1wpX+s5uHozl12ho22ci6De+XiyLu/WQnzTsk7pW/bi90VrnkvssQJuyKKMYXN54REWV7C lXETh4S0XsYXxplW+z+rBv1zqW4saO6810oz9bA1zfTMIFUUriwMsLiLIEcM8cD4JONmnsWYsuxf VuQ1N9y9bpp54NK1Q38lOZw3d106u+2225qpwo888sgIcVAV4cqzr/POXJFw3W55CVeyFl0lbuaI PWb22/ojLmCUlDx9M2qsZCXMwYnWVr61qAe5ClcGbwZ5n4UHdiZsJ4L4N+s8/CQVfl17XLGlpO0M ElaMj5k3aLufZEZPXmnWbDynpYOS50DhGxw7FXb04YjZLDbMGkwvHLfEHDVntXn66faEVN797aZw LWIRopvCtYj+tRJ2eaW0zVxzQ6RoxXxOSJTlIVwZQ3kMB86yLVxEBGj8CnPAMWu9wq6K2PoH7tnA E1aZ3fY4wXz4ox/3jr9VE64USWER15430rOHzt+i/rNbPnqoqO0jafuXFXlmctDfToSrD/yWOuxx LSJzRcJ1u+UlXBGt/3XM0NjZuC5HjZ1tNp1xXtuPNctrbneZHVkJVxVj6i1yFa5lIqnojEoxiGt3 +2JJNXawik76M6vq9957r7n4Q1eacQf02wqeVPL0kfdA4bM0wu6Ld9xrUwuJ+lCVdMfpy82eh/uj Ij6K6G83hWsR/eumcM2rf8FFlihh98t/e92ccsXTZs45j2VuB6281uuUOPM5IVGWh3DFMRmz14nN AhxkPBy/aLPdcuEqnVYd9gm6PYTsax1/wAobNbjk8muH3rGdqglXRPmehw5WbOb8UROAcROBHlXX ocjtI2n7lwV5bR/BXH+zEq5sjeF8Llix2bsoXQXhmlfmyiErPz5s7JRw3W55CVcWTxhjGF+YI3g6 B4GFBavO9i6s+CgisyML4Zq00KmoDz0hXH2iMohrJ0feh2tvt1gTURHSnYPFmFatf5tdWWdACfPP d1zsLQ6S1n5w7n6RjgmWlbBjwialj8qf85ZuinWe81xNz6N/7VJUSl+3hGtRiyythKvPscjCDu3/ lNcpceZzQqIsD+FKRkq40N1jjz9hRk9amtsjxLrNN7/1pJlw0Gpvkb+qCVeXjRTEFv0Zv3xEhX34 X79+RcWnMrLgXJiVcAXOZ1REq+zCNc9iTOHMFQnX7VbUHlfmA1s4s+F7siUhjqIyO9L2L2mhU1Ev ai9cEU9OlPpShKNEp8MVa0KU+dq5WWjHon4/NxbGe22BkYZz4hOu//P+9hzipPYPFx0wbDAMWyeO cxRxKVOOvAbG8PMW72w4Xln2LylFDfwPfHCgK/3LO4UvSf/qIFzpX1YQheXZkjNnrytNStgLN79v 6C+kh/HEOl+N8YVxJki3hOtPvvmVoSNIj02NbswN7FcOU4f+tUMRmRxYUYt+3RKuSfr30Lf/wSs6 szDfdosshWurua8OwjXLub1VcbsgRWZ2pOkfvrWKMfUmtReuwP5Wn6jMoxhTEG6m4I3lHC+iIkRH wnRDuHY6cNAXVu54JI6DKBCCnHQ3X9TAUdRqepr+BaFft9x2l02HDj/mwEdVBn4HizKcS/oXjgL5 KGrRIa5/VReuWS86WOEzbql1UNohr/P5vY+ekqgitI9773vAfOeprcPSLtk7T8TV92zZbgi7LM8f C6xU0yedj2IqYbrRv299+t1Dfz0djzz6hB1bOKdJKCqTo0hR3g3hmqR/RT772llWwjVOlFdduHa6 qMI2rbvvuW/Y4iX/n71ok50ffOOLo0jfLO2ikYox9S49IVx9FFGsKXxjuVSw+SvO9O6DKVq4phk4 SNV7y54L7L4s94ijY+evN2+ascam8kUVaCLlrUqr6TzMm8c1jZ68wvCcvlaDPlRNlCMOuB65LikQ E45khSlT/6ouXLMUrSw4UOxnzH6r2iqOluciS6eiFVj44vne7Jt344stZjR+hd2OEKZoYZd1JsfX 7v+62WXvVeaIuRu9ad5F9y8LUY6z7KpBE+lJsqBShkyOPChauCbN5Cj6MWJYFsI1yaJKlYVrmkUV /MxR40+0mTdu7LSZKhNW2YJ+rTLhivLN0i4aqRhTb9OzwtWJzqgUg7TtbsO4W/XiQf7TZq5t6VgW KVyfu/v6ob/aGYh1iqQwOPLcVlIUcSxZ1XvwoUeH3jWSvAbGPFbTKTw1br8lZqc9l5ppB55kxV2c cK3KwA9McDvtscgWvZm4/yJvCmaYovqXZNGhysI1i0UVB47IipPZguAXdVHkuQiRRrQC4+WcJZsG q7I3rkv+Ze8uGR2+ivNFC7ssRQ9ZHAcfv9E+5zwqKlm1/rGQcvT8jWbUhPnm8NkDNpIcJ1zLksmR lB/8eFtie+bhB82T71mUyP7+4uO85ynKgv3Ckory277+krcwXVqbdfYD3jHTWVrhmrR/VRWuSRcd omDhi+0GdqGvMXYSSOD/3H+tMqrymgvCNTnSZnI433rbtm1Dr4heoyeFa9JiTHHtUftiwxvGX/jh i2bGEWvNLvsOmDvvvm/oXSMpSrhmudqMMKeiIvvrGBR9kWTHP92w2VscJK099bZ9RvQvC95z8ZVm 3rLTbKobq5ZxwrWo/mWVwsdzlokmk7YetXcwSF7FYZ48e7iwSyrKqypcs1h0cCDizjznEruaPrDp fK+oiyIvR+U3P/nrob+QDvrCOMo1yb+tCk4VKeyyXHSgT7MWnm5GT+03f3p19MP4i+xfFnMD88GB Ry23Wyw++enP2rGllXDNs/hUHqL15q885400pjUew/Xxs0/xnqcoC/atnf7d/ujPvGNfWptz3je8 Y6aztMI1af+qKFyzzOTAH2PsJDuulWCFXz3yZ957J62FC4Om9T1VjElAzwnXuGJMce3cLLRHFWui jRsL471uNZ0U2utvaF3NrSjhmtXA2C6/vfUs7/Gltb89b9/MBsYgnGMnxJMI16r1j0gd4oB/kwjX f79+sff40tpTb98uzNvpXxWFa1aLDhAUrURcW6WAhclLtP70a58e+gvFUpSwy3LRwe47W3KGecPU NeYDl30scssJFNW/rEQ5fXHZRoyZccL1f7/8nPfYsrCsHx2W977QNMKunf5VUbi2M/dVUbh2yzer gu+pYkzC0VPClWJKCEvMJzrTFmMK31hB0frByz5qV72c+ZzMIgaPbg2MUISwy6t/ZRGuefSvLMK1 3dXmqgnXLBcdgqJ1Uf/ZzVV17JVXWqfp5rWPME0xprQUIew4f1nBPcdiw+gpK8073nWxLXLnzp8T fEGK6F+WiypByiJcs1p0yG1f6NIr7djSqbBrt39VE67tLjpUTbhmmcnRLmX3PfGnJVqFo2eEa5zo DBZryqIYE44le7T6Jm8wu85YaPcYBI29oGEHM+/Bo5sDI+Qt7PLsXxmEa16ivCzCtd3+VU24Znn+ rBhoXI9ub3nQ9j9qtd2f7eOn99/gFZ1ZWLdEK+Qt7LJcdAAeSdE3aZ3dYx4+f4ceN2DnkSBV61+Q MgjXrPpXRDGjToRdJ4sOVRKunSw6VEm4ZpnJ0Qll9z2DvrUQPSNck4rSqNWcuHZ3Y7kqZwjX5WvP HuGUOKNgBavrQfIcPPIaGH2FKKLsuzd+yFuMwme+fkQZwi7vgb/bwjVPUV4G4dpJ/6okXLMWBTfe dKvZ6/BV3rGF12kPU+ZiTD58Y0iU/c3Tz3nHkSjznacoQ9hlff5OPesC77mzdsQKG0EPkrdwzUu0 QreF6/3nzsqkf2+/4n6v6Exrh/Z/ctjY0q6w61SUV0W4dtq/qgjXvDIdfONklLXjm/34/cd4++Iz fM+0hUBVjEmE6Qnh6oop/f73vx96ZTjtFGPyEbVhHEHg0r/C5is08vrfPmj+41s3ZW6/+ev7c3FM 8lp9PnjFtWbrl27w9sVn9C9vkgjXPM9fniQVrnn179//sbNiPt0Urr5+RFmn/WsFC3C+ccWZb4Hu X566z+5BzdryEK157iPcuP4873mKMkRj1rB33nfeMF+qN8fgO7YsLI/+BUkqXH3HloVl0b8Pf/ab 3msprVGMKfy800+8593efkRZp3N7t4RrUf3rlnC957o/9fbDZ6//4MFcfLM8F1na6V9a31PFmISP 2gtXHDgnSqP2pTpR6mtH7LZqp40bi4hrL91YeQ6MTOTP/rB1FbyiSSJcq0pS4Vo2uilcRb7kuY9w 8/tGRqNFfiQRrmUm72JM4bHlxjuLGYO7JVyL6l+3hOtfPP63Q0fQHfJaZHG+WVH9wzfHt8YkWkWQ 2gtXYP+qj7TFmsLFmHqFvB4FgLmJXMK1OCRcR5qEa/fIex+hhGuxVFm4bvv1b3NdRAmPK5iEazb0 onBlkcV3rWVhzjcron+96luLZPSEcPURLMbkE6UQty+2FzeMF7X6XAbhSoEbBCu256FLTd/EAXPM vAH789vPfV/kdVEVrrnuM83+TT5oha1Q636++ENXDb2rvEi41o+8Mzk4dxKu+UOV5HlLTrFjCWNm 34R+c+DR/fbnRas2x1a+Lgt5L6L4TMI1G3pNuBa1yFJE/3rRtxbJ6VnhGidK2y3GFIVvI3wW1i2K Wn0ug3BF2EUVwKHwFgW4qsz7L73K7H3Eam//KB5TdnpduOKo+MaGLKwb5JXJEd5HWBbh6vves7Dv v5j9nrl2obgURaZ8Y8shx/bbubPs3Pb1l8yccx7L3Gad/cCwsSRsEq7Z0GvCtahFlrz754oxxfnW onfpSeGatliTu7HYMN6KvKIHh6z8eFeEXZGrz2UQrghTX/EUjPTaqtOqfxSPKTu9LFzzzHw46fRP D/2V4ihyH2EZhGue/T3t/eXYzkBU1Te2VCXaWndhJ+HamZVRuObpaxbZPxVjEknoOeEaV4wprp2H w3NjEXFtdWPlvUG+aGFXRApf0MogXEW56WXhmuci0ombPzH0V4ojt/549hF2W7jmndKnVOhskHDt zCRcixWuefuaRfUPvxvfGpNoFa3oKeHKzcDNgeVZjOmhb/+DdyDIwtxAUqSwK/JRAM4kXEUcvSpc 815dL1q45inCw+cN67awy7u/Eq7ZIOHamUm4FidciyjGVET/VIxJtEPPCNc4UZqkWFOSDeN1K15U ZApf0CRcRRy9KFyLWF0vUrjmmckRPmfOuinsikjpk3DNBgnXzkzCtRjh2i3fLI/+JfGthXD0jHAt qhhTbqvpXSpetOGjPzBzzn8yczvilM8P60/YyiBc61b8JkzV+9drwrWITA6sKOH6wj/9u3dsyMJa OV7dEnZFpfSVRbj6xoUsbNuv/8fQX8gXCdfOTMK1GOF60Z+96B370tpRp93p7ZezrPuX1LcWwtET wjVOlCYtxrRtW2uHPC/R6tsgX6Rw9Q3eae3IjV8a0aeglUG45rYIsewq86+/7H5xpzwXWYqgl4Rr kavrRQpX33efhR247OphfQpaN4RdkSl9ZRCueS6yXHL9A0N/JV8kXDszCdfihKvv+NLaMWd81dsv Z1n2L1joVCnCIim1F65EWJ0ojdq3SntUMaakVc6K3iAv4Zoveaf0dVu45iWCDl5xre1fEfSScM1z kSHcNwnXbCk6pa/bwjXv/l788b8Y+kv5IuHamUm4SrgmAb8b35qIq0SraIfaC9dWsO+VmwcrezGm sEm45kcRixDdFK5FVIgugl4RrnkvMoRNwjVbclt06LXiU0OLLBKu2SDh2plJuKbvn4oxiTT0rHCN K9bEzZTkxurWBnkJ13woKqWvW8K1qEWWIugF4VrEIkPYJFyzo4hiTGHrpnAtYpFFwjUbJFw7MwnX 9P1zvnUnxZjIorz7nvvM+y+9ytp9X3vAPPnkk/ZRlaI36FnhGlesyd1YcRvGu7VBXsI1e4pchOiG cC2yf0VQd+FK/3xjQxZ20Ep/tBWTcM0G+uf77rOwqEUHrChhF6aoRRYJ12zoVv/uf+L5oSPIl24J 16J8l24J17T9S+pbR/Hcc8+ZnfZcbPrGLzd9Yxeavt1mm77d55uZs9eZBx96dOhdos70pHB1xZh+ //vfD70ynKTFmKAbg8cHPv61ob+eP90QrvcXtGIZJrcUt1BKX+3616WK190SrnXvX1GLKt0Srupf 9tz8lee8Y0MW1q1Fv24Iu/mbr691/0597y2F9a8bwrXI/lXR9wwWY+oUoqsI1v2OXGXec/GVNuq6 uP8M84Zp68yYfVeap59+Zuidoq70nHDNqhiTo+jBo8iBEYoWrkX3z1FUSl+Riw5BihLln7njm0N/ MX+6IeyKXHToRv+KzHTohrBT/7Knrpkq3RB26l92FC1ci1x0gKr5nu361lE44frWOevMa68NHg+Z k4jXvolrzJbzL7avwe9+9zsboeUzGH9fVJ+eEq7cLIjWqH2tiFoubCzpjVX04FHkwAhFCteiB35H URWh6ybKu92/ooUd/SuSovtX9KJK0cKu6EyHuvfPUbdMDkfRwq7u/St67itauBbdvyr5nlkWY/IJ VyDySvrwyaedZ3/+0Y9/YuavONO8efoC07frrIYdZ6Ycstpc/pFitsKI/OgZ4ZpVMaYwRQ4e3RA9 RQrXbvSvyIrQ3ehfXqJ85pobut6/IoVdNxYd6t6/IoVd3ftX90yObojyIoVd3fvXjUyAIoVrN/pX Fd8z6Ft3UowpTFTEdd3m8xvCdYV513uvsK8hZCcesMQKWf7P6xMPHrDpxM8/X8w+a5EPPSNckxZj avfGKmrw6MbACEUJ1272z1f8JK0dccrnh/WvaKfZkVf/Dhu4oev9K1LYqX/ZU5Sw61YmR1H964Yo h8ee+7V3bMjCypCpUpSw69aiQ1H9K3L7SJCihGu3Mh2K8j3T9i9tMaYwQeH6yCOP2J8RpW+asdZM OGi1efbZ5+z7fvGLX9i/G6T/5C32s1+6856hV0QV6Qnh6kRrVCTVbRjvpJx2EYNHtwZ+KEK4dmvg h7r3z3dsWdjh6z7X7F+3Fh2KEnZ17183RAEUJezUv3xAuPqOLQtzfevWogMUIey6Jcqh7v0rQrjS v25RhO+ZVTGmJIVOk+KEa9+4pUMpwA0bM88ccMxa8+WvPDD0rkHY4/rMM8+YT914s426Hn/S+sZn F5nPfeH2oXeIKlJ74UqEFdFKjn0WxZjC5D14dHPgh7yFXTcHfsi7f91aTXf4ji0Lc8K1m6K8CGFX 9/51S5RDEcKu7v3r5txQhHDtZv+KEHbqX37kLVy7uagCZfc9syrGFMYJ1/2PWt2sKowQfeWVV4be MQgRV/a4vnHSiaZvlyPNmBlzzdh9BgWvhGu1qb1wbQWClhsL6/TGynvw6ObACHkKu26Lcqh7/3zH loUhXLvdv7yFXbcXHfLuXzdFOeQt7Orev26KcshbuHa7f3kLu7r3r9tzX97Ctdv9K7Pv2Umh06T4 9rj6sGnBE/pN/4Zz7GdefPFFs27TO+1nJVyrTc8K16yqnOU5eHR7YIQ8hZ36lz++Y8vCVpx/b9f7 l6ewO/vy+9W/nMlT2J1+yd1Df6V75Nm/Sz/9yNBf6R55CtduLzpAnsKu7v3rtiiHPIVrGfpXVt8T fzoL3zqKJMKV12knLfjhvxocK8m+XLmePa7bU4Vff/11+/uCxZpILd66dWuzHg5tvIf3inLQs8I1 yypnOJh5WFnwHVsWVhZ8x5aFlQHfcWVlZcB3XFlZGfAdV1ZWBnzHlZWVAd9xZWVlwHdcWVhZ8B1b FlYWfMeWhZUF37FlYWXBd2xZWBqy9K19JI24Ll09+FzXOUs22XRiROvoCQuGRVwfe/wJM2rcHLPP EStsqjHHTSXiN06aawUsv//w2QOmb7fZKuhUIkohXFnJuOa6z9iy1bMXrLMPEH7qu88MtWZP1lXO hBBCCCGE6FXyKMYUhmgowvLIOQO2+FIUL/zwRXPM/FNM3+7zbQGnGTOXm1M2v8P07fLWpnD9zlNb zfj9l9n3UZz15ZdfNgcdu8ZMP3SlTS3m9y9YeYbZaY9F5v4Hv24/I7pP14UrKxpnnnOJ6Ru3xLxx 8nyzz5EDNpQ/bebaXMRrXhvGhRBCCCGE6DWK8q1J4SUayt+KA31BhBZDlLqfg5FaUoFpc/B7g7+b Ik/PPfdc5KM0RfF0Xbhe/pFP2IcGHz1/o70YuYAI679h2kBsKkC7uGJMRFwlWoUQQgghhOicPIsx CRGmq8KVFGHyz0dPWmxzzR2E7GfOXmd2nL7cfPNbTw69mo6sijEJIYQQQgjR68i3FkXTVeH60ksv mT0PX2ON/weZv2yj6Ru/3D44OAvy3jAuhBBCCCFEryDfWhRNV4UrueVj9l1pDp611uaRB6FQE8KV tOG0uBtLxZiEEEIIIYRIhyvGJN9aFElXhWurstZZCVdWgbix8qxyJoQQQgghRC9AWrDzrZUiLIqk q8KVSl07z1huDjhmrX2GUpAsI65CCCGEEEKIbPjDH/4w9D8hiqOrwpXVmimHrPbucbUPDx63NLM9 rkIIIYQQQgghqklXhaurHjx60tJhVYVJGyZ9OMuqwkIIIYQQQgghqklXhSuc9vaLTN+EVWbjWRdZ Icsjcj73hdvN6CkrzdHz1pvf/e53Q+8UQgghhBBCCNGLdF24fv8Hz5uDj9/YEK/9Nvp67Pz1Zpe9 V5lpM9eap777zNC7hBBCCCGEEEL0Kl0XrvCjH//EPreVx+Jg7G+VaBVCCCGEEEIIAaUQrg6e5Rp+ nqsQQgghhBBCiN6mVMJVCCGEEEIIIYQII+EqhBBCCCGEEKLUSLgKIYQQQgghhCg1Eq5CCCGEEEII IUqNhKsQQgghhBBCiFIj4SqEEEIIIYQQotRIuAqREh7h9J//+Z9DP4mqoXMnhBBCCFF+JFyFSMHT Tz9jDjp2jXnnBR+SAKog11z3GTNv6Sbzox//ZOgVIUQRvPzyy+Zd771C954QQojESLiKSBBiN950 q40oCj+fuvFm0zduqdn7iNXWERPV4bXXXjNvnbPO9E1aZ7acf/HQq0KIIjj5tPNM34R+M3vRJvO7 3/1u6FUhhBAiGglXEcnd99xnRk9abGYtPF3iNYRLD3799dfN5R/5hPniHfcOtYgqgGiFBx961Mxf tlFRHyEKhnvv4Flrla0ihBAiMRKuGYIz/Mwzzwz9VH3oz4qTz7MRqV4Qr/QvSdRU6cHl5JVXXkl0 PlhoINL61Hfrc6+K8lPnsYIFvM/++a3m1VdfHXrFD2PsaW+/yHz/B883f9YYKoQQIikSrhmByFsy sMXsMGWBuenm24derT69Il5xuGYvOSNR2tott91lRk9aavaY2W9eeumloVdFN/nyVx4wBxyz1nzg so+1dIS5nmct2GT6Jm8wS1efMfSqEPmBqGMv9fEnra/tYsl1n7zJjJow3/azFexpJT145ux1sSK3 LDCesKDJ2FFX6rwozYIm12Vd+0i/6hQwESIOCdcMYGK772sPmL7dTzJzl53RXE2uC70gXukTaWuj J6+wKdI+mAARtTiin/vC7TbVrQogrvtP3mJmL1hnox3PPvvcUEs9wAHGEd5l3wHznouvjBSuzvFE PCBaFXEtB488+oTd78g54b6q035HrsW3nXuJnRuI8tdpUTPId57aanbea6UdQ1vND8yN3KtVyVah L6eefZHZ58iB5vmrwnGH4Zj/9OpP2QW+IAhy5gbOWx3HRPrDgmbfbieYDaefN/RqfeB8kv31x+OP 1XYl0TNIuKYEEYNjcuqZ55q+XY60AraO9IJ4ZVW2b/xys7j/jBHOCenB+x+12gxsOr9SjvUT33jS 7Hn4GtM3dqGZcOAqG+2YcNDq2jjQOCYXvf9yM2PmcuuARaH04PLBPXbJ5deanfZcavrGzDV945bY +4/MlbqML7ZOwIQF5uTT313riB3ncuX6LbZQXTjqyv5xFibcvcdCUxXEX7NPjWvSjqGNf980Y01s VkcZ+ea3njQ7TFtqxh64rileuccOn3NyY05ozAuN+aFv4oCZNnPtCHFbVVhoPuyEDWbqYWtsEcW6 +SwsAk05ZLU5+PiNdsGvjj6ZED4kXFPiBkcmNFb1vnTnPUMt9aPu4pX+sPJM5IAIQhBXqKpK6cE4 iEfP32jGH7DC3Hb7XebFF1+0DuQbpq6JjYxUARaN5izZZPvz5ukNcdDomw/3vr5J672LEmWF6+z5 5+uVvRHka/d/3YrW+SvONE8++aR1vmx0ZEJ/bao8k+Ewavxcs3XrVnvdcT5JlyX7gX+rKma5p8Lj R1TUlXPZN7FaYw7ninM2atwcG3HlXuT6RNi9Ydq6yolXjpVj5tideLUV8cfMteeH+49+vmnG2mHi tspwvvDJWLR0MAfSV1Jrq3T+fDDf7bTHomG+Cv4ofavzIpkQEq4ZwIoyq144xkTkmNSrDgMfAz4O 1vsvvaq5H6ku4pXjJjUqvPfFRl3HLbUr7cGJjf+zt/Xe+6ozoT/8V480Ju7Z1kEGd+7G7LuyNqvq zXtvyqk2oho1YbM6zURflerB199ws5l+6Eqz87TZNtpfR7j/xu+/zDqTQESOCEKdFsUGx5MlNj2W Pa7ce31jFw1aQ6Cv23x+5RxojpcsI4Qoc4MraMfrjJss8AW3W3Dvsa+8KunBLovqlM3vMH887hgb rXRwjdZFvC5atdnMOHShFTuunXGnLuLVCvPdT7L3GAEFxhubdTR2oY0+k+1RZfDNxuy3ytx51z1W jDO/sfBH37jfVClf1BUJ1w5ggGdVi8GCFXQmuqYDPXHAnHnOJZUWrziN7NVl0LfpexNW2cJFzpms unjF0Zq3dJMtsNQ3fsUwB4y+8LMv6lo17IrzmHnNyE5YtPLaGVsuqqRICKZrBxeO6GOUeK0KLhLJ PYfDVYeFsDD06dj5620KJtEsn2hF8FQhpZ2+cI+5VFic/3MvvNTOEyz4LV1zthVzGIsrjDUsKuFk 4kg74V4F6Otzzz1n+7Tj9BV2bmD/J1G7n/zkJ+b+B79ux9VwkTvuyaqIPPrBtTh6ykqz64yFI7Ie 6iJemfsOnz0wYrysi3hFkDOXk+JtfZmxi+wCEoKP87fzjOX2Wq4q7FnmGrU+mu3fQjumMMawKLZ8 7ZZazh1CSLi2CYP8eRddYd44eb5NQ0EIbDzrIuug1EG8csxEjXFKcLDYs2tFbEik8j048Up7VcQC x2/39TQmsfWnvtOmkFoHrDGJOwfs3e/5oG0nza9qcB5cBASHa7d9lpsj5m40y9a9c0SklajIqLGz R+xJKzPf+vZW+9zVo+ett2LBOcd1Ea/cf0FB5+D/OFlVd0QYJ10fuL+4z86/6NIRopXzivjZ78hV zYhQWWGMRKzhDDNm7rjnarvo4LJU6C9pp5i7LhEQRGDpN0KpCnDszA1cmxTUeujhR23qPQIAAUtf KIBz3IJTzOjJyyKL3FWBOHHq2neYumhYRLbMuD4ExWuUOHXilTnRzSdlh/uNezG435NxkzmdaCSL gO6e5GfSpAk+VAXGQbLgGGNcH5m7EeLMibzGezhfCFis7GOnEJ0g4doGDPjsAxk9caGdwHG8bOpJ Q6gu6j/bOltVF6+PPf6E3ZNFqhT9dZMcjohPvPZvOM9OclWASev++++36bOcR+dE44CR4hZ0wHba c3GlnEpwKXl7HLLYppfSNxZVWH0lfYhUZweTG3uz9z5idWUcExwsCkvZNEts4hp7/TkxUAfxyr1F lACH8ZFHHrHOFkWnEAtcn4w7VewX48iNN91qIx7ce1ybXKOkuhERYS+2G1eAND/GWZzOskNfmlGs xvgRl4VCGw4oC2ZVShW2qZfjlpgj553SjC5z7CyoIAQYLzmXjDU8birJo8XKBOcxeN6SiFeu6bKe P8ZDxg76xJjBteZEKsccJ14RRb7XywhzH2OIK/DGYi2v+XCR2CoJO55gwPHiu1hr9JOAAec4DE8N wC8lq6wqY4sQ7SDh2gasrBJpdY4XXPbhaxtO9MKm0APnQON4kTpVVoKDGv3BcKj+ZMoJzRQaUvV2 mLrYinAXYQ1HRqoAIpWBfsHKM0zfLm+1q5NB+C6cA2YXIxr9xKrgOAMry+yJ5NiJRDoxSr+PX7TZ LqS4lGiMSRDRUDbHhOvKt4+Y/iHe9j1qnV1VJ9US4c05CorU7eJ18NE/VcGdL65DxhIEkK302RDo pJgi+Gza24T+SmYC2LS2oVRZHGI3fjLeUFxrl71X2XuNCAj942ecz6CQKDMs3hFp5bpD7DhhF4a+ 2/O4+0mxArcscE2yH7B//Vmmb9dZkVEqFvkYe6yD3RAPVdluwRzGdUimA+eGOcBlO8SJ1zLBsbn7 CmxUsXE9cp3ZubsxpgTnM94fJ16rAOePAm+MGUQfbarsxDW2mnDwPmSMpf9cnztOX16Zx8dw3Cww M/exkBnMgguKU65Z/Brehx9Qt8feCeGQcG0DnA5Wu5zowVlhddlFVhlAnODDgS7zaiwOE2leDOwc O33AeJ3IHMeNIzLpwGX28RRMDjb1dO+ldgKsUnowcKyD0ceGIBi31DoqUbDnjAmOibAqUVecFKLE RI8d9JlJjwmNc2hXoxFDDacZEVi259ByjZG5sOMeq0ZE8Tkfo8af2FwI4jpdtHqwEIxPvFKIw7ca XUY4D0RYXZ/pBwIAJ4x+kHLJAgT3Hw4JadJVWTACt6gSHjP4P4aotYtFRNF5LE7jGsURrcr5Y6xk sYH+MYa2Eq+8xnll8agqopzxkPODs8/8x6JRK4hi2QVdT5G7ssF9xZjD2MhYb4tnNURPcHysgnjl mDg254sA1xeitW/yKXYvZLDN4T5XVfHK/EZmylv2nN8U5YwpbOeiT8H7kAXRN048wS5OlHHvPH3B twyfI3wV7jtEK7jzuvv+q5vni/PIXMH7mEuqugghRBIkXNuAgQPHCqcyLFqB1eUxM+YOEw9lBXHK ZMbATvohK+ThiY1+Bh0VIs5/NPYos3bD20cIiypA36xjSfTx+I0tHWMmAvsMvwo8mgMRg5jB8WIf HY4mjjErz0xinF+cSVZqeZ2J0EUUygar4DhQ7K8KXmNMyq6QCOeRPuFkch1b5ywkXqsEToavz2EY f8jiYJGiSjB+UA+A+wjnjMU9oqpcn0S5EAhcs1yX9I2U1CoJc+CadNemHWOGxCt7sgGBRL/KKHqS 4K5RRB1jSBws9jEelT3qaue4sYtsFhXHzOIQYwuiZ8YRa80LP9xe8ZrzSdG0MvYHMUOGQnCLEtej jbQ25naux6gIf1C8Vm1PK+nB2H8dc/SwLKpgn4LilaKaZVww4nzZR7Y1rkUCJEEYE8n0c8ceFq28 xjzIHM9nq3L+hOgUCdcWMJgQ7XCr4wwMpJnssu/ACNGKo0VUi6hXFdKjggM7zgiTteuLA+eSlej3 XHylHTTnLTvN7LrX4hFVFssK/cEhRsy5yYrXkorXwQqZi+2EEv5uyoZ1wBoim8iIjV7tftL2/zfO bzCVvez4hBznz0W+w0WlcFiIxlJgq4pptNBKvHINc37Z31slx9LB8fMsYVJpOX67l7xxfdo9kRMG sxqi9qOVFcYDMmpcYZRg2mFzjGmIhYkHD9j5Y+OZF9jaAWXeOhJH0gUWBwsVZOg88Y1yFsBx4jqc wcD5I2LHeMrWEjf2I37KnF7KXGa3SQyJV8YJ5uz3fvCqZuS1lXglHdyJoSrQ9GGmrrHinIWhIFHi tazgZx107Bo7FiLKHTbTb+xCc+Y73jdCtAL32RsnzbU+mhC9gIRrBKxWIuZsKuJbjrGPDQEmLhww xKtb3SJ6ZdNQxy21E14VBELTuWoM+FEDu9vkj3OJUKdAU1WefcYiA+XgOX7OIelBpCTS72bfY8Qr zgyPtShjyiLXJxOVE3P8TNQAYUAki+iVE+18B7zGe6pClJPMuWMhYY+Z/c2oMX0dt9ccc9Y7Lizl ufLhE5++PnPOiEr27T7fRhbK7nw5OE/00QkCoqrs0+X6pD8sNnDtnn3O+6xTFo4ylB0WEkZPXmEj JAgc5gTGRjf2038Wi+zjKiY2HOvGGFqVjAD6QAQHUR5Oa25HvHL+u70dgb4gCDhfnJMg7NVlAYWF hzD0lzmDsZNxtCqExSv94Dvg36B4ZX4Ezk+VxCrQFzJwGAvpWytx6tpJ/S772OnOE1F+CqC5+4t5 juNnDAk/GYACd1yjVSuEJkQaJFwjsBGshhBF/DDBMaAAgwsCaJd9BqMFOGIMKjwOgYkiPDmWFfpx 4QeutMfcauBntZwCAAif6z55k/1c2WFSJm0KoY2TjLFf9Q3TtqdRYUnEaxlhRZb9dCwmEDHgeuS8 YDiLQee4yhUGfU4ykzMREoTCpVdcawUQIrZKEzfOIuOGz/H39Zlrk2hCcBW+zPAcWu45+si5IjLJ /cbxc30Gx0g7zo6Z29y/VQXcY6YQ4qRBI+yIrDKGMpa6+4x/nQAkE6AKopV7iMiOfcY1++HZF9+Y 5xhP3dzQjnjtNi6qSoHBcEQKQcrYyPzt2zrBeWOMrVokKyxe3f0WFK9kjnHdHnr8yTbK5/ybsuP6 QB0Et0+V+6yVD0P/3QJvFWB+2P2AgWH3l93a1fBnmPeIsOKTMieQzs417LYkCNELSLh6cCtcOCZR ziLOGc/hcxEuRF3QISsrTtzgoPB/jjk88LvULgQSgyTvrUq0jr4QeSTKShSH/mE8d5C+IV4ResDr TOw4od2ODCSFSZlqiaRbcv2RNkSfgg4zcN0iBqi8yyptWdP1wrDaHHQ8fE4yqcI4lES6iHgxcVel f+zvRGy3cvxtatj45ZUQBmE4dvY1UrGasZHFv9FT+21GSnAMYYwlUs71W5VCb9xfjB0Xf/DDtjJ5 UGzjOA6OL+WvPtsKxAyC1S3YNiuYNkQQ55O5A9x9yTjkChKWEc4DEVfOG2Ni8JmrjP/0k77xnOvg Nei2BQX7XCVaiVd7Phk7yRSYvqI5H5Yd/BG7j3fKJjun8Xgfd844z63Ea9UIz3v0jwVAu72iMaba RaUx8+z1WRXfRYiskHD1wAorjjHCwOeAMCgyAdAWjnCVGY7VpZMSCWHF0vVv+8A/YJ1JCgKQKsWe 3TI7JmGcw+FbdHArmUFnhAm9Knt2WUAgsogoYK8c54x/B6PJ2x1m+rRy3dm2IA57C5kEqwDnhHMX djx8kzgVIomI8JzCqpT9536juMvKk8+xK+hR4hVhu+OEo62TUhVRBywecG1y75HCxvlE3BEVIF3W baNAPEw5kArC82z6c1WyHZp7dfdYZfp2PW7EY2G4ZqssXl10Mjx2cv2xbYZzGHzuLPdlMD26zHCM pG5TGTl4v3GNMh+wH5l7jeuVKDr/J8LFgnQVYG5gnuYadecjSrxyPlk0IkWacbQK5495ff+jVg+m xTbGfXvOGsIbf8YdP/9WVbxyTrgWXQo3hOc94B4lS8Wl8Ds/RoheQsLVgxM/URUR2V9RJYcSnOgh kmP3S4xf0RgQ1wxzsPiX1VfrmDXeR1pKVRwwd4wu/csnXHkPjwAiGlvFIiksqFCEgSg44IjgULJq HnaYcVqY2Kq0P4vjjnI8fJN4leBa5JpkUcil3Af7xLniHgXO74R9F5iHHnqoMil8wLhISmYwqgV2 H9ZB2yvMct3iOBOdDd+jZcedM0QcRW/cuONw4hXRU7Uxxu75HDPPLgaFcaI2Kq22CjBucK+FxxAi eSygMOfZaFbjO0DgstDixF6ZQbxQGJLoN3Nf8LijxGtZYbxjbAgLMsbHN0460WbbANcgC+tck8E0 YDeHcJ1WRbiy4DdrwSYrxvE7Gf/duFj1eU+IPJBwHQIRGhzUbcrUhH6bahkcGJ2orVKxGwZzivSM GjfHrlAy6LM/wrcvC1iFpf8Uogo7ZmWBCRkHi4mO80AkgIgW/+fcILp9FSCJJOOYsKpeNZjMj5wz YJ1/zguOM49HYbGBVMWo81klOO448Rp1bssA54h7KziWcNz9688y+xyxYoQooI0sAIQQWRCspBNB 5zmmTshWAY6V449KHbXj6dhFNlpQNTiX4fPJdRh1r+GI4nyWVSQwRrosE46d6L97jRRMBIFvwaSK ez65LslgQJxClHhFKLCQQh+ZI6oUiWSfKouX7Csn44GxJChSqyRe7Z738ctH1GQgOhzcp0wbGXFh 4Qr0L/xaWeG6ZOsPCyUIV84j52/2kjOa96DEqxDD6XnhyoTNYInYoVopExYw4bGKSQoRq3esAroU IqKVVXHAnKg7+x0X2vTDoFNZ5X1Z6za9007EFGqgWifVO13FYyJalMinb+xFdv1iMmNywKqaYuNW YunLpAOXNR/wz3meedxqM/GAJWb6oSsrExUJ72kF+hMlXu+8+z67Oo0zVjY4BxwbAi34aAa7WNJw RnD6iUqGIYXdZUGwWMbCmHO0q4BzhG0/xy21Y2UYxk73LNeqwHXIWOIKvAW3VsSJ17LCcTIfIFC5 lzh2Fr84Z5xHHv/CNRiONuJEI2irNHZyzHYOHzPPHDF7dXPsjBKvVcOdSwppuRobLGra1PyG3+IT r5x3MiDKCmMh9xr3l1uUBrvw1RC0LOgxlvAzi2T0n/e59FkWBss4N/jg/FG0je1YpKhzXz308KPN AlrBrD63wMkeXydohehVelq4uoHfpgix2b3hOJIm6/btMEDYR+LwSAPes/tJNgWsCik3DgQOq5JE qXadsXDEfk6X2lY1BwwnxD5cvTFBc26CaXv8y34m9utS/Rlxx8SGOGCSp8hBFaCPrnpgOOWXKAIO mVtAQeiQXvr2c99XmdVmJmrfnlbgHEaJV+eAlgnGA475nRd8yIpX+ub2K+F82Gu14YzgVCLWw7gs CAREcJ9TWaGvRL1xFhkj6SMF0IgWkw7NglEQBOvoCQtsdK8K0D+qrjNe4OwzxoS3VlRVvDrhxiPd mNuCj+lhHGG+oE+cV0QCY5AtYjR2kXdRooxwP3L8LBYxRobHxDqI1/DiJcZ1SJ8H95UPj7Ai6KpQ yIfjZQw8ZsHm5rXJmG+DBoHCRPzMQjzRSa5NhCyLLlXIVuFcsG1p1okDI7Y14XfaIlSNviDQHQRV qiLKhciTnhauDHo77bHILOo/207OpAoNVmnd7ogwiOJssZJHtIT/u4mgKsSJU9depUJMTTHAgoLn weqcI1JoccLsIx3GzLXCFdFaBQeTc2L3Xe16nJ2U2bvkoiLAyixpRaQHc10iAKccvKpSkTrnaPnE KSD+9j6Cx071e9vLAtfiyae/uxmR42fSRSkmgrhx7xlcaFlvIx9Vd0BY3CO9jeuSlD1X1dlGRhrn i+gA0QTGVUQrC4JEv8rmUHJN+a4rIliIVsQPi32uEnR4DHXitUp7Wjl2xA7jpi/tHnHDeMJ5ZOxB KFRtwZZ57M3T5ttr0MH8wPXIthn6sV28rrH3btWgPycs2tDc90l/SKclWs7i2L5HrRsRea0K9M1G HhvHHxSvH/7ox834/ZeZRas220UVtnJxDTPucM7ZrsBCU9kLLrJIyXEzxvi2nXFOeU60r1aHEL1O TwpXBnGcKdJn/3jcMcOKieCAtRJ5VYD+MTkzSbsqgzhnceK1rPsGfTCYs7JKpNWl1oTFK7AqzSRB Kk5V0mdZbUb0ILSJFpAVQCSL5ym6CCvnj+geq+usQiMgquJ8IUg5J1xz9CMoXoPPo+N90w9eaKN6 Za4+yyNDWBwJ7g3kXOAQI2rqJl5JNcQ55CH5wSqmwNhj0/j2WmmvVyIjCB/u1fC92W1cNkp4UYSx BYcxeD4Rc+wfJELpE69l3tMahnRSFinJDEC4Ba9RB2MQog+nmvvPPYu3KjD/kQLN8bvFE86nFeGT FjfFHGKPa7kqUVeOmXERA8YUrkOuU/qHcHOLQ5w3to5Q1ChcMK2s0B/OnetTWLxiXLeIOu5HFsTc ueMzLKIxb1ZhrncLJ777j/Nb9W1NQuRFTwpXnC0GNwa9t+y5oDbps8BgzzMTR42fa6OMwSqDVe6X w03cOJfBSTsoXl2qJak1VXFIguBkjZowv7mS7kQ6E3VwgqPvFKvwpRKXFRaGmIy5NhGlnEv64cQr EWScZF7//C2324JiRJrLvOrsnEYWEILP9vQ5JlyzVRevnA/OH9ddFIgjhA+ZKmSylDF1j7EEAYNj HBSvXHt7HjqYYgqcIyL/jC3uMUZVHkM5ZsYWrsUo55nvwAmFKsL1xphpM3JYPNl9vo0iI+aIRCJ8 XNp62aNzDuY15nYnaMi0cQINcU4/XfE33ksxOB6LVpViWmQLIUpH7T6r+WxZn3jlPqVY0+SDVjSj lVzTZEXsMGVB874tG1yTzndx+O4/xiXmPrIcqLvCz0KI7fSkcIU4EefaScckLbMKMDCSjke6ENWD KZZiIx8T19g9n/SxyuKVyZi9VkzaRESCEeKgeMVBIeqDg3LQsWtsW5VgUibtl4gQkzITNlGBoPgJ 79mqAqSvsfeKKBfix62sA/9yPTKJj57ab88x9577HsoO4ow98jxyKijSWorXxn0ZrjJcBVhYIcIc 3H/lwCnbfPYFlbnnosQr1xx94LokrRYn2aXhc86I5lXpsVr0kwUhFhNYcIi6RhEMLIJxHZMmXRWn mf5wPSJMOT8sWjJf8Bo/I2rcgib9Z+GlKvt1gfvq+EWbG3P7omY1XcaPPWb22+uSc8YitXsGO/Mj z4wO7zUvK5wbqiMTUGAsReA5fOKV+5LvgcdsfeSaT9nFebYulPUxhTxrnHvK+S5uawUE7z+uX4pT kUm12z7LS11IS4hu0VPClQEwuNqVRLxW5QHrwAryqPEn2smaY8bpGNh4jl1ddhV3wfW7Sntamchc 2X8Gf8QNe0QY9B2cX7vKzt6shgXTiKoEjgeOMauuYdEKCIf9jlzVdMSqAk4zBXpcJDkM1yzni+gl EzcTfBWKiQDXHsfNvRbuX9AxCYpXIgN8rgoEI/qPPf6E3ZvFwlA4Ykz0iiyW4N7CshMlXoF+j9tv SXOBAYHEI6lYXGKcrYKw41pDhHLObHGb8ctN/4ZBAeDgGmU8paAdAoj3Mc5UAeZ06lRQPJGxkv4x 9ocrIwN9ZvETAViV9FlgrGBu/+yfD9Zo4D47fPaA7adbwEWI24XqRv8pVMQiRFV8l8H+zR22EMTY iH/C+eX/YfFq96FPXtbckrBo9eDj8coGInX8ASvsucF3wd9kgSE4p7s5gkycQ2ettNH0oLgVQmyn J4QrzgYDI44lznCwQE+ceK0SNhKy22ybNuScMQZ21y9ec2lR9Lsqe1o5bpwNBn6XRsqqOVUxGeyD 4pRzzQSOY+kebVR2iO4gVl0/XOElnI+waHVVP8ORvSrAanLUcz6D1ybOB+ltwUWmssBxRo0RUVFX 8InXqsB+XRwvd33yHZCy6B5H5SKRfC+MsziRRLiqBH3yiVcXySISxJhj0/gbAoJzXQU4J2TfIEQR r4htW7E0IAAczAfMjzjXfCbYVmas6Jkw31x6xbV2DGH855yx+OXSZOkL58w9rgpRW5W5nmuTKBz+ C2Oju1bpX/CexEjR5xxXZUHawfzHYsItt35x2J5k5guuSe5HJ16Z/xhzOH/4A8wrjDdlvF45ZvpB phFV1/FdCCLwuL7wXFDlOUKIIqm9cMWBZMImtc1G6iavsNG6oEiti3hlwsJp/MSnbhohWoFI0Ph9 5g+LnlQBW0xkj0V2cgP6Q+oz/fOJ1yrBBEwaItFvUhKZfF3/SAUjqsUqNBMeEx9OJ3tdqxKJdA4V EIXDgeY6DUPa8G57nFDqVWbODWMJ54lrMjxOOCfFF3UFrlGiWmQFVGnRAScKZyp4n7GoYB9P0RCv PEAf55HUPfpHIa0yLjrE4QRBULxyju0j0xr9tM/ZbYge+l2V/rlCTMGKzmTmkObsE6/0i7EmfG2X FXfPIew4fxw3cx6iLjj3Mc7yuDC2HlQlUu7gvFF0Cf+FRc6waAXEu9sOVEVYNCF6bJ8AwONudj/J Lhaxh5UsABYcuE7J8HALZVXApqXvdkJzoYs+cM8hyPE3JV6FaJ/aC1cbAWg4G1RgZULGofSJVCde y7ynlQmMAZA0EhxFhFzw8TyssrooXVi04pDgULInpirVdZ2Is6k2DcHtUrtYZWWFnYrCPEQ/7FSX EfoSXgXnNSZkJmhEadCZoo2oFossnEucFiLO7Okpcz+DcN4oLoGjRd9sNdqG6OZRKeFJeTBSN3dY caOywbHtulfD4W+IGM6FT8C2iroCDhrOdtWIEq9co4w5Nl1vqHpwFQpOcc7IyGAcZUHF3Ztcp2Hx yr3I9cl7ieZVQbRy7RF95Hr84wnHNcdO7snd9l5qnedw6mUVQcgRgWPRhHMXFq0YES7OI+/Fqohd 9Bu/3ArYsGi130FDkJcxC4dzQvSU778VnCcXPcUQfPgp1m9p9JkIepUW3N0YwXi/12FLbF/oI4sL LCTxOtdoK/FKOrHShYUYSW2EK6IUpwJR5xwnXqMaZHBAJ+2NTfw8XsQnXsu6p5XCNnb/pluRxBrO Io9nII3W7Xe0UdcJ/Xagx9HmO2DAZ/8HAoh9IVWAc4ioc+fHORz8S4Rywcoz7KSICDjw6H5bkKqs opzjZ5GBCSuYvkwa2xsnz29GknEeia7ipDDZ01cmc6IJFJwi/Tn4uJgyQ0SY4hI4lfTHOcbu+kS8 IgZIC8NJYfJ2qXBlBjHA+bJ76TwC1kWAGGOqsIeO+8UnWnxOok+8cg8i+hBInMuyOc4+OE8sZHKO yGpgHEV8cz3SHywsXqsE54DMAO6/G/7sZlu8htc414yRPPuS+cIJHu5H9rxW4dwB9xgL0JxHrl2i ciyInX3O+0ZEWt18gV9QNjhG5ucwnAfuJbJQ3L3J+1i8pPjg/OWbm+Mk55EMAK7fMhZi4jyRgdLp fcQ4xBziqgdXAcZJ0pvdGOl8F+aIN0+dZ8cZYC7ZZY959tp1EWUHnw3vQxdCDFIL4cqqlB3Udz/J 7pPYcPqgEGCw3+OQxc00jeBqMxEuX+S1jDDgs0eCCQCHhOdGun0gROCYzEghZRLD6WL/Ds+Q5P18 L4hYRCvOWpn76eAYF/efYfeBuPRZB3tZ+nY9zoodoFrfmBlzzTkXXFza9Fn6s/HMC+w+QY7RnQMm LgQQEVdWmZmcKcrEoxtwpilG5c6pW5ioAqw2u71y4bQu+sLEbdPChqJ0pA/zHVRJIDgBi1OF4x8U sAgF+sTPZb7fODcImXDELbynNYhPvFYN60w37jMcfhZSWFjhMUwsRLh0y6B45dos44JYFCx+0b9j Fmwedk/ZbIDG2OmyGlhw2HHC0Wbe0k223/S57HCdct5IdXaPTLFFeqb220XdM9/xvuY95wR8Gavr coz4HYyRwXPEgq1doG6Mi/QRQePGUOYO0vK5TlkcY85gQZMssWDxxTLh+omf1Y54Zb7jOmWRpayi 3IdbuGR8PPfCS4eN/zZqPmauefivHrE/s4j9x+OOMR+56jpvlkpVFpKEKJrKC1ccChwL9jrihBDF CjphrHYxITMIkHLCQO9EAAM/K7RE68qaHsxAz4CPs0j0LexcINx4HiTV6JikaWewxPkkUsfESL/5 bHAQLQOck3Bkh4H/2k98xhx63ID3GWbWKZu01Ox/1Gp7vo+cd4pdjChb2XiOmwwAtzLu+soEhaPo JnDeY1MtG44KIhaxw4Rtq2Q2xA/tVQNRR0qtq8TKPcpCA/cbUWMcMCZt2nkt+DzCqsH4wgLSoIBd ZQXsolWb7fXJ/xGyZYVr05cuGidOWXigr1UTr4x/jB84lEQ6uE4dZDIwziKAGCuBexjxyrganFPK CsfLuTn1zHNN3y5vbTrIDhZaEHeXffhae91SgOmNk+baRdCyzQ0+6N8TTzxhi2Mh7ly0kmNHsBI9 ZwGC74DxxmUolbEQk7u2glF9jpHxnwVnV4yJdsSqmy8QsYhZN2fwHub6Mp8/jq1d8Ur0nEUWFtbo XxXg3CBCd52xsJlFFcSNm/g2/J/6FcwTVVqUFqIMVFq4IgYoOsFA76KqUZB2w4TnBhScNlJMcZrL KOqAAQ2hzWDXqn84XUzYQacLmByZ3Mu4csf3baOQ+y8blj576lkX2Ojw2H0XW1EThr5YUWcLpSy0 6X5lFHc2Mjx2kRUGTrwC0QEiycEJnMgHziOOtLsOcbyq9qxBh0trYzGJc8jCko2sNr4PrmUEet2e T4cQwBmh3/banNBvnU5EbZnpRLyyYLTztNlWrFcpxdQWJZqwwOx9+DIzY+bypvBx2PYpK4elJTKG YlXALeJyzvp2nWUzc4KQZcRiCnsl7UJLQ9RReKrMosfBOUBor1zXGPt3OXJE1WquQQQqC9F2nBkz zy5Ic0+W9fxxXEHx+sUv3WkmHbjMilfauDdt9e6AuAWuTTdnBOeWMtOueKWP+DxVWdDkfLF9iUwi xkauuzCcK57Fa+eGxnzIvVrWLDEhykylhSsRLNJgSUuMK5jBQM8qJYMFAyKTAwV+gkKvbDDY2+qy oYnLx+DewVWl3MvjwwnQ8L5PxLp1pKdssqvJvomZc42wo89ljZQz8SIEOHdB8ZpkAkfUkfpdpUJa TNwIAecEU3zCirjGBM3iC2lSRIDec/GV1rEsu6DrFL4Drkv6Hl60KBPcf+5ccYxx4pUFF84xn2Hs RPg98sgjzfdWge335HqbCk22ShCX4s7CSjAaWyUYTxhX6CNCz51jB9ErxlXuSZzrqpw/zs3sJVSx XmO3UvgWcukrGVfcf1gV9pgHxSuR1VFjjhkmyoPtSQRfmeH8dJI2XBXIprLZbw3fxZctBoy1LEZj Vc0yEqLbVFq4suKIY+yLzIVh0CTCZ6Mh45bYdNOTT3936aMFSScuJmxWm6PEXhnBGWFBgeNFcLu+ RTnSVWO7o5xMvBK1I5UWxxlDOFQBIv5M1Ig1RI2LZPEv92gwFYo0aB4PgGNZZ+h7Ge9DrkkWfdg+ ENzXGHXPcQ1S3ZIsAdIX7SNvpi/3iqIqsP2eXG+dzODeMr4Dxs+qVTCF4BjJeMK4wvjCOBM+T/Sz iumJ26/R9bbYYLDPVaY5x9tHLi0fEU2uungNLmhGzX1VBf+R/rnASVO8Ns4l58wnXoUQ6ai0cGVV HAcfh9k5y1HgrLHCzr+kCwcfI1N2kkxcTri659lVCVYfSZ8J9i3Kka4aOIg2tTmBeKWNfVmIwKqU wSfVCUefyoj8S0TkoONOGVFsgvNHdJx9PWQ9aLW5eDgn9tmrYwf3U1OdNChgou65ZvG7oeeYco26 67jMMA5SiInxnuiimyPoV1C8uggdqX7sK6+KKKd/ZAyxcEt6M1kNro+MJ4wrUeK1CnDM9Adzc1pd 5oUwzTmewkuhBRVw7TtMWTAsQ6nM8CQEFqQZOyi2yM9QF/GKP8lYSP/I1GCMQchKvAqRL5UWrgwI OPk4VK32gDK5MbGX8TlnSWlObBHiFccLp9K3t6LsRPWt6k4KxRqY2EirZG8djnKceOX6rMpEh0PJ pI0YRdwQpbJ7skLOF5Hkw2cP2Irf7K2rSiS5ThAR4DnO7OHkHLHo57vOou45zjWLfqR7V2EM5d4i okxmDVEsFsaCCypB8Wr3nO16nL0+qyLKOQdkDFEPYHD/OI9H67f3o9s3V2XxyjlgAYH+YMHFvCrN C3znVPxNUsSsOQ+2EK8sUFcB5j4WKHnsIP+yoMmTEdzcXnXxynYe6nPwyCl8S1slv9FH9wgbiVch 8qPSwhXYS7fjnqtbPqyZvS5EI6nmWqXJO0xzYgsJPAZRIl5M8G7FvWpE9S3opLiqyVWASBb7yJi4 SZ9lYYH0NvoRJV6DRWGqAJHyUePm2KgWODFgK14GnC/OGQsqRL7cox1EsfD9s0WCf8P3EPcaC3/u 9SoJgyjYgrDTHotsMRTuPQRpWBC465V+Iurvv//+yixs2iyVxvkkm4N0fIzxkXGEzAe3f5dzy3iK gKeichXgHFB0keg3c5oTPszxTgBW5Rp1tTWSVuBuzoMR4rUKcP4IEuCT3Hn3fTa7hkWksEit6tzn +sciLL4lx/35W263j10KZhM1xeuEfjsGCSGyofLClcGPlVkmMIobUHwi6HwwiFDohmedVSXFphXN ia3RXyYB9gwyOCKQqvKsM0QdaW3uUSicF85juG9B8YrjWaVInRUKYxfZCcstlgQd5bB4ZVXe9bfs cJzcZ/TtgKNW2n7QB5wTHk2Es1J156tOEPHGyfIVsXPChsJunLO6iFf2Cf7XMUebxx5/wv7MnOC7 JqPuyTLjFsXC55NzR2VdRF4wu4hz7FuwKCMco30CwLg59hE3LMQyhw8+m3ztsAVqd43yvFO2/pQV BCvH3ivilYVMzh+LK+D6Yys+h+Z25g0K9lVl7gMyi3jqQfAJFVyHjLGuH268JD2a7VtV6p8QZafy whWYvPs3nGNXtt40Y40tPOIiPHa1tuGUlfFZbp3SnNgakwCr0vQ5yYRYBnBEDj3+ZHvcg+ltq2ya DeeHfgX7FpzggosRVQBBTkQkXGiDCW0w8jo8bbgqcPysjk85eJVNN0UUQdhZsYXTdp1lzy17Bzmv ojuQ3su9RuGvINxb3GNUDrbitXHPce+5c+UcsqoIV46b648FsaPmrDZ9bznaXoeO5thScfHqajtQ KCs8p7n7k/aqVUZmjCf9+fS3vWvEc2jp559e/SlbJIzouBPsnCtEa9nn9k7Fa9n3tAYXTjgXGPuu x+8zv1ngjEVZnh5Av31ze9Ww9USmLrJzvBsjg6KV65g2t9BeNd9FiLJTC+EKzmlhwkYM2UIi45fb NJ2qrDa3g5vY6G9VRCtwLkZPXGhXWXEqidpZp3nimubiQtPBbExwSR51VEZsxLVxHZImHHaq6DMi DyeMohVld7rC8Cgb7q3gI20QRez3cc4yqac82uHDV16tiGuXYW8qC0U4Uw63PxnRioPlRKxPvFZB tIK959yCWGM84f4L1z5oji0N8cqeV7e1wolXnv1Z9swcd+5wlt3CURAWbHlmOZHLKkG/OCc8j5xn WAcXHQABQCS5SmnPQToRr2Xe08q2D+Zn+uIEHJlR3EukSMN3ntpq3jxtvs3GYZ5jfnjLngtsBlzV tsY46CvVx8lyYxElKFrBLuI27j/GIyFE9tRGuDoYGHFWmLwRCG4ArSNMbFVZVWewd9EQIuLBVUge pzLx4AEbnXNOI31DGJUtPZjjTvKdu2cMu2h4UJzSrykHLDDnXHBxJVedXepp0HHuP3mLFQpL15xt zzPPoCVFn/MuuovvUVlcj0RCgvdXU7w2xB9bEKoE6aRcc0fOO6W5ILbLvgNekeDEa1CgA050WZ8L HYRzt27z+VacL1v3zmELe/Rh1oJNNiPCJ2q7TdzYySIX0XAWFsLnB5jXWZgIZ7JUhXbFa5mhCNju BwzeY4wt1BoJ98kuJu16XHMRgj2hfzT2KPOe919WurmPud0XHSU1n+NnTnfzuKutQlbVhz/68ebr 7C2nWGGV640IUXZqJ1xFORmMhiwxkw9a4X3uLosNRMnLXECL42LfFVHuJILaTm4NMY54ZR82kx+C gPT1KlW4ZgIOr4yHo65M2AhZ0vU5z+w3d9VNRXdB2BAZQegg6KJwkYSd91ppIyVlhP2NwYgo9yQC /Ox3XGh2mjLLRpcd7LUmohwlXsOiqNswXoTHFcYIt+CH8X/OJ+eKhSEEHlEfxhXGl+VrKWq0pOV5 7hacgyQZQlHilUVotpmQRVXW6zMM54m5z507zif9r6J45bpbt+mdNmXbzdGkaVOpvG/yKc09n0Hs PDFhlZ3vuDdZWJp2yPJmAaOywPxGRWBXFdjBHMZ+chZLWIgmckw7/b/wA1fauR0BS9o+55j3YJr7 hMgPCVdRCAz2dh9ZY4Lb/6jVI9JHmcgQdGVfqXROh0uxjIMiRhQUsamLpDA2nEqqD5Y9HdFBOtje R6y2aV1EOdyk7ou6Il5xVCi8perB5YLrjUUUopDsQQsvDuFQv/OCD9nFiLI+x5SIx/gDVtj9ci6T xgm4N0wbsOl54Ugc92iUeC0Trm/BcQXBxp5P+zgfO3YsHRQBS86w4yfG/3nNtu1+kk2jpbpw0Pku C+2ci6B4pbgNosBuA6rQI9/og11caJwXxn3OkxNGVRSv933tAXsdMh8wRzNmkBpMavcu+6z29oX3 WeFn579FttIwc2LZ4DhJU6f2hNvTH3wyAMKUY6cfrp0xkr7gs9j7s2FkO5BBJoTIDwlXkRtMBogY xAxOGIP9YBGUwQf/B8UrKUREesJpxGXEOR1JxStRIlJpcb7YC/rIo4OVTqsAgoconHWeGxYUsHY1 vTFZh/cRivKBk2WF6VABO1JNKX5D6ib/2sfFjF9R6uJERHx4/IsTZu44myIn4HQGcYJpx+nL7ThT VsLjChWRR02Yb8+Ny9awQmjS4ON7+D4wF5FlbCECVrZIcpCOxOuUU83EA5bYPhK1K3P/HFyDc5ed YfdyMj4i+ty5c9eoO99JvotuwtjBwgrHzKIB0UREHf+SJUDGQ6vsBhaZmCuIyEY9srCb0D/2pfJY weA4ct31nzF9u802H7lmMMJMO+Nj8BwCfg73JxYee4QQ2SPhKnKBwfzAY9fb6AgPj+dnYGAPildS 2pjUWLVkH15VIpFhJ7POIBAQq4hWK2DHLbX/p/ASEdfg3klRXlgQsns/9yZyQJRgUTOKRdSENNOy n0f6gHDh/uO6c/vkkohXt4BWZoLjyvpT32neNPn4YXUaOD+2KvnEwe0HONRVoyPxGrHntawwXlJg yqVsc57e+8GrBiNzHvFa1j3JQGrw1IOXNo+P456z5DS7vzU49wXPK4spnKt77r3PnLBog11gKSOc F54lyyOVOFfBceTAo/vNLtPnDNuXzf3nE69CiOKQcBWZw4SFE0yVWYRo2NkIildSqKYfvNA6oWVM IWpFXcUradtUoCXCwb+sqjPBc95wyGxlz8krrIDdda/FVswG9xaKckPEnwwA9r2yYMR5xjmtiijg WmSvGc5j8LEaceK1Krhxhb2DPBc5XNDIl6ZfNeouXsk0Quy5vZzXffIm+wgVxGtY+ND/ss59zXut Mcaz8OOImvv4P4KWzA5SvCcctHpYtfky4UQr1f2DmSbN623yBruwFz52iVchuouEq8gct1/VPWeQ KAkpekzmOMykC20Xr4Npb2Wc2JJQN/FKH+yzj9kzR3RgwipbfMI9Zxc4n6RWEUknSs7eICZ7US2I grhMiKrBtYiIqbt45d5j4SgMiw3cn6QnVpVOxWtQQHUbUmbduMi15hYSEDduLzkpprvOWGg2nnWR fS/njGgsYytp72UX4lELJVFzHynEbt8nhYrizm03iBKtjrhxxIlXssqqOoYKUVUkXEXm4BATzcHp wsFi3yrPR+zbfb7dR8cKLJN5ULz6Jo+ygZPCfiVSipJM4FWDCRiHA+FKBBUHi77a4lIT+ptpbw4c Lh61oolbZAkLWz6xFiZWvI5bWqlMgPDe/qhxhXGI8ZXqulV53Bt9Y58nKaTsl3S0K15ZLCvLY1QY 96hyzDXI3MVcttfhq0aMhyzW7rTHoua5Yk95306HmnUb31aZ+YLFgnDUFaKuUb4D5o/guS4LTdE6 rSGuJ66xUXBeCxMnXumj5j4hikfCVeQCq642cjd2oU23Wdx/hi0ucu6Fl9oJkMkcqiJecZYOO2HD YIXIxvGz+hycqOsgXhGmRALClVl5tiXitcyPSRH1wFXyZNErTshAK/HK9Vz2aBYg6jhWFvgosBQs YBMcVyiMg9liaQ1RTgqnz+EuG4zpSwa2NMaWefa4icIFU2PbEa9lOp9NYTNxwJ4TUrsRROFzwuIt e8gvveJam3lE0aYyPhKmFVFRV6jS3BcUrSzScsxvmLbOe94gTrwKIYpHwlWkBseLVWScLyJwbgJg YmbVlTRg9xrtO0xZ0BSu4MQrq9dlXMHkmJjk2K+D40hFVt9E7SZw9viU9Tlu9IVVcybkMOxnJSru Sz8kUkIRnzKl6Yl64u6jJEIGosRrFWDs4xEp9nEpQ6n5LBL5xhUWzCbtN8+ORWy7qIITzdyAaKW6 LsWkqCzLogSVrYPnth3xWiZ4BBjzApWPo57NTZ0H+m+3XUxfbo09r2WEqLCvDxAVdQV3jZZZvAZF K2KUOdBddxKvQlQHCVeRCgZ1+yiN3U6wjhd7HnFQfIM7aUOsNpPi9rX7vz706iC8n2hLGcFJpDqy q3jMxL5gZUPkNRxln3gNVjstGziOpP0GFw4c1jFpiFNEahi7L6shahG3QuSNc4TbFq/jltr7tSqw EIZoPX3L++09xr3nEwCD38cau7i3dWv5sh74/knLDj/uhL3wo8YPVtd1ouCMLRfZFM3wuaW/RPSS nO+ywLWGmJt62JrI4lH0m/2uFCsiqk602SeQug3bYJibEeCct7CAdVFXFk58C8yIcZ7xWuaFIx7d Q02N4MJtUvFKLQftaRWi+0i4io5BbPLAbVKBET04J0xqTOBEJd0EgCBdtGqzfcA+wrZKjglpbgcd u6a5mk6fSNGjH4hAn5NZtnRnzhMOMpMvTgXpiPyLIxJcYCAlmMgAEYSwA4pTSqof51iIIhgUa+2J V/eM4SpARsoeM/vtGOqOmXGE8ZSiMT7xiuNdRtFz/4NfN6MnLrTCJejYM9YEX2PvMtV1Wfjznduq FeljHGVM/P4Pnm+mDYfFqzu3vBYVzSwDLJogTFlUoGq8T8AOLm76n93NdVl2Uccx+h7Nk0S80jeJ ViG6j4Sr6Bj7rLrdZjcnMSZmIgdhccrrTO44MVV5TmsQ+uL2ZLnHGuBAgp3IJ6wa4WSWCc4PkSiX HgUv/PBF6zQHU5+YrO2zBhv9mXjwgHVkiAIhWknBjFppFyIvuPfaEa9VgrTMN006rrmn/Fvf3moX 93hOK+MMfS7zuBKEcQGhw7jIeOLGCY793e+73P6ftNpx+y1pVtJlTmCsCacNlx2EHOMi216Coo6x 1YlXKgizYEtNgOMWVKfqOouZLHLaBegJ/VbAEiV2C0Iu6kpWUVnrUXRKEvEqhOg+Eq4iEb5VSkTb qHFzbOoajggrzUHRykRH9eCqQSSEVFqKaiD6nHNCf946Z92wSZtJfuoBJ9rXy5oixXEPFsBa3xSv mO9ZdJxHHn3DPjQqQNt9d+OW2EJbVXCgRf2osnhFwHFPRYH44d5zldgpTIXgwWnmcWKjJy31Psu1 jDBO0teTT3+39xFZZKiM3Xdxs9IsYmjHCUebI+edUpnzSp/s1pihbTH8P7iYR/vgfsjBc8m4yfvI ZqkS9ImFBfrA4gLp0MxxnLPNZ18QGXWtOhKvQpQfCVfREpwMRBxOFfsbSYly2Eje7vPtBBcWrUD7 LnvMq1T6F6KV1DYm6kFbYYun4FwymbMSjREtwXgvj2go++qzT7xyzD7xymRNSh/nG/HO+a9SBUxR Tdx1xzWHBffBV1G8MlYyVvj2PYYh1Za9oCyEAeJ1nyNW2C0WvBb3+bLgG2fc6wgftiE89vgTduyh aNOMmdV5pA/X58r1W2wUkv2qtmr+xIERIp3/s48Sccee0aottgThOmQet5Wsh+ZEzuMue6+qZdQV tovXAfOnV39q6FUhRFmQcBWRMIDz6AI7YY1dZPomn2LThJx4RZCyH4tJLCxamfBYra3a5IZI47Ev pMmyumwfgTMk7IiKsHeXPUB8L/SdZ9KG94OWFYT3ov6zE4lXIYoEUfDOCz40+LxnovwTVpld9hle qKdq4pUMDFLsubfixCuPCiOzgegjzztlnBk1/kRzy213Db2j3DCOMGYyfvjEK+eX2gCMnYybVgg1 zjOfqQKM/aQH77rXYiteOZcs5pESjHgNinRw76+KKI+D88t8iGi1/sCUTdYXCD8apy7g+5Q5i0qI XkbCVXhxq444XjgXPO6GisBM0sGKtKxIsjLJnkhWZpnIeFbdEXM32kI/RFCqAKKO5+wdMXu1feYs jhYgwIPCjv4tX7vFRlKIQpf1sTdhENcUgdnz0KVm9KSGOJh8isSrKA3s6SQtlv2POPyMJT6R6sQr jxRhnCk7ScUrabY2BbUh7OyjcRrGdxHcQ1lWmsfeOGZX0dknXhFz/RvOscIV0UOmThUiyfRlwaqz bUGp/7rbkVbAOTh+zqtPvNYRvgv6T0ZE3UWd5kEhyomEqxgBYtOJ1uDk5CKsrES6QZ2JGweE6Agr sTgkRF+JWpa1AqYPxDhpwbvOWGj3YgUJCzt+RujiiFUBW1Dj4FVmzH6rbN84XxSAUeRVlAGuPSJw LAS5e4qFM55nOli8Z6R4ZX99FUQPJBWvLJIh/MJ768sMfXniiSdsJJJsDsZFB2NIWLzyfuaRKkXq OGYrTtnr2RDnQeEKzfYeEa9CCNFNJFzFCBA2rPz7hCsOypL+zTYqEnRS2I/GnkhELdWDH3n0iaGW atAUbpNPsZHlsHALCrvgo36qgH3W4NhF5iPXbN+v43MqXR/1rDpRFAhVChSN32dwrzy4itdci1GR 16oRJ165/+Yt3VSpKBbCmkJMZHLsMn1O8/wF8Y0zVSROnLp2to5UJQtHCCGqiISrGEFzkm44WU68 4oC4KB2PwGF/EumyRPBI2XPRgbDgqxJxUUfaEedVci6BCA7ClXTvIM1zGkoblmgVecMYwxYEoqwI n1tu/aK99lgQYg/h9ENXWgELXL8UxCGTowrpwVFEiVfuO+6/0VP7bcp0Vdgu5gbTm4mC+3DilfNX la0jzGc8BgwxzuIJY+L2/vrFK/2sUiFCIYSoIhKuwktQvE49bM2gwJmwyjqaOChUVSQdGKeF/WY8 w69Kgs4Vz8A5cY9ngDjxWhXoE30BG0Efv8IKgnCkmLY/mXKCGT1lpd3D5ZxpIfKCa5BHLiF2KOAW rFZOMZud9ljU3EePgGDfOVkcVaquG0VYvNJvRBB1Aqr4+I04MedgHK3KI2Hog92zO2au6dv1OHud skjLuUvaXyGEEPkg4SoiCU7SGMVC3B402ni4OhFXHgtQpRQpHBD7uIIhp4QKwRSZck5x1cUr52H8 ASvM8Ys22/Nl97gestq8YeoaGz0IOsekEe912BJz1bWflBMmCoFtBCx6EWllX2cQngk9euJCW82b SrvvufhKW12X67YuNMVrY0y192WFRCtj5I033WoXvFj0SxKJrBIslPCYHuoBuKKEbA3huZ6uQn6d +iuEEFVDwlW0pDlJN0ScSxsOw2MBqpIihaO8/1GrrdgmgkMUksf5IOqCe7SC4rVKe1pxvHiuLMWy cLycGCdFb8c9BvtJf4g2f/bPb7UC1xeJFSItjAluoSuIzQAYM3dEkRtwwsEulo1barckUNG1qpkP UTjxSnpwVUQr55KqwKMnLBjcLtI4P0QiWSiropjzXZssnPA8XVcd2fUr/Lg397r2tAohRLFIuIpY kojXqkCa86gJ883d99xnf0bIEn1lhT3sgCBeq7SnleNcsGKzOXreenP8SetHOMM33Xz74HN5J/Rb QcC+V4rguDRNIbKCbIzx+y+zlWYRo0GscI3YE4mYWL7mDLNi4HS7t5X3+gRGHWC8IXpZBdHKMfIc 1h2mLrILfjxrlq0FFM1iDGHxskrilarVbHsJj+0sppCJQzTZJ1q5llnwo017WoUQongkXEUi6iJe 2SvnHC0XVeWxGzgywGtVLU7Ec2iJ4OBosQeZcxaGva/ukRvsI+R7ECJrnn76GStc3bNIg+KMfaw7 z1hu986HF02oMPzGyfNHPJJKdBfGDc6ne8Y1RqSYsSYYMXbzBFHZshaa4tpkoZKidOG5jOJfO0xd bPe4hkUrsOA5auxsK2yFEEIUj4SrSExQvAafuVg2iPYgyhBnRHUQow5eZw/dF7905wjRCryfvUzh vXdVwDmT7MeiX098o7oVWEX1QAAQ1XcgdohKsX+caF1wIcVGXSf0m32PWmevU9oQuKeefZHp2/0k bxqx6B5sLSASSbTVJ1oxIpGcb84lKbdOzJaNxx5/wgprHsEUXojl+Nl7zbUZFq3MI0fM3WifiV2l 59AKIUSdkHAVbYFTgrgLir0ygaNhqx2zPw5rOCYIVCdeb7ntLvtojZ32XDpCtBL9oVgKFZLD6Y1l BUeLCLE73qB4rXpat6gOXIc8w/lNM9Z4nX3SR1n0cuKV65VngCIQuA/JECDFnXvW9xxlUTxB4UlK LPs5EXXv/eBVIyKtLBa+eeo8uyBRdrj2uNYY69dsePsI8frss881t1QsX7vFFmjCZi85w4yetLRS jywSQoi6IeEqagMOM44zURyqkFKVlP/jgDiHCseZ9EWeR7v3EavN/Q9+3Qo/Kp2yL4sUsqpEKr/1 7a3WkaRACqltLu1S4lV0AxaBxh6IeF07TLyy15F7Kyxe+ZcCYly/7LlGDBFxDWZIiOLgeycjhfPF uSFK7s4jPyPiXCQyKFpZZKCg1k57LrYCtgowPxDZf8e7Lm5mEQXHSuYAu+AyVCCsb7cTzJh9V9rs gaCgF0IIUSwSrqIWONEaLgpCEZG+3YfvmcNBwwmjwu7oycus40yUdsJBq4c53GWGwi5EBRDaVEjG oWTPoHO8JF5FN2hXvAILR6Sisr9VoqB7kAbMc7k5TxvPuqgxpqyyi3zuXHGe7CJD4xwSFWds5bwh WhlHL7n8Wvu+KsDefsZNtoXQL594ZZ5A4FIXgSwjbb0QQojuI+EqKg+OFRUuKbYRTAsGK1x3Pc6c e8EHrJPl2vgMKV+kKB5wzFrrnBDBrALsv+WY3f5AnLDzLrpihEhtiteGQOcROUGxIERe3PBnN7ct XkX3IXLKc6vJRukbv8L0bxj5DGuyOmwkstFOZei+MfNsBBbRWrVFB4rUuf3UXIs+8SqEEKJcSLiK WoAgtc9dDYhXikfxqBsc5cHHvyy0K+xEFtxjDHBYylqIiWOjiiWP5GHF3zn6Ns1tt9nNAjbO4aRS q0+8ItCDUWgh8oDrk9RfFlXGzJhro3cSr9WBvZ9WvI1fbgXcQced4h03GFs5z64y+b33lbPeAVkp iFO2g/hqFpDWzJjpahpwLUq8CiFEuZFwFbUhLF5t9KDhhFGIAyeLSsh2z9KEfrtfCafLRWDLBmIU J4oUPAqC7H34sub+MfZZHXDUSiu4EabsRWN/2RfvuFfpwaJrIGZ4NrBbHMJaRl4b96KqB5cDxkH2 ye8yfY4dd1zklfNUxUUvRCtFv7geGUOZA3iETXCRErGKaCVizGNwIChey1w5XwghehUJV1ErguIV 0XrhB65srrbjhFCwibRiVtp5rEH4OZJlwe43G7/CRoyJurIPy4FYdc9fJZowatycZvEp+xzMiSeY HaevUHqwKAy3Z5A9kMFnA7fa88o1ruuzHJDRwXhJsTfGmmDaMOL1hR++aN/HeBk8j2Xl1LMusOKT Z88ePnvAilcWSsgGoK9k3DCOsnCCuF25fksz1ZlrssyV84UQopeRcBW1Ixx5DUdVcUyee+650j6L jwrHFItiL1lcGjOpcG+eNt/2B6wjtstbzUev/lglIyWimnD9sRjEI3HC+yLvvPs+s8u+AyPEq+g+ nCsikWSkIOqC401QvM44YjCKfvyizWbSgctK/xxTFindsZPyfO1115vF/YMLlhSdIuMGsfq5m2+x /ebROHo2qxBClB8JV1FL4sRrmbHR1t3nW4cyjsHI7HIzb9lp9v+uUmaV+iuqD4IHAcCCS/iRKETw 9jp8ldlh6uJhaZmi+7j07on7LzIHH7NyRGos4tU+PoxiTBMHI5cUgnPRyTLjixqzwEKFeYQqfaI/ ZN6wH5vxUwghRLmRcBW1parilb23OJNJ9v+Rlrn/UYNOGJ/BIWN/lxB5g1ilUrdLY7eLKBP6zTEL Ng+L3HGNTt5/vtl89gX2PUoPLg9NcdcYI3m01tNPj9wXz/lyUdlbbrurUucvLF5dFgrRVbZXsMhn i1FNPc2bLSCEEKJcSLiKWhMUr6SKVSFSgEPFfizSgFuBOHjPxVdaJ4zICZ9TupvIG4SLqx5MpW72 tXLtca8tWr3FRuZoYz85wvbUsy8yo8afaPdqi+Jx1XVdJfUwUeKuLrTqH9csC4SIcu1pFUKI8iPh KmoPzgmPlKlKlV1SKXecvtw+p7WVEzn4jNpZ9vE4QhSFXVhpCFYiVDj8Ew5abSOtG8+8wEZflww0 xKt9zudS+z7+XdR/tveRJCJfiKCynxPRxr+kyZLKHV7A62XxKoQQojpIuApRMoho2X1lk9aZucvO 8D6SAcdz3ebGe3afbwWsEEVA1G7XvRZbcerSKq/9xGfsI5v6N5xnxSnmUksx0oP1WJHuYJ9VutdK s/veJw3u65ywyv5MYSIWyIJpvxKvQgghyo6EqxAlhDTgw07YYJ2s2UvOMM8++9ywxzVc98mbzJtm rLGPr3ACQoisIEuBSH54PyOClCg/acBAeiWRPASBuw6D+1tFd2HMQKSOnrTYVtblMS9OwJLVwaPB eKSWi4YHxR2P4qrbgkOwfxo7hRCieki4ClFSSG22+wgbThbpmPOWbrKO57Hz15vRU1ZaB7Ssz6EV 1aW5L7whbs4855Jh4tU+bmnMXJsu7BOtRGQPPGq5rssSgTAlIj570SYrUNkHTxScvclU06WyLm3s QeY8YkTPL7n82krUBGgX+ke2iva0CiFE9ZBwFaLEEL1avnaLfYwIQqJv3BJr81ecKXEgcsFGVccu NKMmzDekqwfFK8IUsTrhwMFnYQZFq0tf32HKAj3ypkQgVhGmCNRggawPf/TjZsc9V9vzyB7l0ZNX 2H3LFHNyEdi6UkdBLoQQvYCEqxAlB9HwzDPPNCsHs6e17o6l6B5E5Hi25eGzB8y0mUT8h4tXW5xp 4horeEgZ5lokpfS9H7zKih+qCEsYlAsEq4uscr6uv+FmK1qJrLMYwTklu4MFMtqEEEKIMiLhKoQQ oklzX+TEheZDl39khHhF+Jy+5f1m9NR+s8s+q83R89abmbPX2ecIRxUTE92Fc+airme948KmaCUt 3EF2BwtkQgghRFmRcBVCCDEMuy+yIVwRsN/69tYR4hW78aZbbWopkVf2S6p6cLmx+5N5RNH4FSNE qxBCCFEFJFyFEEIMgwgdkVREKamkFArzpQ2zv5V2nt8qyg1C9eBZjXPYEK+uKrQQQghRJSRchRCi B0F0khqKSPXB43Ao0kQla4gSr6I62HM6fkVzr6sQQghRJSRchRCixyD6xn5UivEgYkgjDaeO2iJN h6y2RXvcs1klXquNi7pSRCtYYVgIIYSoAhKuQgjRY/SfvKUhPtebt+w53xbs4RFLCBr2qb744otD 7zLm5NPOs21E6hyIVwSthGs1oTr5GyfPN1+8496hV4QQQohqIOEqhBA9xpe/8oAZe+A684Zp60z/ +rPM/OWbzc57rbRppDyjFWHLs1gf/qtHzM4zlo9ILSUaK9FaTSigpWirEEKIKiLhKoQQPUhQvF74 gSutUCXCinDtm7DK7Dh9uTluwSnmgKNWmtGTltpKw0IIIYQQ3ULCVQghepSgeP3AZR+zz3AlVZiU YVeBlv2sfZM32Efj0C6EEEII0Q0kXIUQoofxiVegkA9Fm3gszuhJi83bzr1EwlUIIYQQXUPCVQgh epwo8Qrsbd26dav2tAohhBCiq0i4CiGEaClehRBCCCG6jYSrEEIIi8SrEEIIIcqKhKsQQogmiNcx +67UnlYhhBBClAoJVyGEEMN4/vnntadVCCGEEKVCwlUIIYQQQgghRKmRcBVCCCGEEEIIUWokXIUQ QgghhBBClBoJVyGEEEIIIYQQpUbCVQghhBBCCCFEqZFwFUIIIYQQQghRaiRchRBCCCGEEEKUGglX IYQQQgghhBClRsJVCCGEEEIIIUSpkXAVQgghhBBCCFFqJFyFEEIIIYQQQpQaCVchhBBCCCGEEKVG wlUIIYQQQgghRKkZIVxlMplMJpPJZDKZTCYroyFcnwm/KJPJZDKZTCaTyWQyWTnsH1/+/wOcjtcO 3yRg9AAAAABJRU5ErkJggk== ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/image003.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC+1dDXhU1Zk+SYYwCYEZCCQZE8LMJMHblIXYRUIpydyQgF2NJNWI6crGEKkgy2o0 gFbdp0EUBdGyYF1WWaU10lVwuxH/UH6mrj/1MVFBW2Or61pi6/r4A4+oSH3Kvu/MPZOZCRMmOZMZ ZpzzPO9855577zn3nu/nfN85Z2ZShBDLAZluTBPiWIo8EsI0U4gPHULY554/T4gUUfuCEA/hmtS+ Szy59pFCzDQJcTbufSTonPlJk/jNA6kCFYgpgB1Add9O0VNEAfJWINXq/gOb3WiA1zJ/M8Bry/RU z3VoAqndVaoLUYxcHg9x7CFB+e/oIkXW33f+0hrhHlkTzv0mXYgs40Z0gTAD5wE6UAaMAOwAn5uw AjKxHyf5dZI8duIC1nkCie9owjXsb75jie6tw/uOuF9P87Xv1E2+fKGe4cs79JG+fOA7WatRvZGs 1VsaH69e9ejxarMu0trR3gqAfa4ZVzx/1g7Xc4ds7j8f+UUl6Zsd13to2z1nV069KM/99btfVyx7 YoL7iTH/VXH5oWx3QcuiirYNY903NWdUnPvuGHfHDXNnO76T5Z4146ny56ZmuO9efXbhqK9HuFn9 qnVX7E95/c5KSVk29u3/9PCMlOWVn7zuo7yPx813Z7o37XnNdfGrY9wPLXzZddPUce6sn7/oSl07 3q31POtqW5HjTrt0r6v75Vz3u+8/6TqzyOa+cU+naxmeX77Pgx9udz1b53KTXr+5zv3Etttdbz67 0O365EIPHXev1UOXjnmskudJeT1pZtY0N88/8rbDcz0p7ydlfTwv6xcpaTKleJM8XCNkDnTNeF20 W/H+5DFlwAFKuWoBKBdgi0euKduQ6woPCcpTrEoAQzbbs4087/0ewPryASvwCARuR4YQM4zj1Tbv cSOOdUAmPgsTLhVv5u3ImJ13KMOdW5W5LHdNpjP3zcwjOeWj9udsGdWRY8rqyLk264e4bqa8GdR7 94kTMAOiI8eWO9lG1E361EnYcteXENdmDdTu+pKDo35QMmvU4WJ35iPFyzMvLp6cebToi4xNRS9k FBXtyHjEuSODHeL/fs14v6XoTNZbC8gkn4d91OwsTF1prxa5hdVid361eMVWmPqKbanpFVtn+u78 Debcwg3mlfYN5mZnZ3qzc6lJtjEb97KtSiAPWIYOJt9+CAZ8jrx/v/vzg7wz+FeFrJHafXnc7rGF ryHzHEDdL9VPbc/CuWYy6rGifj4nU3RsSkoq+6oMoE0BEXfyA2nHw6Wz+b4SLJPXIHvCrKemPYW+ 3AmwfCovQJL6m2j2SIfd4fuRznho1v40wy6SfjL/+f3jDHtIymNpX2Jpv1JglVICrJgQE/S+8Ris C8tmXYrrZgK8npRJUpbmeYv6fUrd4n0yPwLG8Ztm63ILhaib1GfLebwfnSZt/WTYdltu33keXzW2 7/ynzsDzPPY/Hw1bqoOH5PNSMJM24RJ8fIm85CvGj3aZx+n2cGyphgtp5ykf9KkOA71AvNpVWAf9 jubp1Zm69/3ZXxzP+H5MrT9Zt88F/wi00q9/wvIVZN+a0bcLUFcZQD7cARwBHgOgW0ITb5g14Rpl sRDMv2GW9w6FR+RLM16gAYh3vph1lfFOpH0ffcHxkuMd+9o/ka88Nvi7j3nym9ST4FyuRmaC3jfO o0tjYn+l/PC5bgc+A54AvPITKDuUJRX50VCv1HGYLU+eOkG56gG6gPiRq6B4NaWs6r7MM6tNus+n Fw68D3TUEx+TngfoQBnA/rUD5DthBWSScWbwsZ+d8MiX9zyew2ibNoD9a/We8HxmBh1fgONWNMg2 P0Lfey4yPvawAiSTGJFaJ1rFj8SVwi4uFItA21C+jTchHZ/41GXHfoKMcfzXs29axGPj0HPNN/1j 8SoP631jIvsmByB/8oBxRp7lPGY5UmoDPlqBUcC/AHXATsBgDXJ9KR3Z2r5DT476xNSIo2oP5y4D H68Ro3HMNkgpE8wzTpT6jPJ2zSjnMzmNPOuifs5E4RSgv34GzlFIWSzVIxMLhVPPZLRlxTOaAKYS PfA4knMw6dtfqX592m0hx/UNbRX76t67pBK00oFnMQMtAPub/eqnwxU4NFLfHAH5LHmCrM+PQj2+ sX4rKvocJ/eAWgHakm5bg6Xb9lfrnnyC+QaLrGcoY30w/3vQRhfQn/9BdhDXMMWeb4HPNWb7weru tTfHxD7LtslbyoEVkGkw9nkjBQgJ9tlJ3V4uroBsXYNPkbTPnp4J/0PFPtNGPwhefAH6EOhogLwN TmRXbVAh7SlTPcqnAtRdqaenssF3ocLbgP46GGiDpbyFo4ORuibaNnjCh6sxD67mw09H32sAffg0 UP9kvzTFzWPS+a7R+wV89mB/3YHzZqAFGIx9vxTXzwQoH6RMkrI0z1vU71PKCe+TechP+8U41oDr gEeB+3FBOsB36rbNsG4dSUTOd6c/cBjoBfrLYqDdxSWeVKqf2h+IpgxV/cxR86L2xpxMPTrx+S0w EHPQEyvBlGWg4Jto0qaZmrR70ueWE8xPM0m+DmXMJl+awfd4js8lX9R0OzXt++iL2cCQ43Ms9JwO 86ML8A5lwM2QnyrQayE/y0G98hMoO5QlFfnRUK+0Y04jz7GKctUDdAHxo++Bdmjuz4pqPrhx9xyT 7n1HvErU4nPZNlio5P8l43NyLTJJxf9rxSPcCWaeA/oaaAsoeRuc0lFQG1RIfWJqRHmNZ4ZlhceT t+CYusf43GxQ3i/1+VS+YbjxuZTFUv3U43GkronmuL7vwPvVA43r85aZ911w4X2VoMMWn7+MMXgB eHcMVI71uwqWjNhVcE/6DZMI5peMkLwdyljvRP2UF8rSPNAeIJ7t8wsH/q/60FddMbHPsm3qMPvU CsiUjM9lT0SXqtjnBjzqG/SDQXtA/xH0ZPYZp0La53qcG2x8vgEVtgP9faTA+FzKW6Tsazj1RNMG 04c/sOLf5qj68FPAAztAH96ff3vvfrLivj037t/40z9UeOPywH0MDtxjBloA6jNYEta863DE5cVo m/uMGKPfhpdoAuW7NGmbR9ww6RmlMUBDPfL9OAYcBnqB/vIX6AvjEk86HeXmmfPWhJxbj/SaOWPy d9ETjMlHgkfemOrL0U1ai3VuOcH8l6OT47QhMNijS/9xbdWPYzKPLtum/qiM08k4SvJTnaqM06+h ecZRh0CXQQf/CkreBqccFNQGFdLvZboO5RcgjmrDqukVWAtZJFaIq0B/LOzi77BufTnOXYayK1DK VWzGV5Qd+nXMpwNcB2WZP+X6K88RMiaT9/E6lvN4DMBjaSMiGadRz8Kx0ZG6Jpo+wrY0U42t6taQ tj4a66gWCNtn4N00UIth/7+yz7B8ZX/P+oGTYH5Gch0VfeRN7a6OtPSa7C1rYmL/Zdu0EdQ9q/eh PJ/JOM2vM6KYVbH/DXjOPDDzKGgB6CjoIHkbnFAc0v7X49xUzILQdwvXBocbp0l5i5R9DaeeaNpg xmlrd92iuI6amjYFfW8HguO0yZtf2uuszd9PGg9x2hQI31/wHozTTvB9gCaty/KBs0tpDNBQD+0V 5XgecBjoBeI1ThPY27x21faQY/fvbvHubQaN2N7mEnTeEfTZ+aDUdU0sHKeJF8dbLATzC8dJ/R/K fCr50oy643ntVPJFbd4l/L3N5DO6TUjKPPV8NcgE3Ts+m1gEFBvADFkFskbqy1PXIj3/sgB1lhkt FeMh6OvVgXrlJ1B2KEsq8uOv4060Q31nfEK56gG6gPjR96D5Iuwvnvzy/THx+YTRNuWDfWoFZBqM z5eM+WWvqVMVn28rmmdsXQo93AQ6F5S8DU6MuWuDCqlPTEtRzpj/Ss/KqV0sRnTfhuNFnk9vvE5Z YR2k6QZknnLDPCHzUvcjFb9LuS3VE3OdlfugD6beH9IHeMfyrX015TWVoMO2zsp90PQLdgOVAO16 t23huG7bW9m35hPMq/kFiWbLuTf03LFbY2LLZduqtnwjeM001H3QQkz/5614CEw5fuOTii1vQO89 CF5QB7kPejZwMluO4pC2vB7npgLU3XBtcLjxu5S3RLXBI5dfXd165jbF+F0MGL/bX9zi6ovfA316 B3hmBloAjqXkcyz8fK6tst1PgWl4iPuB6QBl0WLJz+625WdL2RpKbKihHvl+9OcPA71A/PjzgfsP OO9z1m/qQo7dkY7fuc76H+gvrrO+Bkpdb9LWZzZpn2fNLSeYX5+pwiPyJd7jd8kXtfg9/L3PMm6X FF3ojd9Pw73P2/Fo3Pt8ENQrP4GyQ1lSkR9/HXeiDeo7Yw3KVQ/QBcSPvgfG71w3v/rqOTHx+WTb tMXsUysgUzTj96TPJ3tdCBWfbxuq4Zr9TlAn9PFFUPI2OHFdvDaokPrEtBTl/P7iNZ7I/SqxyhO5 XyZW4psNLJVxO9fVmU8HKDucN+Axy2VenhuuNXjqTamemDH83Y70mvJzF4b0A6IRw3P97znwczro 26C07asdVVmrHXtHzyoimK9Ssu1O1En5oewlgj2/x2Gu0ZYsiIk9l21T59mnVkCmwdjzZAwve02d qtjzBjTvADP/G7QE9Peg5G1wYmxXG1RIfWKqR/lwxfBS3hLVBtPnv/KCRsUYfuA1+N3auLhZgz8L wkefgmvwXaCUxSbt3qxZRfcqjQEa6qG9ohxzDDgMxHMMz/n33IO/DWvsLsa7EgOtvcrYiRfJvBn5 BSgoAzjXvhngXPtOgOM0vltu67btOuPWfIL5GTZ571DmWZyokzyiTUmEcZrzjxv/92BMxmnZNvWH fWoFZEqO07InoktVx2nOtVMHOdf+MEDeBicUR3ScDvd7pVLeEnWcFtjz9Pd3vRPS3vrPmTrAA9jO Qc+LS9uJW09qg8nvu8DgI6DPgNIGa0K3aWJHvsVCMK8r2WDa3XifR5W8UptHTcx9UJsgN5+Bx3t9 8hMoO5QlKYdDGcP9/axEG88F9iId/+B3MRnPZduq47nqPqjkPCqUx0gq4/ly1ME5zC3QwwrQXaAn G89p42sB/0T/mKkRhQs833paiZ1PfXOlct6Ufp7UZcybtg+km+GuqUs5LNUTc06Ua+pfT3xTMR4X aVPQ93bgZHvi421N/d8hm1xT/4UhoxbLV4j1vlLyM/xlMRHi8YpDzpo/5z8dln8YiXj8dhgL7oW/ HmswK0BpJzq1A+M7tdm5W8oJ5g8o7WlOBF9Q8kXNF0y8NfV1kJ/zIDf8relVPvkJlB3Kkhw/kr5g 4Jp61aHimltbd8XEF5RtJ31BGL3TJKn4gtfhHe4CM38APXwPdDkoeRucoIMhfcGFOHcO1s9X4tvu Vxn74LkGz3u4Zk5fMMuPSr0+lV8Y7vyPlMlE9QsXLrLUrFwWenyPxlp5BYRiIWSD/1210rDZB4pe mnCgaB7+l4tg/qUJkrdDsdlOQ04YXyTCHHzzorE1H1/3ZEzstGybukzdswIyJefgZU9El6rY6QY8 6jxDB88FbQthp1Ec0k7X49xwrZVLeUtUGzz/nJyal5c8oxibD7xW3tywq7Jvv/vp/btiCyCDl0PY 7gDl/xqCiPUla3I6tTU5KmNAosXmXA/YVPeXqMXm5MOr4McRUP4v2ghQTRwr0ETLJIuFYP5YgQqP EiE2l3xRi80Tc52mG3LDdZpjPvkJlB3Kkor8+Ou4E+3QP0kUn49z1Gd1HI2Jzyfbpg1Q8fmS6zTo wAglFZ9vJ56B6zSvQw8fB/0ElLwNTlYU1AYVUp+YlqP8fHw/nd9Tv0zwf3vsyP0TfrGO+92vxK/T tfn+h5gykw6wTZnn+MGy8UYZY3qeY1zPtZ7h2Psu5ThRfUnun/t15WchfYJoxPNbIUuvANxT9yeA fO629RZ025oLb80nmO9V8hMSzbZzn9Gs8w/HxLbLtlVte3LvOwQ9QknFtjOe55466iD31L0PnMy2 ozikba/HueGK56W8JaoN5lr7x51HFeN5kTYFPLADibDW/haEjWvt7wCURYtl58Ru286JkfL1GTce BnqB+Pk+a+D31xk3Ot/aH3Ls9t+LWYz3JLD9pcJDgvLsY9m3vEjmzcgvQEEZwGsawY8joO2gHKc1 sW6CJo7mWiwE8+uU5t3Jl2bU3QDEO1/U4vnEW2sHa8UC8JXx/Gqf/ATKDmVJyt5Q1m0SPZ5/9m92 x8TnYxzEtmkDGHNZAZkGs4aTjOdlr6lTFZ9vI5pnbM111FbQa0HJ2+DEa2qDCr3R/IkTi1HOfZfe f+6yI3q/Qizx/Lp84B5Mygvjdo4XlBXmWSbX46W+R2oNXspqovqLWxofr77yR0+FHPejEbNznYW+ wFrgaoC87chZN6EjZ0TuP+QRzKv5Ak5DTihv9At6gC4gfvyCwL1S2xp3V/+p7fGY2G/Ztqr9Tsbs EMAIJRX73YBn4Lo7dZC2+yrgZPYbxSHtdz3ODVfMLuUtUW0wY/ZR63crxuwDr8Ff/q8X+/3m3Om9 Bs/fnGuBsC0HlhiyaLGck9ORc05yDR59403Wau7DXvXo8ZBjd6Rjdu6P57we98d/DspxulPrLejU 6iZtKSeYV5tbT4SYXfJFLWZPvDV47o/vgtxwf7zcwxEsOzyWPnwyZg/0+bgfeMLI2KzBy7ZVfb5k zC7ttzpV8fluRvPcH38Q+vg56Meg5G1w4jp4qJi9GecaxFKswvM/4vhfcfzPODFLxuOkvJ+UkLE6 43ap45GK06V8JqqPuP3p1Jp7j30RcqyPRpyeCQH5LeTkTFDu2eD4/0v7JRN/ae8pXOQkmL9EaV3F achKosTpDz9tqhkfI5st26ZeU/+sgEyDmWdNxumy19Spis1mnJ5t6GAu6EchbDaKQ9rsepwbrjhd ylui2mD69d+deEwxThdpU8ADO3CytfVRP/9bv9+V8+qsCdeSpw7ADLQA1GeWFRsYaC020v8BdbFs FzL4Lh6Ce+V7QUEQD9owDtgK5fiu6sMzHjwM9ALxM1cbuLb+x1/9vvquJybPydRFO/mVB3B8I/+Y 5i0z77t27Rku0Ij8t9tjqDgH9WaBIaWgHKfn5zenzM/fnLrXTjDfnKLCIyfrBxJlnP7wV/9T3d2Y N8eke98Lr+bTtwLkqXfnATpQBrBP7QB5SFgBmRjfTqIyGEke++mqS56D3rpk27yFfWrtO+lZ4/I/ vgDnWtEg2/wIne93qdjIQqTkf7h4+0HlU3Wc3gteZOMBfg1KHfQTB99jkV21viNvhvrEVI/DwY7T M1HhFKC/nQy0R1LeSvXE/L0Z/v7rQPbWf17UgX6mbrcA1D3yxE9Ph7y/if/PQZ7z/zmkDW7SNPzu 6ubUueUE85ovDh7KOMmxsRkPHM/7mySv1OZKE29/082GweD/c3wbfOZ4Eyw7PFYZwzXUKWXeaeRp eyhXPUAX0N+WBM5J4hJPCseWTNb7/FneVBJ0PElP8zwPzzl1ky9fqGf48g59pC8/UJv8j4wzn/xj VSzGc9k2Wcj+tQIyDSbuTs6Vyl5Tpyrj+VY0z//nSAc9A/rIMcNQz4AH4x6k2oASr39MnVqKcn5f id9M8n5bifOmzK3ADKrXV6CssA6zQdke9Z5lPEewjHOqLJO6j3xEfodOyu1AeoVmPSlS1wyvTQj0 ezjWZGd+d47qWDMFPWAHTha/dxxt9IvfT+91ds7nTsR78HfhnXwfoEk7nrLXflwpNtRQD2UVrklC /C48531qHrsv5Ny7vz8ZCd+R6+w56Dyus1eA0gZ0aovHdmqvZm8pJ5hfPFbq/zfVd5R8UdPnxFxn Hw+54byDyyc/gbJDWVKRH38dp+2gvieK78i1xF7zlpjsrZRt0xazT62ATEnfUfZEdKmK7/gYHpXr 7GdAD2dDH88GJW+D01gU1AYVUp+YWlFehTX2FfAYr8Equ9d/bEWe6+1t+H065oQYA9A3JLjXnhRj g89v5DhCv1GepzwR8j7eI23CqXzKcOeapDxHyl8Mp55o+pT8Dbvxz28P6RtEY12ev2FHueJv2M0H JZ8PFF2UfaDowPj1JQTzFynZeyfqTCQbz9/1uuP1B2Ji42XbtAMqNn4jeM2UnO/39oPKp4qNb0DD /A076iB/w64WlLwNTmRXKBtfj3ODne/fgArbgf5zdIFxr5S3cGxnpK6Jpg1mHHDuew8M67o8fsNu X99v2PXNY5KnDsAMtADUZ5YVGwCHKpA1Ul+e8jFc6/L8DbtyPATX5b8HyrY6tU3Z60s2KY0BGuqR 7zcP+Q1AO9Bf/iI3R2zW00x5aIPtcr4FRMCNsk73myuuRdligP1OMG7m/uLg42+Jh3FWppM/ozwb TJ0o4DPQH+O7FwBWgO+eqnvP4dDjS41nBskKMP//xclc2UzGAAD= ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"



 



 

 


6

Wilson Chango, Teresa Olivares, Francisco Deli= cado

5

Topologías en el Internet= de las Cosas Médicas (IoMT), revisión bibliogr= áfica

 

Escuela Superior Politécn= ica del Litoral, ESPOL

 

Revista Tecnológica Espol= – RTE Vol. 34, N° 4 (Diciembre, 2022) / e-ISSN 1390-3659

 

Escuela Superior Politécn= ica del Litoral, ESPOL

 

------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAVYAAACKCAYAAADxJGJjAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AADYZSURBVHhe7V0HmBRF2r70/3de9vLdf6coSUSy ZI5gIEkwgIgooOSMIAaCCBIOkKRIDorEVUBBMggCEpecdpednQ4zi2vOh4n+v7emeujuqUk9s7Oz S737vM/Mdn31Veiqd6q7q6t+lAr4fL4hmk+bJymZVGraUN7EGC5fvvxz3adf0HXdnw5UNTVb9akH 6fvwvLy863k24wb5OOn0XZxJ520AykWfR0XhaUuffoidkFhBwtfq4sWLFfm/SQVV3ruUIUNSsjBI 7WsDb2oQoFdxbMuWPWnBzMxTovwe8/v9dxuG8WOe7Ygg+3HpVKZEeez4aUPTte9UVe0QKNfeEJt0 JfKbp+U14qcmMujEZZknHaT/p/KgpIB+tTX4XbxwnVG68gOSkkkja7O67uNN7Uc0is3AMZFtUfPm Gg8ZCxesC/YznvdJPOthQT8Wa9K1TG74n6mvsLKTsHbBZ7mqDwrt0pHIr+bXmvFTExkkfJ+vzths dO7+nLF3z+HgSacTqtPf02fOnPlfbuoKiqL8ncQ6OGo9eybLGD9psVG+Widh5iUlY+HLr6xn7enc uXN/500trYXVyttbDjI2bQqMgKj//UACex8vQgiksKYPkd+4hHXZirdsDoY8Pt04euw0c8T5kc/n u8Pr9f6CR3MFX76vC10GeE2/F3JzjY6dRxk3VZciKxk7K9fpEmiXur6CNy2G4iKsJqvX70b9LHC7 QNGV07t27foZL0oQUljTh8hvQsJqskqdrsbQYTMDjRiVgV9Xn35KzVdr8OiuQJV6LbE3iey3pu/9 B44Zd9/3hDAfkpJWevLyWJvhzSmI4iasJgcPmWr2sa+zsrL+xIvDIIU1fYj8JkVYrazdsIcxf9Ea swGYXOb3+6tzV66Qn5//ZxLY2aqufmn6Xblio9Hq3mHCfEhe3XxqxEusjdDVUxPehIIorsIK1ru9 j5Hn9bKyqQVqaV4kKaxpROQ36cJqZZVaXYx9ezPxdI8lxipKV5fF+qQzHDIyMn6K+7GUp8um37Vr dhg3yfuxkpysceva+7zJ2FCchdWk2adowMJGrlJY04fIb6EKq5X3PzTS2LTxHZYoqOjKR7quj8nJ yfk5T8IVyEcTKsR20+/5rBxjxqwVRqWanYX5kCz53L37IGsLvImEoCQIayUatPA2/y3KJIU1fYj8 pkxYrezV5z/GocMnzIaBe7Jf0Qj0HuI1PDlXoMJ0pAaWY45k6TLQ6NZzvFHx1oeF+ZAseWzd7gnW pnw+3+O8WYSgJAgrePOtDxmKoqC8Z6Swpg+R3yIRVpNVanc1+vSfZDYOCOxlCCMJbGyTa8OARsG/ 9arervBp8vCRE0bnrs8K8yFZcqioKi6Tv+RNQYiSIqxgj14TzL6TXVLKBEphTRJrNOhmzFnwmnEh N/Akl2VO09bTyKMuz4IrQGRVXZ1Cne0z0+/6N9822ncaYTS9a7BkCeIrSwNzVt9///3gnFURSpKw glu37gv2GVF4caQU1kIgHkJt3bzX9tBL8SmbN23alND9WMCred+ksmA6WNC3ZMkh/Ri/xU91WLgV 1jJVkktRGm5YqVbnYF8RhRdHJkNYRXWeCrJ2mI7CamWbdk8YGRlbr3QcXfuUOsZ0jER51lyBOmAl r9dbTbLkEOeUn96IcCusZhtMJvGCzaw5q41bEnwO8CofrSeTmJ8uSiscPXwaWLJIff2SW2F98YUV Qp+pYq6eW5Y3t8goKmG1EvdI9x84Gsw8Vfx/VZ/a4YMPPvgNz6aERFQkIqwk3gqxezKIN8LI5wXz Cmr37sNG5dpdhGnHQvggX19RnziQIHPgy62wCvy5Yk5+zp8TFVZRvRc2kW/e1KIjHYTV5C106YOZ Bag4k1QghRrqvTy7EhJhkaCwHuVukgbyeQ3xcfj3ehWjXuNewvSjEfdaqZ9+wd26hs/nYytKuRVW 7iYpSFRYuZv0RToJq5W4hJo0damRlZUTFFnibhLZxjzrEhI2pJuwmsBCRnQVlo907rhrkDAPkdir f2CwoSjKDdylK0hhTSHSVVidXLZsA361WaUy6voeeatAwop0FVYTqq5+7yZ/IOIpuvIwd+UKUlhT iOIirCaxhsArfMk4zm/oJM33eDy/40WSuEqR9sKqqtcirVmzVwnzEYmsrev6Xu7KFaSwphDFTVit vL/jcOOdPYcCjY7Tl+/rjQbMiydxFSHdhRWgdLbn5XmNMoJ8ROLRo4HlBbkbV5DCmkIUZ2E1WaHG Q8ZDXZ81cvlLCFQmvPrqp472KC9mykGXfZ01XfsO+ZGMjXTevrSu7BQviomwNkJ69e/oI8xLOE4c v4jlk7txBSmsKURJEFYrIbJjxi8wTp06x04AqOjKYWrQzUePHv0TXuxCB9LNyjpvrF27RjJG0g8R BG4Or8K4URyEFUB6PXpPEOYlHLs+OjZhQZHCmkKUNGG1EpdbC+evY++Z42SAVN7sgoKCX/PiFxqQ 1uHDh4zevXtJxsDZLwXWWaUO15pXYdwoTsI6ZdLLwryEY6fOoxMWFCmsKURJFlYrm7cZYixecmUz NxrFfq34lZUej+evvCqSCqQhhTU29u3Th50T/Ojx6nMFKayRIYU1hbhahNXK1ncPM97eFVjbk/Nb 6pQjc3LieLMiCuBXCmtsPHzkMET1+0Q3rixOwtpvwGRhXsLx0e7jEhYUKawpxNUorCbL00m99/6n jNOnz7OTBVIHK1B1dTCvHteALyms0TlyxAhW79TRxvKqc43iIKxer/cmpNewWT9hXsJx2pSlCQuK FNYU4moWVidHjJ5jHDp0ZaFuXddPK4rSjldVXEB8KayR2ad3b1bPWpitVuJFcRBWSmsZ9TmjfLX4 BAXbxiOf3I0rSGFNIaSwijlzxjLDyxfqBqnj5VNj+AevtqhAHCmskfnGG+vY1Diq1xt5tSWEdBdW 7AmHtLbvfFeYj0hEPPmCgBTWEsMmzfsbs2dnBBo2EUJAnXCDx+cpx6tQCNhKYQ3PgQMGmGKxmVdZ wkh3YaWR+UWkFe/mmLBHPBLG9tyVK0hhTSGksMbOJk0HGFu37wtO36KOco5XYwgQLoU1PHMu5LDl IXl1JQXpKqw0Uv0fRVdOIZ1OXUcL8xCJfQZOYXmMtoNCNEhhTSGksMbPslU7GgsXrIl4ghEmhVXM WS++wOqOOnorXl1JQToKq6Ip3egH5BLS6PDgSGH60fjO7kP4Efqcu3QNKawphBRWd5w5Y3lUYfV6 84wTJ45LOoi6IaHw8qpKGhIRVqIHl9qJUvNrD1I+RpFwHOR+jf37jxr1b4vvFVaTEB74UHX1OV5M 16D8lRhhTQWpvo7w7MYPKazuGE1Y/X7/dRT+tWQoFVX5cNeuXT/jVZU0JCisSSP9aBh5JEZvvfWO UaF6fPdTndz3bia7r8+LmBBKgrAOGjTVWP7qxkLnyhWbA+cyxm2BQiCF1R2jCatE6uFWWKvWfSSp FKXhhnUa92Qirev6LF7EhFAShDVVxG4myJ8U1hRTCmv6wa2wpiszjyS+VKAVUlhjpxTWIqIU1vRD SRLWiZOXsPbl9Xrr8uIlDCmssVMKaxFRCmv6oaQIa9O7BrO2RX1zBy9aUiCFNXZKYS0iSmFNP5QE Yb21QTfWrojf8GIlDVJYY6cU1iKiFNb0Q3EX1jtaDDIUlb1Gfcnv9/+SFytpkMIaO6WwFhGjCWtO Ts7PqfH01HV98NVKRVFu59WREhRnYe3eZwJrT9QfP+DFSTqksMZOKaxFxGjCinpF+FVPXW/Bq6TQ UVyFdcfO/WZ9XTAMI+nze01IYY2dUliLiNGEFWHbtsa/ilFJYZ1GPc2G2YlXSaGjuAnrmHHzWR0x 6vqTvBiFBimssVMKaxFRCmtkskapa9/y6kgJioOwVqQOu/zVtwJiCuq6tzDeQhNBCmvslMJaRJTC Gp4TJr3M6sbj8VTm1ZESFAdhRf5AEpY13oveUjzrKYEU1tgphbWIKIVVzIq3PszqRVGVg7wqUga3 woo4btjh4VFCf5E4d/5rLC4Jy7U82ylDSRDWVC7CAnq93l/wLMcHKazuKIVVzEOHAqtX8WpIKRIU 1tPvvffejbEScTx5XqG/SCxbpWMgPV0Pu5ZvYaEkCavonCSbJKq/59mNH1JY3VEKayg7dxvL6oQu nzryakgpEhFWynNc67Fmq9lMXPsOmCT0GYnPjpnH0lQUJaGFq+NFSRJW7iZ9IYXVHaWw2lmmSkCg qD0V2jzMaEilsAIUx5uTkyv0GY15XgUP99yv9+kCUlhTCCms7iiF1c6VqzYFhLUI7h2aSLWwUllr IG6HTvHvDDDmucBUq8zMzKS/YRUOUlhTCCms7iiF9QprNezB6kLV1aSsG+oWqRZWgPrPh27SBLEY tqIrH3FXhQ4prCmEFFZ3lMJ6hUpgm/CkbgzoBkUhrBTvFsQfNvwFoe9IHDh0Gkub6q86d1eokMKa QkhhdceowqrrexB+tTA/P/9WXvQiQ1EIK0Dn+j2MPkW+o5GlrWt53FWhQgprCiGF1R2jCatE6lFU wlpQUPBr+Bg6ZJrQfyS2ajuUpZ+Xl1ebuys0SGFNIaSwuqMU1vRDUQkrQD5OeTx5RhmB/2g8ezYL efBxV4UGKawphBRWd5TCmn4oSmEloSgNP8Oeiv9ea+dHA/N/C3vUKoU1hZDC6o5SWNMPRSmsgK7r +W7SBxGP+uJ33FWhQAprCiGF1R2lsKYfilpYs/xZf4KviZOWCNOJxNb3DWP5IPHrwt0lHVJYUwgp rO4ohTX9UNTCCpBgnHCTB/DkqbPIS6FNW5PCmkJIYXVHKazph3QQ1g8//PC38Dd9+nJhWpHY8M6+ LC+6rnfm7pIKKawphBRWd4wmrNTJ+yG8RFHXLxqG8WNexLRDOggrQPnYCZ/lq3USpheJ+/YdwbzW b6ief8LdJQ1SWFMIKazuGE1YEXb+/HljxfLlJYKvZ2Sw8l68ePFXvIhph3QRVhKNf8DnhMnx32u9 o+Uglh+v6u3K3SUNUlhTCCms7hiLsB4+fMjo3btXieDxE2yd1W8yMjJ+youYdkgXYQVIOI67yQt4 6NCJQhEPKawphBRWd7yahHXM6NGm+PTjxUtLpJOwAvC7Zu12YZqRaG4Lovv157mrpKAkCWtRkLTy y5gHFlJY3fFqEda+ffqwcpJo5fOipS3STVhVXV1L/cuoWLOzMN1I3LxlD9uM8cyZM//L3SWMkiCs 9z8w3Hh6xKwiIfKrX9Rv40WIDCms7ni1COvWrVvxS/2Druv/5EVLW6SbsJ4pOMPWEJj14iphupFY sUZg7zCv5p3B3SWMkiCsRUnkV/NrzXgRIkMKqzteDcLav18/U3SW8mKlNdJNWAESkDVu8gSuW7Od 5S1Zo1YprIkR+ZXCWsi8GoQ115OLxas/50VKe6SjsJIo/hoj/uUrNwrTjsSqdbvidgCmuS3i7hKC FNbEyNqJFNbCZUkX1sWLFpqC04gXKe2RjsIKqD51o5t8gTt27Gf5S8a8VimsiRH5lcJayCzJwtq3 b+CBFY2UMnlxigXSVVhJFH+KNLZs2SNMPxr5uTjE3bmGFNbEiPxKYS1klmRhzcw8grJ9m5OT83Ne nGKBdBVWQNGVl5BO1bqPCPMQibPmrDbz+AfuzhWksCZGdg6ksBYuYxFWVVWM7Ozs4sWcbLMBDeBF KTZIZ2HFqJX62uXXMrYK8xCJEB/WnjR1P3fnClJYEyNrJ1JYC5fRhFUtUEtrunaOLuG8xY0+v28u L0axQjoLK0BpLEFaN9d4SJiPSJwwYTHLZ35+/p+5u7ghhTUxIr9SWAuZ0YRVIvVId2EFqL/9sOud Q8J8RCIESFFVg370DnJXcUMKa2Jk7UQKa+FSCmv6oTgIK10RTEJ61et3E+YlEsdPXMTymunP/CV3 FxeksCZG5FcKayFTCmv6wRTWBrf3iYusw6RIWAGkt/edI8K8RCPiErdwV3HBFNZmrR8T+g7HwhTW Rnf2E6aZjkR+pbAWMqWwph9oNPgQzokbqro6mLspdFBaj4nyECs9mqcmdxUXtE+1P4j8xUL64dnO 3SQFXq/396J00p3nlHN/50WIDCms7iiFNT1Bo7I/kgg0ipP/x6OnDEjTkYeY6PF4/spduML+/fuv odFiA5HvcKQ6Lc+jJxV+v/+X5L+hM710ZVyvFkthdUcprBISEmEhhdUdpbBKSEiEhRRWd5TCKiEh ERZSWN0xVmH1+Xz1YiWPIlGIENV7PCQXabuZYrJx8eLFUs7ye73eX/BgiUiQwuqO0YRV0xJ6Arue eA13JZEkUFv/TlTf8fJqEBfVp84XlR1UFCXqIABviGm69l+q8x9Uv9qAH756IIXVHaMJq6Ir7RD+ r+v+GTMrVapoLHv1VbwTznzj6S13V2TQdX2x2aFAn9/3Cg8qdkD+GzaoL6z7WNi4SSNTWG7gLkss zPNtLX+ZMjcG2oDPN4SbCXHixIlfYQtvT54nuPZEorMZRDAM48c0ADlm5jWWvKUMUljdsTCE1WS5 8mWNU6dOMv80OirFXaYcVIZ3kIcFCxYY7drfZ8ybO4fliRrzW9ykWAF5l8IaG1BO0Fr+WIWVNOUr 2N1CA4VSN1xvZGVnId7XyV4tjcQ7H+mMe24sa58bN2xg+fP7/U9yk6KDFFZ3LExhNXni5Am2oVxm Zub/cLcpAy7lkP+JEyfY8jT5PxMjljsaNJ82D/GdpHb4XWGXE+lIYY0N5nmxlj+asGIESVc471H9 GJUrVwrGq3DzTYF605WV3DRhUDqN4bNDh/ttedy6eTNLi5sVHaSwumMqhLV69aosDVVXe3G3KQN1 nrpIu0qVKx3EJI7TqNXd2z+6VrBly2Y2mrGSlVNVm3KzQgHSkMIaG1BO0Fr+aMJKWvIFwuvVq2uL t23btkC9+aLfm40VJKxPOfMH1qpdk6XFzYoOUljd0a2wrt+wnsVz8ujRTKN+fXuDBHn4J9xtykAN twrSbt3qLlt+qlapzPJE4hLbq30OkLC+v3HjWzafICunrt/FzQoFvC5DeD7rvDg/YUjC8kfussTC LKu1TiIJKx1jmyZ27NghaF+a7I8dO8ri0JVKP26aFKg+tTf83nLLzbY8dnu0K0uPmxUdpLC6Y6LC SgKzKki/tp7Ow5f03Shd+gab/bPPPFNkDYXy81+kjUs55KVixZsNRVWQn2+4Sdwgn0UmrPRjUJ/S 91qJeo8krFZb+v8Cjarv4O5KNMzyW+skkrDSufsMm09eX+o6ZluuXJlA/WnaD6h3bpY04PVS+M/K yjLKli3N0qxXt455zt7jZkUHKazumKiwcrMgcHmJ43ff3dZm36plC6H9e++991fq5COIm6ihv04N e7jzyWuGkfFTOl7ZSrKvyINtyM/Pv1lg+w+k7aTogVpeXl55ijOFRiZv0ec6VVcn5/nygu+Y4/4p 8+vTPwonrFSOfsSQ99JpdNIePqnDbMWn3+9vi+P0vSzzaSGLEAfI95pIwsrNQuDVvM0pvSnIE5V5 Gn1vyYOiAvNDdb8+juoX520KnfuHeVAIcnNzK5llA8n2ZhynuA3Ix/P0/0r6HvFhkhVk25mlqSvr 8OnRPcI6M8tvrZOIwnpRvw1h27ZtNRo1bGh4FS8E7hsS1pjWYSC7jmT/JqtPouJTWuE42oO1/KC5 sSK1udpmPi38mur3Vwh3gtrt3yid0eRjBbXPWfS9Wyzv/1N7u45sZ5p5o+8jkQdioE1bSOcjcCUn hdUdExVWdBArqZOwaU0N/m2/B/jk40Nt6dDJexj/R+C31Hk6QGQFYSa/5u4YqLFcFNiEJbWZD3lU dIgJIhsryWa99f+wI1ZOys857vsZ6/FYmZOT81uWuRgQj7BSvV5Lxw6ZYSJSnnfiR49HCYJNDfJp o0RxTFJecjw+TzkeJeyti3Ck+BspnZ/y6EFAnChfiiiOSRKaMRkZGcG45nFrnYiENSc/58/UHvab 9iJSva3Bgis8ShCYJUDhy532sRDpio6DVA8HeBIM1Gd6Uh6/F9mC0EAqU1VuHgTluwaFs6u2eEjx Fkphdclk32MFV61YEWKf581jYfBJn0wAMT+wdu2axg03lgra4TuOZZFIwIY60vv4bNCgPpu+ZbJF 82YsnEaoFeCT7NiLDG3btLHZ1ahRndn16N7NdnzIoIHB/FDbUfF9/759RsVbbmZTa6z5wS2El5cs Yfag6aMMv3Sz0gxbtHABGjqm67CpNPCN49dxu+uu+5dRli4z9+7dY7y96+1gPJOIQ53kX8hfLIhV WPHghfJ1GccmThjP8mBe9uIT/48dHbhtQ3Y/UOe6lUdloONfI2z3rl1G1apVWF1dd/2/WFzUR/9+ fc24l0kIhvM4Rp26tW3l696ju3HmzGl2W8ZMH/cyzR9g4iejR48ObpVN+R7Pjxs9e/RgaZnxkIdb bqloHDxwwIx7KdMIzMww45j1ATqFlc7QvWadTJo4MaROypcvZ8x+6SUWh+y+pzr5B+KZoB/QbxD2 8uJFtjaBeil/UznjyOHDxvo337SVv169wOU+1dGz+GzYsIEtfN3aNSycJxEcNJw7d9aocWt11i7R lpA/1NuDHQMLWINen3cej8aWdkTZaFRs1K1bxyjFywXCR99ePVkca9ogNhDFD6QUVpd0K6xoGHfc 3iSEaIROW/M+FTWiF6mB5OF71y6dQ+yc7Nm9e7CxrFy+zBaGBsUu0zRtNfJJvhfC7kbHvd0JJB44 3qXzw7bj/fv0Zsepk7yOz7vbtrGFi1iq1PUsjijMyfnz5gbz3r59O6GNyYcf6hRyDPGSLazU4ari +4ED+1mnctpaic66d+9eFhcjHrylRXX9Jeoc51kUx8qMjMCOrHQV0wOfVatVsYWb97tFvIvfNiK+ g3zTCHk0/n/l5ZeZWInimGz47waGx5PL4lP9/ZH7sdlYhZVGoA3w/QCJsrPtOIlZH6dOngjkTder 4LYQtedPkF71alWFcUwO6NfP9r85U8YU1lq1brWFr3n9NRaOS3VK43N8v+++e202Is6dE5ijrWjK RPrBYOv6Llq0UGhrsk6d2iHHDh06KIU1EboV1nj4GnUy/GqSL3a5dOeddwjtRDRHQKCzU+16++1g 3qnxfbpz5w5bOGjGDSes4POTJ9vCwJtopOF8ALdi2TJmbz0Wjqaw3n9/e2F4NCJuMoUVl9b4zM7O CrGJxNzcgEh5da8HnxhhiuxE3MeFGXQKazQOG/KYmW4dfC5ZvFhoJ2J5GnFRewPZlQhoDTeFlQSb 3aI5mplpC49EtMELF3Jwm+cS/WhsRnyMlkW2kRirsFIeX8Nn06Z32sIjceGCBQHfxOPHjwltolEK a4IsbGF9/bWMQAPRtP50jn5Yu2ZNiM1jgweyS+I9e94xhtGloDPcvC0wauQI23HcMsBx3JTHZ/t2 99nCH+nahYWDkYQVl0jWsMNHDgfD8P3xoY8ZTZo0Dh4b8+xoxr7kwxoPNMN20eX90WNHQ8LBujRC eGLY40bjRv8WhoNIJ5nCSpeEY/FZo0Y1WzhG/m+sW2vs27fX2LR5E11dlLWFV6hQPuije7dutjCT t9Klqeg4LtHNuOGE9X46Z7dR3TqP45Ia8ajNfIUZHOaluZVVq1Qy7mnbOuQ4aBn1MlrDTGElUfOT QBo3URmt4SBuB9x3z93CdGFv+p0xfXpIONj0jttZO6hc+RZheKzCCk57footzCSmDGIA4DyOPOeQ +CPu9deH5h/HevXoYbS7956QMJNSWBNkYQkr3iQxGwb96o73qJ478R0N1mo3ZsyzQTuT999vv3Ru 2uxOdvz8ubO246A1njMsM/MIOuYHCIskrNWokVvDBvTvx+7/muEmqRN+Rv7YPV8w2sOrxo0ahoRv 3brVZrN3z54QGxBhyRRWyvs3Z8+esYXhfpsZbtLj8dhswBMnTrB75E6RuZc6pjXuwYMHbDaN6IcD 9+oQ5hRW3GrAbQUz7tw5s23h4Pnz51hYP7pqsR7HJXt2Fnu9NMiBA/rbbMALFy4Ew63Hg8JK3Lxp ky0MI9Id27cHw8FpU5+32YBv09URwrAuhvU4ynWW2qk1/usZGTYbMB5hddZ748aNcD6D4Tk52SSw V34c6tSpxep93bp1tnjgo49cGWyYvOOO20LspLAmyGQ9vHKGN6XLfRw3p5vQ+TkussPIBGJrJRqn 1QbHzHTKlrUL8+zZgYcKr9HI2HrcfP2QGu5gfEYS1jZh7q8ib4/SqNe8Z0eN+TtM0dq1a9fP6Huk eazL8OkMmzhhAgsnweyC6TH5+fkN8f/yZfb7xyC3S5qwgg84bktARJx1D1ptQNyje3f/u7ZjN9xQ ivmkevj8gw8++I2az548Gzt2bDceaN/OwFxQa9pOYX2480OBMF0vq6rqBny3hoOmsDqPL3058CCR LsXvKigo+DXl4VOR3fz584LpW49bhbWaI18jRg4PhOn60/BNeXsb//+7QT2bHa44MCq0HgP37N7N 4tNV1E24B0uj7efxf6tWLW12sQrrO+/sth0HTVGl9vFHrUArg+/76fy0uqtFcKQKDho4ICQuD/sY 98wx64T65fe4InDaSWFNkIkKK13iP4HPjNWrQ2xwckzf+Dx18mSITSyEACA+iCfJ1rDbb2vCjrdo 0dx2HLcVcByND58RhPWSdUJ4ONaqVZMtwgFxRXkiCSv9mJzCpzMM9/KoI3kQ3wTZbcHKSU5bxE+2 sFpnO8TD56dOMebNmWM7NnbsGObTOtcSPxiW9PLp//Y4jv+dwtq5S2dmx8J1fRa+W8PBcMKKY1Re +1QkOjbmmWdsdhP5ehBOH1ZhtR4HT58+haucL7hbBrL7FiNAq12L5k2Nk6dC2zPzq+tTeFQGHMPT fKtdrML6On1aj7e7L3CVQAiup0vi35b5CvBj8jkc31u2aGaL27tnD2bDozHgRxHHnLcspLAmyESF FTa6X5+N75imYbXB00YcpxM0BJ942GQNB3EJEwuZH74OqfOemPMXt0yZwP05PBmNJqy5ubl/gVji e3PqLNEEFnb0Y3LGlbAezQw0VguoU2xMlbA6w/BwTlTXTs6cOd2Y6biXOG36VOYTo3eeBZuwUv0c IdH9C47j/6QLq6q+jrgmcGzmDHse3Qgrmxao659xtwxUlktOEY0krJjny6My4BhuLVnt3Arrgw90 YMetwurN91Zgvoh0Dk6RT/bAr6VjsNH90UeYDY/GgJErjmHqnNVWCmuCTIaw0kn+Gb5j7qbTLpPE hML+Syf7PZEf632waCSh7I5PrExl9TFyxHDb/8/x0dQnn3zy+2jCivxTAzqA7yBEeuu2rUa/vn1s 9iZfXfoKOsOlSMJKwrsKn86wF16YycIpfhOkS59lqd3+8IbgXhjski2sd7exP+jpanm4F4179+21 xTXXWqB0DyL9HD3nnyQo36JDTp82LRiPyqfhM5nCivuiqDePJ/ASAtX3u7BzPsh56aVZwXxYj1uF 1TnFavLkSfB9mcrFXvlVdZVdyuNBltUO93TxUNV6DDx+7Bjzq+QH3iyjso3B/1262NtfrMLqnOli Xr1R+8vHjxoJI7bfvoRXYp8ZNTLgk3PIY4NtcTHFjsc9g7zhRQrq3x/hmNUOlMKaIJMhrACdrKn4 3zpBGsQoFsdJJNi9KudTymdGjWLhVqJD4V7qq68uNfKuPERil9DUENk8WKsPJxFOIxod9tGElcLZ 6lfbSUzx6SSe4FvjTX1+Co5/G0lYMeEcn9Wr25/Ag+bDHJPHTxwPsQERlmxh3f/uvpBw0UO6p598 gk0T2717V/CYaFT9xBNP2OKhc2POshneu3cvtjAMwhIRVjwksx6vWLFCSL5fmDnDZgPitpEZbj1u FVbnNC60T0xRMsPBzZvtD7jANWteZ2EVKtjn4+KFAOt9ThAPuqw2YDwPryCm1jDMe6b2FwzH5H/r bI9ODz7A1kF2jnbBkSNHBOOZbNs6dGaFFNYEmSxh5a/1UUNdFGK7gWypIfwQCA+dj4iJzwgDV69c YbscR6Ma80xAfJEOjY5/gu/dH33U5sMkVrFC+JkzZ/4A+2jCipEPPnEMD80yVq0K5gXEpbA13pzA w7JvIgqrrt+FzwMHD4SEg3iLDG8YNbmtSfBNLCcRP5nCSvldgs7oHKGhrt/euTNo16RJI1t46dJX RKhlyxa2MBD+8KASt2ecAgBeyA1ckSQirLg8d4YhLUxX60fijXmrznA8rUdck9YwU1jpx/dDOv/C 2z+4jfXYwAFhX2Qw/T711BMhYcgbfgxwjmvWrBESDsYjrD27h05zw+izSeNGLJ6o3s+cPcPiOo+D qK+hNJpFHwj3UoQU1gSZLGEFqJEIn4bXrHmr2UjY65CVBWujhiOeUiMOnd/jPBncl1SPhZn4jF9q sn2fm0YVVhDzYa1hkYjJ4RTnYjRhpSyOwPdmzZqG2MRCxE2msH788ce/w+eG9W+G2ETijOmBy3q6 3C7Ap3OeayQusDyVT0BYcxGGh2XO8HCE6ECMqR18iLhO36aw0jlkV1mYx2sNj0SImLkrBsXfi89K lcRzVSMxVmGlemfrFzhnL0Tik5YriZ07QkfLsVAKa4JMprACOPb6a6GXIO/u28fs6Tyx7S6ciwiL iGXUMNWJGtd31gVJ6P9H4APvTFvtMTrAcUVR+nPTqMKKTiKaYiTiDH7vsKCg4G/RhBVpk81n+N+Z TyedLzaAiJdMYYWN5tMewPe33togHOU42YdGgyy+X1+Me3lUnu9wCS4aITqJHRtYXF1n4uVaWLEa mKZtQzhuGzltnMS5NOe4+j8OvDji9G0KK9XvEPI/EN8x1zRanWBWxYH977K4VN9tMGWO6oTtiRWt Tjp2uLK+KxirsOLhEqXxLb5XCvOygZWP0UgUtopP2a3n64/hO15UENmaRJ05F06Xwpogky6sfv15 agjU0OwPEsw3aaghTSafbOQKH+EaJN7xhx/YkVCGrHSP45s3brTFWbE8UBbr4h2xjFjBdTRqcb4o YBKXg7t2Be430kh0PvxS3qIKK19rkz0cWDh/vvCSE3NEEe48jmPJFlbAFBLcD+3Vs0eIPYg30TAv EnZezbudR8Xydteb/ubOtU+/MonbAuY9Sqor9uQe3xMRVtiQr42wQYe/UzChHXX7HxJzPHyEXfDh EX13+rYKK/Otq+wBE6ZEOduJyaFDhxi5/LYGtd/gers4R2YaI4Y/LYy7bu1aGhXbH1DGKqxIA1Pa 6DtuPxlLX3lZOBBo1LBB8JxRXe03Zw3Q+ZuBY3izrprjyT/YoX07drvmXscyn1JYE2Q0YfX7/X9C uIh0om1zMoHLly+ze61hqev3wY6+LwgJc1LX9+IXmzl2gEYxrME4SaOykN1XKZ9s9SEBL7FRh6at pvYTcUtpCv+e7ILTaChve0R2IPn8NTdjoHgbKD5bPSke0ij9z9xFVJgdVEhdX8jNGKjj3UjH2EPA cKQ6+y/ZhWylk3M55+dUnu2iOCaprF/RjyF7MQQQ2ZhEOPlrJAoDKR9TmRMCRonk+wuRXZDUZnBO eRSc+zeEdkRKtxk3Qx5uId/BtQXC8Az5/yePEgSlcU5ga+PA/vZFWMypiCSabM8rESk/Gk+CgfKI dsqeCYThJRL63tw8CM2vdcL5FNhHJPWlnVJYXTKasAJsQz5db+Gkdd1LK9iDLIE9+bmemzDgQRQ1 rIrUYV6lPDDxo4bxNmytnSMcyLaa1T/9X5cH2UDpYCFfW15AHOcmLC8QRBq9TKLLqJxg49K09RAi hHNTBvr/x+zNKYdP/BBxExtQHgrvafGdT76Hoa5IhP4eq59IoHyWFvgJu+o9pX+NL9/Xhzodu1dI 8SmKPgtvHFFwcJ6kCKg78t0UnY+VR9exO8FsbBnNTYII1x7IR3AOrPoeE3tbeI43pxoPtoHyeS1x simEVI59xAfCtRmq33pO32T7Nx5sA+qEwp8m/+dZnWjqfvreJ8IPPNu2ulnTpkFBMknxgkKN2QJW YcWKZziOdsRGpI78UdQ7KczW5gDUGZWnOtU1+2GH7lEeZl64cCHi1Q3Sof5RnuzfMvNE6SzDLTYK E/WP2iyiFFZ3jEVYJSQkQkHiswJ9Z+iQx5hYYsEazIEOChdnh/ahK5ztezfwzIG7Sl9IYXVHKawS EvFD+zSwsPoLM2eGiCbYvOmdYXfSvbliBdbnaLQ/jLtLX0hhdcd4hJUu/X5Jlyhd3RKXa9yVEHSp 0p7yspvsjpvU/fqSvLwre06JgFsSovSikfzHtI9ROOASXtXVKdT29gfzrGuZiq4sprLEtUWy4leq i/IIchOJNAJdPrP1bY9kHhGKZySePHkSbxF+ZX0dOG1Bw3J2A/nE8TPGoz3HGWWrdBQKiaSdsQor CcUfSTQi3TiPlUe4SwbMryRBsu0lhXfqQSzaYj2u+tQRPFoQ7P6dxcYNSRhfIwG7lruMCPy40Ejj P9b4mBJm5tn6tg9IZdtOvm/k0YWACFvjOEn1/ik3lUgj0HmtQW3nB0zGF2357iTmu2I2BjunmlaJ u0lv8JuzIy2N0biQ6zHq39ZHKCiSAcYqrF5vYKEHLOCL+XxuiNcA6bx8zF3+6Lz3fCk0TPh98YUX hG+BYG4h2xLj9CmWT7L/7oLvyo16aqD/h+Nt27YWphmJeFvIXFoO+SgoKKjC3QpBHam3mV+IKCZt i6ZQIc94i2vO7Nmm78uUT7axoAiaX+sPO1EeXwysL3CJm0qkGei8slsCIFZJcy7NCEJQjxw5wjQJ dr4PQnfwLRagwpahUcUMatBsR0MUaNmKjcZtzQcKxeVqZrzCimX6nA0nVuLdZVNYaeRXHf5OHD8e 8tpoONZvUI/lFfRonkfhxxTW1q3vEsaJhVjlyVwrgH6c74dfJ2i0fBDheG883q04xo8P7LtF7fFz GmGHTKEyhVUUF+/AU5gU1jQG5k2rujqYzu8XOI9hqeuzeJTiD4/Hcx0VKJMKxt5eAKdNW2bUaNBN KDRXG4tKWMnXJSzsEcsbQE6aq7fnaXmNkiGsJk+cDGwUl+nPtG1xTB1GxY9zly7RN0AMR7xzjxEN fuwxfY27ZpDCWrLApkNpWj+QtOdefrhkwjCMnygFSj1FD6yVCZ46dc6YPnO5UHCuFhaFsNIlNXvV LtJOndGI+OTrSDKFFYQvaiOnebHxA8A20Wsbwy6u0YhXdHm+2WLZJqSwSpQYUIfsSw32NBo0ePz4 GaPPoMlG+WoPCgWopLIohJVYgHuUIhvcT503d66xY/s2Y9xzY4WvmWKNVxr5fYcXDpItrBP4O+50 pfM7Gm2w1z97CFYXckuUD69d+ny+4Ar4UlglShzY/kWaNgANG6ROb5w+fd5ofGc/oRCVNCZDWFu3 asl8xEKqX6y+fwmLEDv9gKh/h70xedIkFoYHReYGdKdOnWJP8SMJa+1agV1cnYRPXJY77cHgMnm6 XpnE+3K0rZFHDB/O1gaFWIJYVenNdeuMUqXCb4PSjW/o5vsosBaAFFaJEg26RP0HddSp1PGC75av fm2L0eqex4WiVBKYTGGluhvFRnlhqPoCczJh+9y4sSF+QISpurqIJUqgOK/jGCZiY5EMfFeUwAIb QEzCqutPWfOh+bTpOP7ykiUhcUAWx8f+hOHgfZYdSqm9eOnzBZDyw1azB58bKy4jiL2VKF5g/ywp rBJXC/DeODXo3dQJL5kdZdHCtUbtxj2FAlVcmUxhxQ8TN48IjATHTxgX4gdcvnSp6esrEsE67N64 pszBMeK358+f/w13wxCLsJINW/TaChK1zykfIXFAnpZwBXawUcOGAb+6VhDu/XTKP9sxAVt9iHx0 6vQg85Htza4ghVXiqgPmx1IHr0KdkC04C549m2UsXLTOKFe1+N+PTfKIFQtX4OFgCEk83uWumKg5 t6u2sk2bVswf59fkdzUEVLTARyzC6sv3zadz+KKF70Dc54VZ+s5Mu1nTO0PCcImPMBpV50P0eTaE IBu2HB6W0nP6wWwIhNEP90QprBJXPagjd6KOielbrGOcz8oxBj8x3bi5xkNC4Up3JkNYIUCZmUci ktWXX+8BXySsbGUepx8nGzdqaLzxxrpAXCKNAmeyzFgQi7CKiJcVnPZg1aqBTfJAUfgzz4wyJ/xH fR0WP8pk+8G+vXuEvng6fimsEhIcGK2QwHbmnYM9EMnzeo229zwpFLB0ZTKENRayevLrz8IXuwqg /0XbYYuIh1Zr6bIccUio8IZUaZYpQiRhBa+77l8hFNmZnDtvbiCvRFF4dnYW7tnG/Iop2bI93kW+ Vq1YwdKRwiohIUDuxdy/kGhgFfLg/dh1b+wwOnQaKRSzdGJRCCtAl8lP45hzv/pIxCrr2dnZzJfP 52NrdUYT1nhobg9sUmSD45TmelaIGODnC4Xj9VSnr6GDBwX8SWGVkIgM9tBL17fRyIrt7QRmrNps 1L8jPdcsKCphBaiO2KK72Mqjcgz7+ZjE6kB0hfCddlm7JlnCiu22KT/IZ3BGiMiOhfn153kRogLT +RAHou30JYVVQsIFaLRyE0SWdUbi+fM5xtLlG4wyAoErKhalsAL5+fktzPrZu3dPyN4/IpYrX5bZ K7pyOBnCek+b1kZubi7zqapqafJ5FN9FttxG59mPChpZt0Ic4X5XCwP7XUlhlZBwCeqMramDHEIH ArOzLxhPjnjRqFyri1DwUsVkCGuVKpWM3n16RSTiaj5tJHcXAhKzcTQKDY4W+/btE5KOlZjGxHxG EFYIsCgvYP8B/Y3ZL81iPpgfXcvDkoA8L2w/Lac/kG3+p+vfGoYh3JbGCdWnnoRoi3whDRolfyeF VUIiQbAnxX61LToLOhOIN3Y6dxkjFL7CZjKENdY3ryCC3B3DLu+uX/j8vq9p5Pk1HgbimEf3VCaR Yxuf4YFgO8HW0GDtOrWYT6/mvQefImGNNCvAJAnb51iwmmWIA/dvESZaxaoOT1fRlAncPCxIgP8J 2wnjx4f4AVkesL2zFFYJieQB92NpFDeUBORj1smIGzfuNrr1GCcUwcJgMoWVRuUxvSAAwNYsM4ur qR9aV1Sn9Eqpuoo3moy6dWqHpIltsxFGdTcOn5GElQQ95AWBSCD7axAv3OT+xXzLajp3z/AoISAf tWBz4cIFoY/69QNLIJJdcymsEhKFCOpkq0koPkMnA9e/ucto3HyAUBCTxWQKK+W/DHacDEcalbJd Ufmq/5cwUsf+P40aNWSjU4r/GZ6iswQ54HfF8mUhaeJhE0uTr+afTGEFKG/Z2BnA6dPkunVrA751 7QsadTb2eDx/BemyvxKNwPFSBLbBFj60AlevWsmmjiGtWIRVVJ8gnRfh7qESEhIO4AEKdc516Gxg bq7HWLlqU6Hcj03lrQCQxGQmidGX+I4V/E0fNWveaoZfJmarPvUA2bEtiDt2uN+WHlipUsWAT13v hc9kCytbx5fijhoxIsSvyTatWwUXhXFyxIjhYdeavemmcsxGUZSXkFYMwhqRil9ZyTItISERGxSf cjuJx14SGbYliKKqxqix84xbk7RQdzKEtVq1qsZjgwdF5b59e4NiULt2zRA/eHI+Y8Z0IzMzk9mc P3/OGDVqZIgd2K7dvcyGRm0V8ZlsYQVI3HdpmmpUqVI5xLeVZcuVMe5u25ox2rQxiO2JE8fxA/IV TyaisLZp01pYlya3bdnMyshdSUhIxIkfk7jVQScyCZHt23+yUDBjZTKENVZiURP4ePHFF4Xh8ZCE ifki0Qw7KyBRYQUQH2k5fbvl9q3BLWDq8iQiCms0zpsT2FeLu5KQkHAL3FdTVbU3dahP0anAbdv2 GX36TxKKZySmWlhJpNjIe8qUyUKbWDho0ECWZ9WvNi1sYaVy/w0+sBOnaLPDeLhqZeAVVrx1xt0z SGGVkEgzYNk6Xddna7oWFNktW/YYTVoOjOlFhFQLK+XzY5/fx964yjxyhD3dF9mGY3DlK13PRL4K W1gBKns1yjfbmLJli2Yh6UQj7gfjQR3iK7oS8taWFFYJiTSG3++/TvNpS9HRQCwK88abO41qdR4R iipYFMIKf6pP7WDmc/nyZcb114e+mWTljTfeQKPywGU0idRJlilCKoQV8HzMtmphMzYOHjwQ0z7y GOFaV+dSfEo97s4GKawSEsUEXt1bh0Rsq9mpwXETFxr1mvR2Jay5ubllYffuvn3Gzp07XBErQ6ma qnGX7D166+yHLAqHUAykS/2+/fowTn1+inH61EkWTnG/J5GcxqMzYMdThO3fvz8kvb179rB49KPw e26eMEhcB1G9Bt8QW7t2DVtK0MzvsGGPGwvmzzPy8vJYOKOuL+TRhdDz9Ydh58x/LDR3VeCuJCQk UgXvRW8pEqXPzY5OwmAMGzo9LmEFSNQ2mD7cknyU4e5soFHbgyJ7EILqVb1DuGkIdL/OFpQWkcq6 hJslFRcvXvwL+WfzVcPwaxLMdtw8KqiMHwh8xETMn+VuJCQkUg3cjyVh60SX4brZKXNyAouPcBMJ CQkJiURAl6iTaaSUpVxUbuCHJCQkJDh+9KP/B3GFVYJ8ktpNAAAAAElFTkSuQmCC ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAF8AAABeCAYAAABFEMhQAAAACXBIWXMAABcRAAAXEQHKJvM/AAAZ N0lEQVR4nM1dC4xkWVn+Z1yfK06NL0DArlUE8TV3FA3G6NQQSxeylanxxYomUwMrYBSmJsFo+cjW qKEwmmzNJuIDydYkKq6B3dsp36VMtWIkEe3qZMPuasxUA8YFlK1e1gcirjnt91V/de45t249umdO ctNdVfdxzn/+8z++/z//PfbMM8/YrdyqtU7FzEpmlqCbZRx+m5jZCN+NcYwG/dbkVh3eLUX8aq3j iFoHod1xag233cWkuGM46LeGa7jnWtpNJ3611nFEboDoG5HTtvDXJ9wwsBLKcoTut2dmKa5Nb+bK uCnEB4c3cPgE2gFhhhAb4xWfVcEqquA4IT9zIno3Y0UcKfFBCEfwC95PmyDCoXNizkpzk94d9Fu9 w3y+tiMhPojeNrMz8vX+YG/m0o8wg9MR7aOYhEMlPsRL2xvcFga30DKv1joN/Ls/WfjcgMjoyTll WjrOAioitqq1jrOmmjgolhxzNA9THB0a8au1ThOE52AKER0TRgU6AqFTiCW3QhyhE0fUaq3zzKDf OuZd7wZ0UpRqU5QrJ6kCwta9a0OTcA3nrn11Hl/3DR3xqrWO47r7MAC3jM8O+q1KAcJXwLEJRFIX P5Ud4Qb9lhI0+GynREGoLpU2mMD1q12tdXq4vuFf764b9FttTP41fO1WrZvoevaJq7W1Eh/LfiT2 +ZVBv1UuunRxXoqPTRCsAo5nG4nD5bcyHS1MVILVM8KKKeFw/6dQvqF+uElwYzkL8eOY6OFqrdON PHepdtu6bgSOomx3HW5g0KFzqQsssKTJ2WNMxDiH2P49S97XiUwGubeJyXQO10jFnM8k+JyA6Jfc AWaorEMMrcz5Tk5CzJDw19C5GOEdAW6ISEm9U1KsHDcpXSjMFDrEQNAURNsXVbhnF78pAafEB5eX YGLWnXiRvux/V611hiDuTBv0W+7Z5+EXnIIYmssQ89pKxIeCGoqYueiWax5XQBw45VsHYcbe7xOs HB1cGxxIh6gLh+kK/rpzf4+eLfROA/0iEzQxsV2ZcLdarznigsAljKuBsfn9TkQMDVfVA0tbO5j5 ITqyB27KyHYMoismYJPci2s3weVjuWYE0dBY1sPFczmBCa0exxyYmJea2Y+pteRWl5tYiJmybw3J fVPxWS4u6xMsRfwA4fPEDDltRJEw6LccFxNCoOvfg4fplnQ5RnTPFPVbLorpebc/bma/6PoSOGfb rU5noXFCAvdSHbfUBCxMfE/URAnvBgGFNgRnU/aOQQAq3TqXu79yqNwE5YwBb37bwiobgttjEzny DQP0dwRfooJzegUm4HSMAWNtIeIvQPh9LsAS79qB0nK/0crp4ZhxvCBHeZzw7422J7Kc7UzkXIOv kXJlybPK6MNQTFj+5VjLEEW9kLMlE5ArAUJtUeK7AZybQ3hi8s7JOo2vt7k0CRPoMhXP0kc594Qw 7u94ng6A2CiLOPMnJehpg0kqEIl0tEpO7mNMI4i1jDWE1XEKk5wUNUMLEx8duhcf58o4ELkr2PpQ bO79AUTc+T1BOH0zdOGGZ3AlnZPrM9iNW3XumRgrDYOJwNsZr9iyEmErNEGhVoj4kL3X8fEKXHD/ nLZYFHU7WJLkQMMSpuynbU5O38Xn3mGhnOBgrjDFnBqeOGoDlOtCB0ywAhJMYiYi5hkhQRr5bS7x MasjECk4q3CAKiDedWA5QztYkiUs6THu5yaFXLgHMbBW173AmNrwWjN9EIuq4VljHGMpZIpitT+A j2fnwSpFiE/Xeg8P9BUO7XindC4KijjEkq2Dm0fgjlS4/SoGvRSnu4n1TcUFryeAR72wiVUwEVFC zzolmmoHVlHqM43oxbnyP9fDhbghd2Q8V3BIBbLwvEAGhk7Tdh+BK7ZBeDeRZ+FZLkt417dTgvMv 3Fy/sJKv4Npz8FxL6FcFJmsDTKLKvmTZmLLh3D2MM4i+ss2DF0jMrYjy68Ltr+D3inqyQDTH3nLc wQpaNUjR9v4u3SCfz/rYDdDNsaxibfWQtYdJI0PcSwwq1KJixyPYHb6JR6BLlBLt5bLKfe8+12IW Q5Em4FhFLC8D566cFoL793w/BgTscowhCRCgzxDibDMEU1iM+JB345jmFruXWE1bVskPmNnvw2Rb J+FHBfN4dlaBfAOOZFl0AJ2wkmRDJPAHyt59ykBMLaZ8Y2KnKbhNxgpxszzotwgwXYcNTLH0URC+ si7Co1VA2Ly2F9JNizSR9YpeluSeI/FNeljpGc7GSmA0LCgaY5w/hsIIcT1NRRNTjOG9knSEK6ew 0zGveba03xZ27/Oa96wp84gjNl3xMZve4/4M9pPhfIiKjRjXCyYzkWQjuvM0G1OJ364t9onOx/yB 7jKEB/bvYI9UAym4F/t+QWCRVPyAcZ4z5XF/xvIJiR2elPE0BWUkIjkx0fBQsE2xm+uH4K3mxW9z m+NaBNF51MHddYzlujcBQzFDuxJgqcMEj+H92sgsF/zfjnsXlkWpxTiM+TIzXAbCl0S+XVmXCPAa ibwLwuzic5T4iExNxEs18VoNSrUBLp3hZHA25T/RWkebywELJ2P7gwbUVTN6z+d8cv1W4MZldDKF V7kPKTgrRKL6XYqbItjGkq0EYK+MZySYhCDxgS8xDeWUhBBpuz/miKrebsA2J9HOcWWoZ0vRBT1X Cjh+Xe8++80nPpdRCLF0vzUgHxOgmkT9uugwAwurWjbRBqJP+ye5NiHMicGaCs65ypQUnO9023dj QlNZqTPiBN9nLBfHdDCBeV0F1/qTxwk/pRN7XG6kkaKQN9uD1dJmpJ/gE1YJO7V1MzJ+Izg/YQES pyRpKdRLhA82qrXON+C7diA7geM7I3phJAEXjYjNMAL03iY+TidWOZ8XbEUwnLod2PjkqIYgleT6 wxI3y7SNACP1QOzzWLWfKRNHwgxh308nIGK5pEpoMU9DzMfvgsSveyeZ99sDEDm6JKm9KWZ2b5Wd HyKbdUV0mYQFp/A3zOx51Vrnd2Bafw8UOMcz9CwUyu5z4ng5ZnsSOaLboF/IWCETTCNrSnx+GSKe 6/AdIt/Hmo0gnT0yTL5AY9BmKmNpLHBlD/qtnzKzfzKzV5vZE1DI9JDp5bfl+ozlgkk8CWDuJHCc EqBlk2vHtMzIGLfZwXLhSRniC3Sw71YzNU9AJ5qnK4f90J8NTKTr5Geb2eea2X+b2UegGN807x7A Y/Y8kzJ03gvFOmFepyHe3Az4FT3Ep+vCbNQjDRDW9X8HaK/Sk0Epd86QuZp8wJb3IJVjqWb3iqlF MbSzhi08G5Cr32FmnzazvzOzR3B8hZm90szeWK11XNDm5wpEv1IGcyLPK8vYUjBTSVJVTiFA5N/z Pihexf1NYr1l0K3iSZIRYgb79KbYKcuPfuPujaZEdiqSAsIHr8T14JgPmNm3u9S/Qb/lFOHLBv3W PcjZfJPjUhDErYD7qrXOx6q1zl05t+1BPscgDsrsMrxbJ7efBFi4Pz4/UUDFh0f0JgyRkjzPN385 Efv0Pu6dFIIChqKoDLPWkNWiHViqVWudPgb8GPr0NfBKQzDtyyEuP2Fm/2xm/Wqt84lqrfNb/rMF HuiFElvhIzgT2sEgx5A6eAdSXrpC5BBNTGgwhDhOxHlLApYfaXhKiV+Sm/gdHNF5gGdLPCTFEiXC uAyo5bjkg2Z2FxTfV5rZT+D+ruM3HDfyAEJIKPfLwQRPQUS9plrrfLJa67zK63+bqOsCmcUVgY1D zbfnR2JF7ecEYcX4ybYzCVskfm6QArY98yx7MgEczO6SAJrj9Oeb2d0QKY5IvwyHrgwuPCvHScIK svvkBpaxO/fjTmT5qwC4zXjeBEDB3hDnLCZKSXzm9TNRoAx0dAgn9Hrg2ikWNQMvLLCDhJljFAsL K9pqrfNnZvaljusH/daDdkCka7ICSxgAj67k5Scwj+sQH44Bnmtm7zSz11Zrnfu9R1Zkw0WoP12s tvMwR/OUOYm/EfiO25DccTmAE01ptXB+vhs0ZtWE+AtxPZRr1cweGvRbf+T97FbWCZzTRSDDyeLL zOkH4fnMmWcP+i1ns/+py0Ku1jqvlO+nVokPfIFAl4ABzTUcYqscK5JiZyibO0KtdLyIHIRsbgJE GgaAo0Xl/UMg2nfKjhP/XuTsaaAe3zGboASHJ2NGDvqtO83s38zsXd73FFW+9dOEqbyM3poW5Fhw s0RyW2Afk39zZuFuIm2ulJcOUaCzb4ZH+CEzexAmYyIxXua9OI9zhsvARQn65Cbg9Q4iAFOknhXy STP7IidOmCGNNo7s3VrWVOa9mpjUwvcpIna6kMPrikj9JOz0vzezHzGzHwRKmkKc3YeB/Ikd5HTO NEzUENjMXQJwUTfUIXrei01sSvzQSo8lQBVuSMBaCFScS3zctIEB94BZLNVRLNEvNrNfAQbiONbh Kz8Nz+/f3W+yZfMqlGyIYMRe3gw5WxHd4M7/Xlg/j2N13Q/T2H3/jd69Vi4tExCf/D4qWY4vgkLC zAzZv0XF0A/hL01BcvWLQLjbzez7IXpuANdxztR2YHBlwCHTwUEc0dIow3n6aqyCN5rZB3Hqs6q1 zlttVmYvFfIU+tXhj4xhaqaSpR1qk2V2IyZYAWUxm4oEr51YeIWZPS2oIlPrLnmmYwLb/hWQ/5vg 3hEGRpOR8AAtGEatup6uuBPA3O2ALx4VJLYOZVtYrEa4eQQGaqBPwzn6dOQH0Ofm18AUIx5C4gcf gjBbgvu66xwXfp7XeQ1k7AiqOIQc/zrondOSkqicrbB2L7Jb5tvM7LNgtk6wbfTZsO3vpXJfoJGb 9+SShP2mmcmMDu+2mTBiNBMsgK+QcImPVQTaJRDrdeDSn8cz3yenVpjw5FsKsG7ozE0k9toAvOFj NjHufQvu9xp8fhb+MvX9ZbHxR1pIVJV80RhZTXTMpmKHJ4XkU4PusqB+DeD5Y85+ZNUwbvlNeOh7 ACm8uFrrbMu2oFTrJrBhMGUo6RsgVkn6ewH6YF7A/uvN7D/QT4f9OHP3w4Cuuzkb72JthvgYey8v bmDZwM5U7MxgFV4j97WRrXwMBHvUuzY0cRzY30Dm/q6ZfSsmIMFEMtdnI8C57vv7gffs4PkJxE0F /sIOckIfCWVNVGude9CHD+F/Bz98fNBvvQDKvCmx2aWIL0Dck2DSNhK0/P5oztFU7Chc7LeUG8cQ LOduv1/CeRQVIXt8iGDEBcjcF8DScRPAVfE8gGumxAc3OaJ9Cb5q+q66QAa76PvJaq3znmqt84Fq rfOfWKlvxzhfjP8d8zwFbGlbYhSFmhe5ozxPAQSelG1D3YAupHQYK/Gj3EuXHLOZSgksTbczRnYC 1/ckxnm3gxTM7B/B1XcDm/8rnP6jcmkCU/Illg/6vRoy3CnVL8BzXgIP9y9h95+FM3cWXO7Cki9C 6vaiKY1ksl1hBm7inohB4kexzMP//z+Gi1Q/A6CVBCyGEqp0lMTpqQBucJjPLsRGMGSHwXGD3KMQ Fduwv50V8wbY4a+r1jrO6/2omX0M+Mz+QBE5ez8G4GT115rZc8HJBmIPzOwdc8AxFqxYtoTXtNyY HXjgbZY5EHi57efs++JK6+1swc6uBBwO7k3VPa2pyLAUyrA5T+kgFuuU9PuQLeYU6V/DAfsvyHcn Ip7tXXdv4F7OI/5bcLfjwu9zE4m+Onz/8wNe/EcwjgcC98ttnsjhOBOJb7v0mk3J4p42XEtLJ0P8 oRDfx7K5gbkH29XnLO5YPBWI2Putwr266NCvQxw8BC52cMDb8Mw7YZW8EPf4B6yKPwcBzyKs+Bdm 9oU452kQeBvjuQxl/y1m9hzc69MUZws2Yjfqj0z3hklyWTdAw0yigRI/BXed83ZiTKs0yd7aiiy/ HsTWJvCZYN6k1wnWYxiDwFy+b4DNfUl2QRZpjwAHul/7jQJ4JMLb5Psy4gKNotVCvFxUTZJNZCLG QFhDQZtMrHtmZwrSqE+EtveD4JzZETYjTFi5Q6JOFtuDJDvZMxvsvPOYvsG/KjufBlr5ORAdVz3I WO+TqT4ov/VYWyHWj8D5F6BoGU3rStyBG0ESxHKbcm0JZvUMbfwaaykeEFKcFDvBjb3gfuqNGPe3 sTsvj/D/AhHyJDjo/Xj2Ezg4IfSMl4W6h0WzqWFgzOSishKiV01lCGzJpx0neE+Z0ldGmos4o6lp U5PwqG3GoDoVNAdzxne1gSK6iXlpLBiDa56D1fEEOP61wPjfyTiuGAVRqyYPykVrii6Z10iXHY+w 02dA9rdD/o7u9tEvMxviCmyGYyURrX1ZZ6qdVCfZk+KjhA7eDQ76DMjpd0jaRRmm4gSO2XtlonsA 0ipef3ogoPv7Lk/e74s4ih0RZXVM6O3wN/44JrbsgKNpaZ2WFEmaz0PhfmZyp3I9K1eZvykuVNqx K9Ekf4uM1iSoC3GG0PapVO3jLhAGu8cIZHwY3u5XmdkvwBx07X/x1+E4fdzXYKm482uBvpbhXLnj 7TjfYO04M9Tl8TwlQJpBZ3zKzH4GUbXoCgHhSPirkk44EoDPidtLMNUnAVGmu33ydyOCi/bgcIVk Ypuyn+IDqSQNeRDjsM707MHzS8TldgR9DIS/io4fx7EJJ2wP9r8j/OODfusPAn0ZgijHYHa+W377 FIIx7vhVeLhXxfZ/C4yGeTV0DOKGY6tLvLiM/cin4VTVvdWnFlLGqsoQXyL8Fkh3o3xPYGJqBlYi SUQjmYgLzOuUUrlqAxOpfD1scoYQndX1rxBBMch3jEAMd0b+Nr6/G4ezhv7HzH7YzN4qEHIKiyu2 f5aEn1ZOFGKOWZGWVWYRag35Nrz/bsikLbL9/3KkuNu03Ipk+/Z0QFIuxmLVqXyfYtFG9z4SU+Be Yoq/8TxIIVZHTr5X+L0uq7ntlS7TDdDBsecVvlDFGaqzw0GP4VxtCjZvfBGAV4EvapOvo0lhDCtS j20O4U3qwpXEjFQ9R/HTDRgDRAx2AxjPfsuL4TJL90Sk/kIq0ac74Kw0ALYlyNqtSAqgQUT0CpiB SzUuf8Lfi9wDEzfyCS+npJ4ZyU0SPd+8BGNyp0/Ul8itNIWbPIyP0bJVIKZW4GB2288668YzQW1e oeujblKML1MdV6rMJoLb59Fsblk0ttzsBal7bMhYiHGsTgphU2f33cPceOiCi1JQaBjLdTmqhs3L KRTzCSkXQ8L/GrImphupC6QEdqV2Ra4HXSR1RMtWRYtOiALiRDzOXSyYAIJYWk6F6SBrqUpStCH3 tC3bdEyrn8sLGB4ENG0QI0keQTExUxhinugrWtpRxU/MapkWKxWPtiKA21UPbGpL1pkt+y6VRVqk eOouAisMjlTERJxImUotC5kp2u2ViClU5maRoqaF6gbrzj5ZEc3IhIVeaMP6mumqG+zkOfRG617x 1C7RWZuV1xpx6np1FkqSuaHfZapTzevXouV8RwXqKHfFEZnBPiL3dAP9MpQH89+ftdQLy3BPIp9+ TeYM0b1r2/RVJNkrt4iSmJW2SEHrZQpZU5NHa5lhlRByzVVQAjy5+/0mCPWqnESszHZVabFX8hlf hAaxWOf+qQJjbktMNoOirlLKfaFcTQkOq8USylhgvmKRXHXNevsuwAxD5FRehCLUjLozOYcSfgtY znnZGU7U9uEFEmN7gmDONI/wVxatob+OlxesWs2PFQh3sXm4jEkryWbiurx47PlAY/00FxJnLLU8 aZMPEexRJb/0Gx8sS/ilCvit67Udu7EinwXuQ3l5RWIDZcFQ2oKhlJH49M1yC9Z0Y1IXlR/1DnGf a6jnT2dvZ5lSwF75YlulcuLSL6yR/bn0AYJv2slr4HKte8O9qwxAt6E3hiCUm+g/xAo4I5lhXREj JHZTIJA9oKtaL+GU3995+9NkYlcmvK36tiCZADpN1xf0WqelYkCUc3zXISybE4gbaG0IDR9OYG+P JP5Af2NsB3qK4oUWzjXv+WzdmBePiRr7b0ZaYKyZtvJ7smQCaIXch10ZRcAzdr6N/zc93bEnhUWT nGqFJfkbyjjmZG14dUH9in/lUOAfouq6YD/n1/HW0LW8ng+RKr8ad+77BKV+pwne7g+IhDjh7fRI 5D518T00duqXaGRL8JkWVFPO31DiY2PHyAMEk3W80cLW/W5EqcZNKPphpEz7GyxU9m5JkTruAygz QiQlV04IdKuT0IRJWdH9AgW2Kk1r5cjrpK4gFk3sZ1vEzFWkp6/F67bDeCso3ycIghgU4w1sEWI2 r3N2SiQsCM7SiAyCXLKDLOfLuJcvykbYhdgUSytTy0ya5s3oDvYRIIG2mLXkdr7VdO0I7NqJbwdi qClv1TQQc4xUc8Z6WbGwASJMtLKfiC1yWxHQjV7rNPdI5LqKtbLU5+xhN+FY4OW9Rd9qumg7qtdw 0+NVD/Ra7MXvIH5TMucqWBH0Ummrx97hQrHG3YoMdzYC2QX+C2zsMF9ArO2oX0AfmgS+QCyzk1AK Rk/kLUMNL7076qlK7edUrme+acPDj6iw5+Lw62pHSny2yIvfDROhKObKYUYQmwhnJQDYHforomLt phCfLecFYtq2RCnaHLnPlaJF6kJ2f3S1HWW7qcTXJkH4iqRdr6vtSh3QtQVpVm23DPFDzXvPob7f Nq9xlfBv7mtab1ozs/8D/6vPq/TXfEkAAAAASUVORK5CYIJ= ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAAoAAAAKQAAACoAAAArAAAA LAAAAC0AAAAuAAAALwAAADAAAAAxAAAAMgAAADMAAAA0AAAANQAAADYAAAA3AAAAOAAAADkAAAA6 AAAAOwAAADwAAAA9AAAAPgAAAD8AAABAAAAAQQAAAEIAAABDAAAARAAAAEUAAABGAAAARwAAAEgA AABJAAAASgAAAEsAAABMAAAA/v///04AAABPAAAAUAAAAFEAAABSAAAAUwAAAFQAAABVAAAAVgAA AFcAAABYAAAAWQAAAFoAAABbAAAAXAAAAF0AAABeAAAAXwAAAGAAAABhAAAAYgAAAGMAAABkAAAA ZQAAAGYAAABnAAAAaAAAAGkAAABqAAAAawAAAGwAAABtAAAAbgAAAG8AAABwAAAAcQAAAHIAAABz AAAAdAAAAHUAAAB2AAAAdwAAAHgAAAB5AAAAegAAAHsAAAB8AAAAfQAAAP7//////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODTSRtoHNkB /v///wAAAAAAAAAAXwAxADcAMwAzADkAMAAzADMAMAA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH/////AgAAAP////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAAxZUAAAAAAABfADEANwAzADMAOQAwADMAMwAwADUAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAACAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE0AAAD+YQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwA AHic7Np1UBxfvijwwd0HJ7hDcHcJENzdneAugeAQgrsTHIK7u7tLcCcQIGjQILfzy+59+7a2Xu17 /916+536TJ/p7pmeY3266pzpKYyt3BqCbdA/hRAICvT8ggCC/Yd9EH/zV6CDQKp/+/z88vLy990v /4n/UfEE+F1/UEDdQQNgAL/rHA4AD0AAIAKQAMgAFAAqAO1PEwBhADABWAAwABuAA8AF4AHwAQQA QgAR4BWAGEACIAWQAcgBFABKABWAGkADoAXQAegBDABGwGsAE4AZwAJgBbAB2AEcAE4AF4AbwAPg BfAB+AECAMG/2jYIJAwQAYgCxADigDcACYAkQArwFiANkAHIAuQA8gAFgCJACaAMUPlbH/i7/0mh AnIAXq5AXUiA7IGtM8jrn28F/8fAAVrM33/r971g9RT5r/3dfw5L/uO51e8vCKyIliHU/tdxoAyN QaYgG+DdEmT+f3XlP4EOgoT4fW1I0J97z7/znd/n3uf+SSuCTEDWwJVNgbz//i/OwPYNsHUF/DtB DPzaP5bnv/u/w/7dE/+N+H+5/t9DSRYKGgz0+N99nQyE4k32EgBU42vY3z0aHlJX3MHe1dze1VDN y9HcRZ/J086WNA8akjbnrzL8T/x/HPWJYwp9LOgSt28fxfdey6zhBKNbr8DEULkqC3UvJSyS+w67 G/pN8UhDVciswrsl0LqfCn5lH0EeslGnlnU0IMhK8F2kQLCyD56vy/SRM5yDi7/rrjcqnIlNQPFk I9Y3RCkmRBISbbjhTftoREJ37YMafj+uNd2siles1S3FnZ98wcwFxXd4fUrHzeeP+i6M2IzDJzTw 9Whse7lTi8JlCaP056NbcnoaFYkPesVw2KgyXTTGi8nxdf6W+bKvb5wL5YuQkxb4fZkqunq2/NB3 Ju2LNv0lb6MHXFVE2IyZ2llDRr6r7OR+YfHJPV9adsrGU7uvnzXrrcFuJFeVO7KrFYf++ZnHVDB5 sQfffx21ISnsaD4Po5k0t2JAmXwxh38aHLI3rQFtsgsTVmnbed7zxW/XJoN92439gh3t7uv0N1/J 4MbiqD0tfjTWh3V8fYygMQp75pjmNujenfMLnoHzlYFOzEz7vhjvYiap5XcuRKS95XwD9pS6Djoo v2Z+j2y/x+v/vedGIE3B4QA9dxLy91gND2nobG7rwsz0+/0/PfY/8Tsi43tkoFjRQ88Cz9CdzyYb w8M4ViPgOz7Nw8GPnNgfUmPFv3u3uaFFp3NoL2jBdv/i8Dzi7HYetGQ6Gh0Yf1WaDBlEdixWvHfw ze6GUcLiVTkxbU681Ljzwtrma2HHaT3i/Y0BxnCZYZmb8QsY0gzijklsCeT9osI9zhTTI1LruoVX vXmV2aRPC7ETIUVaulRzK0Jva3gHd3x0M1YW8X2o6q7w7sJhtgJYterrUhF1TTSLMAiz+MyoXqfd qkzmmJYjNgYfv4l4wYpSRCLW1p0gQKbK/HZ/mgqZHgPyssQ0t25h2zM+G42Wpb16YPOgdcmG/CW/ U3ytl13rS1TTWXu/usraNr7nYOZ0xEvRM8Bs2wn6V91oeENPQgh4Zt1r+/NY6/7O5Z0Ds5mDqZsd MAz+Hv9O9I+dVwfjn7vUf6GWF1h/n1/BlP7UakaVHf9WelGyiWK0tu6F1JmSHBaCGJRY0T4nNNC5 5D4FSiWWQwPxRdtRFRxlpp44WLy3FxT8AHHzfPEOp55YIvNOuXnztNJt5TVGdP4nEqGTJtzvT2VZ 7sckVS9Pmzf2H/yR8y9MqHvrYQp7zboE5efup46PRzzpLQxqua6GnBLf3H5f4UmvkLq9fdYqFzbp uTYoXtXN9vJd0jD3i66YndELVjr7AJ5q59CO2PlYHt6u/qWgroE4ols2YNXsaApLe3VqZI0w4ulG AOdTGInEr2sDAzPKWXBrfL193n3SLYj0cEtpzTuCtAMje1b5AdwdQzgQY+lLW04S80Ra7SugfZdA 1Iog/xkaKY779r2Hw/pdJzdih5fo+tGZrf1ZBWGXdP9MsVowD/bIcZQ8DKmw9LDoHXqY2avWO/B7 li2aGmFexI42ETkDj9vFNMPbyh1abNOFr3tulg7rj7k5ih0tLIdHHzN9T6noGMEqos+y0TyP5+gK tKS/IJZGcRRYob2DaMNy2K4381misnWKz25XOybcjx/2HLuedm9YnxtyizFlSJ+IZuNIUGuTxKP3 PwbZHsRuoz47oWv9Ck/pM30UH34/ecvK2ILkAAvVmPJSF7K5edoEZ7C1OeDbds3105jhkw2zD3q1 roGd/Q/7W/6sU/dj9aa6jpqOmdW1703uutXUcKrMoT0Qan6mNpZtbcur3dlV7SwyRgE3Ouu+ZZtH I10Ti7CPuLBHPOfEOf2SVTHlScvNFwFtiyF3S63RFsS27Wz8Syp+lpbFGTVzP9xbCc3dKfO7JyS7 rq3L0CRoVTsWcc5nHexkNrhsPy+6FBml7qESyMP8jPd9l4W6XzkOe0ZuLW3U5paOjCNNMMEm1vR6 yKNL8LIv+a2KcJgcchjzUigUBnRFxFPjClZzlnFDfk6zBF8lNZS/bhumv0ovhCcU5BZPONq3qy3p xc3ca9O5s+AXFnlsu4q5H7buTT8t2yKTZSOqDkdljc96iJK9nV69FgMvutfkOzqjD80Mxb20xc4T 250pCdzlFrTJroBP5rozVqH1X21mMobxP1PfiHHiDxqh5C0TeTtfcWiOE6hlUuJZQcxKcNmNU2AW Zta0xCccE7TMuF7GaVjXh73h+wYbV717qNCTEKSw4k4ugkcRSRKHEW5BabixSUP+weG2I/iuAdEJ 9+5FB96rVq1b0pQZvTp7jjaZ1hQn/BtqUAg5obhGrNTcYf76YFqz4lQHXnKBfNvg6z3y3ppT8leS dPBouNca/SVor/jgH+EsdLcrPRhL9bzPTyXfJdqFNDzbF2+euXuIBN9wNb4f1OhrDfVFpmEhOnF/ CS8iYthmJPDzPFCcLdEHSzuEheUSEr07mMk3SpZUMFmEjkeN5z0fbeICB7xNexW+X4C8FRHAuIPw Vfmo5YjQf+2b7HpRdjR1Z5AEkSI3truAVYpPA41TvWM9vNTD3Tph5xL8YD+ngWfg9veeFIHo/DTb +vAywumKkFm+Ox3KrcNn4lQjSoZJOQ0JPEjoxMpw6+j86tr4OUdyoYv9qgEBUFYYzcb7GuYG9wwf DP2Np5tBJJqcRef5c/obcbUd3h1SFPrw0YkPeKzIXVmKRust3z3rd8VqV6FhfmmFjWRxPxthKR8c wNzwM985Ykd4Y/Rdh+NTLglw17yckzpvL/NtOAQxBTOYYni6WvZZWCOGxO0vB1zhnDnVwtWfzpnB l7mBX5tEj0QcjvuBl7GD0hi1bHIenpkmJR67f16QB1agr9epIhDKBWMxnwnOzE2KeAu9klGQuDyy EllOGhpl3vluClYECyeG67cgX6zQxDBphzhZ9XTivS9Jmcj37oeQwgki9PgJb8rXjgQbYFgeTfDz 1+6VlcqYf6nWWFy6zNS2+7HpmQ2DL0Ugb2busxb59y2UvHssxmE578JE9jPp/gMT95QKdRlvvw74 NwL9sralrjsou4yPDaGVo4ZifZn0OTJtX84u6OUyNDxa5dZfGuLpx6K7I7uZFLQXpZPM9eVG8ph2 PnFnlCxYMo5BwG/jMa1a3yzu7TN1NRCN8iJIxNsJJyD+IoNlkOH6YYZ1oYOPrLFHM66QVDq8Jq49 sGY7HwB3rJHE4UnygEAEpQgzk/qBSt9eZAZL++BwhVd+mlTsi+RAsbRvdRu6OB7XvCesqnAq6PiG 9q2TE9VOmog3Qj5+GkhSmA1C8zHAw07ny9aoxXHv0DMNK/6euNVcVeChKQx+5YcSNqGW95/KzXG/ s0FVd9Knw9FvLD57s2ZcIaP7twW0Iyr5pDlRq4O6eSeXPu52Tw3gaU9pwzjjRTeb6ijMWxE76uQV FTajnmCM41ykeYID5DtwEDKdPMuXOMzdRJRN5y5dsCptuZxiB3tEnQkmcccneTwjHxG4PPGQzqBc zkdDDlMjSwvJx1AGMtv0mjWNhJoGLlm4rBXcqoPWh8ked2jJUhcC9h3ykJYEl1d0jk9ObW8e1vVZ rNy43Lkb3UuMZs7LK63vjEH07Omsl6MR1k38WT+yfsjreEBMllVCkvj7giRNVNwcmjZXT49XKSp0 8q9ay6ZLE+5eeFdRBqG3vfYbHBPhjx6ym3LstM+ZxzILL7ywFu6CRhwcdXv54zoEY5UluiDKDLVz RszHkRAZD5Mxm+frOYzoBwd0auXL6WxsfElNsb+aY8EE0WnT4wXbVdMGFOCUDW4sOV16cA4Ong3r 9G7tnyH7glbKjAYaKM3q3qZ8ma1Mc+pjIGSG2bdD5QUVwpcupPRiHrtgvOxYWkCZchsG7DNQc4NN 159cINKbEgV4LlZyVn7gSZWH5hZWQiDjjECjmVUbjW60HkNRFUAgt/Dfzi69qKm+qv4KnaL/kiFy Eb4JPWRIdD2srve9xoOmhrsHARbfoQoNcdpi6FTHr62uo61hZnVlY52D+lVxSa0kopUahTnZVfay z6xOFql532iL90GxKp3KfP/s+iVXgDIElipqwyr/mygoShjhG94FY5TxEaaInAIGMlXlLkg1zlz0 pIq3SYG2UHyI8SgItHowgxuJrtNnKixih/SZseEyRklILPww2B2C4iMoHp2w6B2lyAZ7J0HGtx9Q nr4SPLzMT3uhbrNRVDQYJddoYn2pKYFbLFobH8Y39sMwicZlcKRiCz9oaJZapXadMs5cBPkSc7xK q9Ged30OfU9eJRoyX3j8hZRXS5xvah6eHBxN7cjFN0zyhu9zdPew5RV/PEcxrdJeEH5zrZplVFtb Xt4W61NgqCa6K+X5/GlTlb2VpdtMzzyUQ+2ObYXNYR4ipSIH1BuGeH7r4AuCXuMxdSlpKmj3YjYq zbzznBLot3X1QRE7rnHIXwP2Pp2BXgXk0sM/moXDKsJR1+nnV+iN2ptgU6YoBJJ/EyHeqj20dMtx Q+EcfmT6yO7r6eUFK/QhZRnXjZo+uSwu1NNd3A7XBMu2EqG1Zricq9V9L1xIuOpwneVGKJDouZzN MZt8dmYCbJevHDDneLR5T5deyKa8VUnkHXk85BrEkanJyKPn32BS3mGMEt4pOPClnJ+knEixATk5 c+T08zCncVtwGdLwJ4pJ41TnA5nJb6LLyvQ0JgWoJJEHoBbcoDN828mq28r8GDatL+I7gkorw6wg xcDITrJfs7mSPIxgqBj2TwYS9wZU2AwYcJVIy7VOQTOWYwQoD7SGiT265zg+1k6gYjGukIJn2bDx XTqKZv5ubY4oXPcS43pQnUZAGA6aKqErbJzTF4FqJn5eo2iXa9KLjmo8O3HcXtpoER+CKFO/z1z+ YNOfo3h8k7t1qC6oM5rLgf53ZB1slUbGAv0bPkda+KRXMU+pc0L+gU3e3o7+pGc/ucw5hq50n59L 2yy0mqSuxJ3QlOn1coO89VqSt3fkwS9MWbHxZsi92+QgzTb9N0+oCQzSP600wb5LnBOs3zxzejBT fFrTk7ct0vPD6VouTjFNuYzk61w+BmnrfbyLykpgXRFzMDMtZwwz/a5C5LrIDcVG/yB+FiDZ5cqD X/GrrLaFaSA1sqyu96g2lVeJydFXN4UMtrRl5wiz2r5epZvVye11Ju1yLHLywMX0ZvXpTgYxRiGV qajUYyakkX4SqIWjJ61kr4r1QlZiS9rNhXyKimfp+6Qo8XWm+q6VWiohArXUq+SD0ACGLqL8j0MW nwRf6aXYCcEmfN2THFawCI/MoFjXIKN9nyRe1JTepsLQOoUysABqdcE40oyaJ9NZaLZICA1XrGvE WC5XmM2mpghxXC6hNup1YPfkLZgWtLrEocQWxTRcwqs8hZPfMuesE02rLVrOeWusa+VPBRE+zsXA D/UFXNMOStRie1GNry3mRFPjUGMCR7/HxSuwCAiXo6lRYFmlRxl7rRRedL2jquMn7ZO7NaI4tEZw 8hk+fJGalZvYQ+5qha5V+kciofX1u0HFOszZQK3I2HfC7k19BAl2dwfHI+O9LNfmxCLXFrDKi9na YblSdfCliuwg1Sou95DcNTYJ7I7pqiz4PEtNk3BT8CkPshI9d+bGhFHJs/yweUeDDFlwXftwXbdN pCxuO0h3nFyPLpCdA3KVAD8c5v0zIYNt4a+ZuR9ts0+RXuRHCQJ7tttpv+40jz57GdK/++hn7HbG /KUVz9v/SFxNl1XErzQw/oz1lZZ/r/rmIOtsYFw3QbS+FiSqzdfwvS+VJMhjsvMxaym9DKVlcDcp PatxxNY+ChvEemiGrr55tSnImK4maRoyGvfxklXHr9dcVQJlXKySHmpE59GG+wK2ZIohA734qPio HVXEwTwyTpfsc1g+4ualdzeC+HmjZGaxjBa+eClVbll6NiqlrlO2aoOd/lz0g4XTrLIdzdStDvGb D0U6DWbcEVQMWM/rDDdmF34vSD2PrqIpuIyMfrVG24Ta1YRGmpPmufH9KiN7Pz4j+rt9wB6je4vH QN6TOCtsv7lLgi0U/yHeZ3U1Zz4pXk7KtJCyaX2Fm+kqST5RNRBR8HF15Y2mDFs/jQ82VYutr3v2 3Lhoe7BYTyITHY7a++UHqMIV68BtTj/YI1FfRva00XER/TcWg7Xb1e1h5ZHmjYj44Bz2FHzkjJ7x LZm0ceTeSSsLkcJxC9geCx725qq47+McSFLlk54Wh3Lf2INM2HPwiaBdvfblrGAtzN+wp6pYcARV 75jjRQrQj8u9gx2wlGMX0danS5jVOqQW0Q6jB/ElzIKc0hKZ7Efpopj06KomYKBgFsarXSEq1vhh 4SHqUJbG4glk01J83L7oUygZeKxzM6hQSTeWVWL6W3dq9UWkL6lYFLWJ8UZKSYRSQyViz8pNyCBP LJn5y32jFsWwXMp5x5Ory7wgScaOSEhCp2mqRE0WGtzxmDmTG4qM8aTAJ5N8TYfNVDyp81VOwzQP JY1aRvkjcl7Ya73mlM/8iHEl09GSZiLO3TaZExauJgt7TrnhKBcDoCuhDnqv9sg6VEadtDqFS/MV nC0x1IQYV+TT3iF4NW1iRwYbVXwfimQ4AolfHdrEw8Fr7bx8wq2CPN7GqTzy7G8oeNzWFnAcl+k8 7S9py00CqmtU+QZHO7wv09fgl134P0dYynFrT+iwZr7PWEBVTroIPIBNyaOYHtUXkWqZd6ZEMe3/ qaab04s9zK62jbGHFMvEzFqvNWr3sKVL/kE7j8oNce5gghOP4xu+61hyrc/HSoV9O/U3kQvgCpb4 +cS9nSHr8PngOPUMubtWJ4dvcQq2J5iGyF+VDCIRukqZ69/oJkocKZTrYyeOFCJycbSdd5RH5O7I 7ns1hsSUN3p4IWR1LjTDj+xaa0jimyJuaL0yuMz3Ty/ko9zuR2nA9MPnVGg0UAC5b29BmlJDchOG lGs5LXEymFMhczNYUGEwa9p+eiqcM09B/9GqdLU9bR7evr6i8J1tYt88rl+3k+VCt8qfeeYDBVpz I5a7veOHOOdOlrpkdetTlXh5bLKWfhR8UXy5y4gUWhiPHYGGZmM68OpY4mwAVEgeHc3GEw+Kbc5z CWFOh5boK8ooBe6IpgPYazKPQkeETj6jKoRJ1BXH26XoeaOMyuTz1iGLYFiGln3/RPaGC+3NUP2g KaQmI1Kv+zVHpBJGfAvqVph4JIyd6LriaJ2fed61WPL+syYaEK57EbivX0QpMJmXfqaXb3plfhhR Lps0MzebTeFgx1d0D5QSZZ14irJTjF42rjO3OSCpWgWe/53yXpxkwdpf1QgN6ddrku8fyVUoXZhc Yi0Vwb21kjdFdermtmN1A99XIRiFCI5IgmFazLvIfwlikv5EXi6+kJ+K/eDTJ2uf7Rd6cpvN/Ut3 KuPpx8HE8+SVhd+tV+2LeXbKlgBFltgPBmK7soRlPpXOncMqhW8OvA9lCfe60c9HZs/J+S8nit9K +zFYAs1mCOG6mM9LlDiEgiQdWPYsM3guvchqy9WdselXDUJGj2RvszHp+XeQk9jAO2Mho9aq7T+u jMYLCJiyGELP8jEn70XokZY6Y2V4drFK+il+UW2+pfp8G6eG00PMONePe56GzkDH05kuGFd7c1pY 8ZJGKeDrdHPzGMJF+PKTBO273zXfU0pWykCMsBF8NuN939ikoqRSJioitXyKs2eXNXxpltAd9w1s Ik3gypWTRIr8jPods9VL1ay5O6J+keNZyzW+f3d+/rkEgtquVyP9xG2CS4NaY0pWYoOaE79NBAon d12Tb3sKidcXGd5CYpkciUWyds4LskFLCvqe6zk/d5Se6wqsHhfTJZmodYcqts49735NfMOjD0c6 zA0LWlwiAxqG2njFjbUiuvrmxuacSUV5R0KJSarEA18KBKrLwy5p83xry3FrGFWgWIh7gjp2glpl VgJ4ee2v0Zyi34SpRFUih2EyKmrRcmDOujuB8HoNDigTOYmJs5umkV/D9SrE0DpVeFlNerD2l0d1 zouoO7+BfQrSRCzrebSjM4OUST079p3mFHY9K7dHaJE0efPkU9wUvL6T7Eg2uwhzBU1jfdOOk5BS EQuR5IA4dcCqmE1T4HcyHLOYzjry46PY6OP55cPeuQRc5XOh7nM2c2+X742OtBLrTtp+CV45M2X8 lX5TK1z5KcTyr77sPsEtm9Q6ZZeilozFLEOZKrF7zdmyr2dd48+WOvQYxVj8XtJa8wsu4WLBHHMW 0u4F8xT31COF/csWEohW0uFkHsuxnHGKA6kcEAnPHEFVGxD++HAnqlnGiwfnfFsjQ+l78p7amvIr RJ1TZUyGqKx3re+vAw0WYdLF6YmHAmKh7hGHT2aHeeTQ2cHnXGTXWoiWqpf1FZWwp0YLoKQY7Sj8 bnGUMoym78X50hdH7lIp0zdaMYFR3AwGdt+/SHcmNaRTeCJO3a1nWI/DD3qWj99OshJ3M1RepEUt cO47nGRybxtsXBUIcpZUqkOyZ0hCmRkfOai8NpBO33LdiXIJk3GYNv3ciXrcYstgbKEhP8TbTmXg ntxgaDkVQSdS7l5CjOK2O4A2gNSS+k0By0eRVLQG5TP1fW2FOOpMC8KlMct1kDSj2G1klie7z/NQ RTvPch/MVeqgwfNzXYPQwZVQ5IVEc+7bWt49ZVLSXS9sGokdGv4WcQxJ3wt7QQv4fQSu25y6XRoP D2P8hFsXE05cZSTuUfLzLxcgR57FAnJij59hVSWdSLDnDwNo0IICfEKe3u4urt6uTqZCrm+SPf2Q y0K7y+i5uX1gLn0wCoSEQsoaTby0kj53D0S3IpTzyMjl+JLj6h4fjeidVHcb9LUdAqlF2fHS7PEk w+axSQ0FDe2pmj2R/SF1ttnBm1hn7A/JFIn6hJsrLfeWy2n3DODwDUa+AeOuh86K6bJY7BKmXoSh d2BKmGtCgvyRcINLqmq5YhF2ie/iqBuznMQglZ/NGJs7+xrlyfe3viPquP0OOO8/EHWX5R0LYAz1 7DQdVv2IOCx34yMsVHxW8ltDChlSf3iVWIzfi/j1fYYmd+hcY3X9mH53xDPkbn0WWV5ax6lLx9SJ hEIb1pr30jlb3UHzycaBZ7L25/Aea5NOmy35Sc6SpGOT/VatFqbIrwJY/O1rL/YwxSw9snqaaXL1 kW9q5+16KGZ+EF5iSE9QEtasfXWsu+R41DcUtuzgLm2y8yFlIhSjr7T/sjzWSlzlRpBIv55CmFTD PB0V/uRmP3+vHYGanCQV1qK63V0uIGZvjjVkuY+RbobmsdtgpydmEs1M9IV4KEnqLY1spYAYQ0ys d1Nq9OckqeF5pp6QuveaY74Z2IPO+wJnHg3n1GVJTTuLnPvvTvqgoosvel8raVS9D5jBGinLh7hO TjS8rr3U4IFUeybfQBz+Tq/YEqcq30lZdRs64xnAXEAoD0Mt2+3ts0Udk/t6Zkkus4gXi6gjkykg kDBSabaN/pZjtHEnYxGDGfe7TxwBhAUlA4oDtWaN58+BIdtNrJ0eM+fTARIclwxXJBg9jsP0dvT0 FYGfZ+eXl5HpLFszzHFNb4tb+o1JtfX7Bojy3NvB7QhoA0/+AZb69weQG6Mp32okCqTwP3BEf/Pi DA6P6smfUfwYT9YwE9CO2nXMG0x3raKoc3Em4UOwIfU6sj2wBw4pag+16/3WfRgrxvSD8iQ2avbj Rz0cloZ1ecfz/aRS5/NA6a2au4khbhFRR7emrrnV9V5jva5rLOHRNO+nvy3P+OfZFshAMOE8kDKH /LP4589si52xi6u5swvznynMv336PfXy12xmffyYdZ8IssRtyHNfzgfGVQSyxMg6BjPCWTS8wXDB /isjjuBvZxTwIa2JJ+3t8FkuMCsknU8F9onLAzm5JdZKYNsTfTwOnyxhTX4lPbnDCTDUu2asvlxv v9VsKzaJZE/XT0lKkDZ4stIkYbZSl6FlqbTDe5h13BImxCz43pxQxrpfdce78KcnUo+WbIaHfFGO fBRNnvtuJr8NX6jQEwpuZBKRThd9Fle2Bo/2snjl5G2nfU2ah3zcXGIytjXEz6CKnGDYtUDY/TYU VndwSPwvSyWmL+2kGUghQfxZIvWnVByNLc3/XiZ/pf+7RPSmphB7WZBhz9u2+BPX9LnRyGvduY01 Z+Bo9U/Cj0nSyR9uBjOu8MR8DTt9PUMkBGpiFZVFv9aTsqxw3B+C1yoP1jGg1bFo6grCEDfeshz+ KOraMqEnmTlhR9Agp0u1maChG5nEQ+akM92bEEwyoo8ZGLE96eNJ/NUoOHxp42+QZpIJTnQ6EtHb TEt4Odmyk048baihGy4+gIx0/0GwL/CRMXWnmv5OQb+POWC+Q099muRf5prM5MTyr1WIkH8Wif3J 9Z/8/uP8219ZLojrse5jQQ49C+oImvmgPNuDl6/gEGQgewsadMeaW2JLfve1qQoP32ZwqZCGAt8v 29em4z4yge++NyA+tPKd6L3ZSAiH1d1Sl3BH4I51PDsWVdX2Dj7X027f+wMa1X2MGLI6TBkTFNOK e5S4H4f526G1is4uOZjySbXIqVGC6T27pXaG1WtsOYYsC4vvaHVvka39RkyeB6J7cEz45gdV+lVj QZA/VqjAU2S8fHUicvg+CyzcBGlI5w77R0LmyT7cvVUqzrJXwu88stU620Zx/JwnUTKnHDiZbhYN If5V2dDaEZHMA+UChvuzwO4fW8R/t4U1tTH7VRb0dtxD4cMi1fKPm5J7pDVxiyKYcI0J1B2sszIm snH0EstOL0Wbs//FtzeF18FwWce2basntm3bamzbthurQWPbTuOexjxxGjU5Mf/v/edm5nnembt9 vS72wt6L/Dw924nQO7xsckfKzdvb52vOCX4jYWs2BTKTr1kA6mpHaAxVmRDihca4jfBmD0Hwm2uw KhYDixSYqkmz4jbsAMcciZCRiBC1gkGqjqh0igRzkgvGRj4NeGO84MMh0d0fRzpVbpsGLbujN5VY XUZppaGeKK33dQg3vYtUFooaqZZFIw8/2kntkCZyaJ4WhyLHDF05a8WKZG1tknR6j7LpOuRTgYHe pshJOV5dnyFNm/dJNqQfUVzY8TxtxJ4MKxqgXJpCXYd4mCHfIip6Dq4M90MqqSP+ad6wIoBV212Z eKmK7KvdC/wbCJOo76OHEP8WJcM0LhW2be/Z57x5ySVo3Aj0fg3a5I8Mhsv7XjPiHfAe3Lrt8rCl M+Pw6nUhlKQD5GMTEyZs2vzbV3TSHdx68Opce96pUl6M+nIR1NWwjqCl3jsX3Hres23SeeR/6YwM j2Dc1V9fRaDYMoL4ugp4wcY7J1GSuGbdIR1Zjo36Lg+lkSAE3cZJgkhH88Id8WTvxMqzcRD7bX0Y oip+jVkExBhUaj8vP2DXXqRf60o9cs05RYhmDbtYaKpcxVuVesBhw0XzR/hi9BCz8zSKo2Zlkr+9 PsbY+WSK4GPkNAWLzW+kg9H+oBxT5sMBiwlHYmGTkdFGjeSHMfD2XEuGQpYRhCgVUnFMItE/vhFL 3AJnGaanj92qEtB8b5FXNpFJk241Fj8Ur/+s/Lt961u1w+Pm5cu4Eab2PnMY78RHPUBmXiElwvua 9ihfWeApKG58f9R9rLxe5KOXOAk6WbVuC0Dyxu2CUaU46j43xqQUp3VPpuSBLO9bj25Dp8PXmmVG xjRw6Ui/JueaScBa3/0+eBrZ37+0JV9YYL/mmj/HXFFs3X8zmw5NBNtRIDWB7WEYFg/69xXReoAP fv3PGMj0X3+l/5Mu/htRXBiYeuzzYYWoag9E7L41YRB/DvsyWSma6VWjyjvLPXx9VLaEsV1ZK3CK Vm64Gp2F76p6RXi2WGVdp4CetuLJrdlkzhx5Wf3j3H64slBf8Pk0SfVLpJXrQH5rhdimsqGZT4lO qKj9XlukvtPzcjIBmAHGnHOnAIaKzG+8CC3kXKNQI584ire2wqIDaRQrn/W/sSRaCRxRcop47Nnr fR3lwMuc7CF5ZdsmLmTRRwmsku8p8fPO/t4aLp0aWQub4GFmwZOUKc0FL9zKb/o1fLPXUV5yZSWH cUbvJfcMP6poAxC6/q2y1kHXc/hq44Wvys75bj+uAbX1imkmQ3oJmMrlFEQATqU3KFP2U6L+EJP8 eCJXM6yAb+jxzqBLsN5Zkc8L19aobGapylMzzZdEXqaqYSUfnA1N6fjOuOwrBKJU5sazm8mcpDRF ElfDbWlDBOo08yTpFGOxfAFaZf+CFYYGmWOlPEMrYcFkxC5YaPXWG/bwlPnxXW/NCLCQpO+w0nPl jPmwf07Gl1J+2LUL7TobJPUgeo/F6Lvck2ArKLcuX25WbjZ/VDiQ5uHe6QAvfEIHTmD7e4AuPH8G Dh7/KC/4FOrUmvuQ4J+62KIFUF3JesIZQnER/J2OHBYJL9v60vmoWHo+/oxa2HxT0GzUe8hOfPKI 6QlhXCy71OE98zHF254AZkuguqypP9gbBMuLrLabbvSUO/g4BXH9SmIaD71ZFwpJtxIqrmusAiYe kcMk+a3YthGhAqFm9CoP9GOenOHfmeCWiW064HWahFbvlVedhgRItL6S/IrFdVfa7BQG3hkUWfIY LYT52Lsopf7i7vMM8Sa4wGjzYvcbBzDtokb9yHMmWHiWLUqx7Ml8qSm0fZ6heXsXNpT5W4MLUx18 8vJyi2HdZCDTtAo+sb2OHgx1eZqiLtq9npHKJ9fRrpuYRHjkjrOpCNJmTZVYa1IdFZKHBUcrqK0d CM9oZWjLOe+hzrntrzLCn1AHzg9k83pO/yoGje9c93y/cSSI9c5eDrBcOzo1Pq4hO+BP/Mzdbszw hJpH6bhnVcTfA9DJG+Q3FYyz1LuB0uz3qK3SZDbdNZj7pZSfkjYmJ78QomdsRGqChBbTpsjIkHdp tvRR3yTTly14FIfWKVNSreVZLYVquR0Ii1ltk1IaHUT4EH/7zErcdT/hmfwKyA5PCCquawfBBwZ0 XpMLULInmOn2CJw5Y+E6WHQ3bEDu8JvKc2o9VK7RjQtcN6Zh6NnRlbCQQNvOI5FvjbzW57Oagm40 29JJmOr3m2KfbYYryGnPXdHg4wXg2bs3MyeOhFyXG7Hq0Sc3mMrk7EPP9vTXcBSIG33dkneI0Qwk 5GJSyQi9p3dLUBjlphJTRd7k8Mn1qKVt0OOk89LM1TU4hp0NryUwQ4agYmGJ03yk/eCophkoHGi6 7KbJEVEsSQnWrOpUVUs8LcVQDVBLfI03lq68ZhH8PLwj4vrfkSv8Aa8KWBM1bWawBr2CmVX0LUEp eJddkglcpU03aO2otRQZZroPUDHm+juHaAx9k7p162iX6GJPxx0BlxY6EyHol67wIQESr8Zlw7G+ tHBPaGHegxYzEOSkjurnFhGxmJpGaWe61jo63pL9zp0LqCCq+V1oe6XdG3lD1RhsUDkKYof38Bcx bFD7hr8ruWboKVHXN4I3/hcz3N8jdgOQw9tSGrZ/Ef8+wcLRam8gQQxklYBpn3BgSl5oRWAPq/Y0 gW1y9IAgROXBZNXXoqP8Mbdz4XyYexnqpj/fT+5gi2DFzh+N90OgRbwK4UisiU3f/CPtiy+hRGDT Sklga0QUe6OKVS10osDZPRC18BQNEmx0gZE/sFhIwts+PQD3qpQtt0k7o0xQP9/awwhm611tfw7s QFss+kiZ+LJl2XmUtAxvmVs75CJT6O8VtrB2+RMIk4R/s9qGNNJLjwtErVrxp7mxXmf/Bolnhxol lMmINsNmVrBG4TBUSDUtBOO9vRsck60Bnxahs21oi7OR5SdL0uh6oeMuFCH7d9TIglhdInf41Nxq 9BryBZkUJi0QhlakQQ5upwIOVrAU2hXDT5rHNdWLsXcRks+RS0yewu8wHC21/LJHo2cKfzBNbKVT QI5ZnpQHT4qmq4i6co0mNdA/3BuO9bfWn7KOuHVk5Op6Bn2FnPqjn2W/NcizPohnwrdFbvNQzdiK 0NHpIUJ/U3WYv4k1lCS/VdH9dipWQtk1A/5gb4fX8wk6uIMxgDhSuSREdNz9azgA+a7GexGjLHwh tk1FXhKykkOCWh1BQc5bAcmCOgqXFtpnQMqgC9ScmsEi94xJ0/VI6NOLVV8sZChD6oISv4ELk3na Kv6bgiEeCKwutfbByOLHyhMm5r6jAMjJcVY/vqqo+VAo6FwP9Sz3B+86dg+s3tbP85ZwnDuxr5ee klFRwMaTUq1b1NBjrgUDXARPCbiFZFC19+6P1UeTXquTyD+djEiRPrPChhUI1GTgrAGprH+hosgi wqAwdUeCJ80oCoY+V4eHVCdEhCSk9qBtN2kgjeJTizYGUMGMYkrjGMSLWog9hUVtNOcKzOFkcgjR NYgqy+8QxYcUCFmp6j/u6aMi9pgOnSLSN3lOGUYjGeA1EF/izco5ONfR+x43ADR9ubU0zMWG3tYz tbfXw87k6UzHmvHKLIJdYmj7k3hnB9AXMQmUOtd3UtHw47JZb1hmXYPxe+Q4Liimels4X/FTKvVu 9TC18LKyWPMpQpDSNxbENFyg5V3GstCNNIRwoTJhFsbfTTxv3oP+Vp/5I0jX4+8tRSsatZ75ei1w X/ZYYjbujCg6Na6jBsZSvIgf+CYE9Y2L7FgMHrF6g4TsgbhvOciBywpq/CDkPgVVe67M+r+7fIki HtZBCEVk19W8nxgekRWulR/j5nay3cZsV7mQBkyTgeowcrpQXBWaW+jXo9ChrkhLq/xasbC9um4Q 3ps3uJdFudLSMUjwFZOTDGBNb7VTKbfaiF+aEgdQQcHoJPpNwRFKto8cevF/NeCq4fXSSzjH9jvQ LrwNTHQ+5V21EhkSsrK270RgFQuRWFjZalsT/nHY//IV3J7cMf4f0yBL+b8rJs7/bx4MDP+jmPCC d2ve0YuULiU4YBwjuj3ziiqGaX7DZAzPVxRX4lCLATuO2qV7gIav5R3HTiavKZdpieJwknKqHR0B txKpycnz94KyWI0hb6cBP6GTLSQivMWZa2Fh4dkKU81W2FjW7tr01YIDwauDfWRl30DVitDR0HjM TSyxm1H8lqBaBVrvkzVZt3V6ZylLAWvrnBdcgUIsfF0yBEDjaU2lbqBUuETLg3Zbe140H8SAJtFz 7Lg10Vw2i/9v46cmVoD6eRZCQGxY101BZPPeAxNaWsJmFGCEPZnMFTTnEJAsQfJFNEu80bgaF+eE HYaJXVuNTT7U6eF0OBbO4DHuRN6U9C1N3rQR+nYB9tjxw/qUVJlTcMJu0MSpcGXW+fzOaXBX0OkB pX89Kq6z8GpQPJztQWjcHr9BzlVXzbnLzfC+slTHcDm6hicPFeO0x5gADTkL5aY3Is5lOnIOtt3A mduhp7SeR06f+d0bROSocQViNPBl0ady8g2bdpzPVkrMtifIW/nNpd244hWUMEMweYjtLdJyxBG3 ROulm1dzZKC46mnJmjkrP+Valo2qf2PlV9ZrsGIYvQNY2Z+ayajnXfUJz43B5rbqCEqJjLtfngMd mdy6lu2kqrjzhf0KkRq0es45hz+39uH10tY1rJdpN9e6lylnI2Zod2ll+pz2byCdOsDq0wYaGrRv cOX59y8tcmzpHDtbvcGy8Ag1/MgzcOA+n5PpN3GCcqQZnqMG4AYD7ZjpmHtPDeaqVw1/8BEr6bQ4 xreMvh5Dh8pc75z7jwUNoqCxLZz+bCMBz3eT6o1brgPw15BJibB0MXZTn3Jqb7Z7WwQfB1/JytQb f44ZE4nI1F7oB2nGXzWPLKkQVtpWe9rh/JIr0dFXF4BAsTCvY4F00MgmjDDf9Uk72TFBYG+bJfEf W8J4feTbSH5Yem8k2e/QRZxqlUyhyS0CPYGhEqlLkqktcvy5QCgEFC59dAdyfhCEF/yl5GgUF5LK /KGJirxSLFTk2O8PcT4IhfyFFjnjManuiJ1njnpo1rGWQpnjFM9wQ6KV5JnDpIdZWjDuAFtc8MJE D1mcRrBQHmvNXakVmxDNK3KsRuSmcls8ngmEj9sfFgLhSbVOly6V3rMGqj8x8qFHatpDLA6btpsd 67ojHT9XKCcikDxajKs+YCaAHomdjXvukhdtez1TzqtvohX3NV9s+5MiX3VaW1oiOWxzVr/BnZHs xwqHd/OVIWYm5Fr1ER+y/pI5A2ilbkp7pghDMhojwSOvp5LMqoVTf6ZOOhE1F/8t16NJaRSro0xB gwq+6lpwQHJxlapELFbSXZNEEc/yS6FXtdimRfoaUUQxevPDbkZQ8mxiGEb+3i8p6E0IQx1/srkd gztw+2Uwlb9+YfCVr+wnDHPpWtzPFvmOrJhiLqdK3Cd7ZcEXDDHDu326o1wxgCSmH6bhV4ur2nbr EMzYB7rVgrIvnYXN1eCIAX6ylInxqyl3AegZkk38yrPEuWB1ZlJxDt+n0ydBN4R+wiGtKt6meb9H YwGBn1y7Zsfan6kJOEY0t8+dYslbX1BPXUYReWBIofX2eYnOgkaQQVLkvR5j6uEwY0G5Q/MFPwc2 hngipj/XyjSxKFICJb7g1e1Gm1PqrVPNJ/1mMdETBjdUZ/PVZWdIH9EkFcPDf53di+yGRpl3xKIp TSrj5FTbksYBtrJRJMLLiZTaFC5KFj+JfkVxQkOiw2ET0Y+ky9X8nRHVTHf9eT8e6Gyzijk0L9zu eLF3gP8sxTM2LHHHE9L7Ing7yqn+SWcbbqm/GZn0mympsV6lkbclXjb7bCt5QpTxQfrkp1bDhCuI wxuushD27YqkN4bLUBiL2vaw6OrnBIGyTFhOh3dv/i9l2cvKwAQbGr6UU6pMnDlRt8d+2R6zbf6b ouzf4pzIz/KPBR56Ks0fl+HsRHcgd8OLgRgO7OrNP1YCasStR15NqJ3dGiMNb/Oair5ks1f7CByS 5lOyxZ+SpT/GsFG+QIqEGvG8duwP8xQG35C0shfhjT+Du9q88IPeIpSySPharWbY+W9bwqjvkYjT qOYcI6O5MpJglde6LO/jpwec9Petqmk8p5VoNqapnMeT2g68S+QycqdSJ3glxfN+PpFNcM6rXLW5 IOaD6ZOEbHzSQlTVaIRYCua3L0bG8SJgCQO3z0G/fWRHLIi/wL5imf46rHjjPbXZ6qRUmiY0za8I PvnFw4l78nndatR1/GBkyV1gD3r7WXxOY9oQIMEKZHZs+507NNWHcNSR8+p86GnJJ3Qmbk4Aq2sb 7YSP1u/+Rt7kgQXoNhhKWi6qYrhEv+jHRDJtem3y0J2FjGrg74qMUE4rdmSbHX6O0vQ8/nZixBj0 wddQfRR9EyFAkt12oHR4ZMDMSzDPfs+eUDLmZMJumGk6+6U2M1MT74j3RFXnS8KGxwsIowVC2BiZ lWkH2R8z79JqOh8dnkzsDNrbtixlK7KODbhyLQf1VZVDttMH8dWmj6AhA4LnpFKeN+Sq/Y9G3oXg V6aFgSdlqE+pvpGLTLrrPPf3IiaTtKPVZqlvs6MqTD9BKT8Eo37I+7XczYCLfXNupzS+sFIK9Xh4 WAZ45MrmYRo8X63/aVwdyOhrVhEqGugriX9svcMO1lab/iDanwv519BQeICZ7J96NgH0/xUjs/+3 YH3hn3pIzD/1kGPnlnWdtF+OX6jumO4hLby9ebueJbESggLg6/Z+Oqs+4HBQ7vJmmHb0qvK2UFc6 RuhS+MGi9CPW3/eHr46Ct6mbjNpc7gmEmPjMo409AlqDhtXxezLhiTmp4xeQojX2ZWId4TwFwBhL QHn8dGBUxw989Xyf7fLq2j/i33dRbOmUOlxwvwf1QnnzSXN8mgs6aEyVMm/B0Cdnw1FU11WqiTvh KI0t/pgsCwV7MBav5mnGUBwf3Wcd1Sq6+1l399EMmqYuSBH1zBMFIh2Pln7hnEY6Z7i1g1szeDfO eZsbr4BYQXZ60305L+bFyPjcCvxX9PBz9Ffu/oOcP9L/rpw4/sEuUcfYY0MAI+h69h194DKilPYD SiId8UxNBIpTTONicwhIOolQN9EhlC4pGfJurM+TPQxa4RzS2xAOaAvwHr9c7QSoecdyKJU12NtH 15RMUTuQOPX+cWjp7tLIavQJCeoq7GYRb1Mtg5FG1BxitTBeVk1/klnNPSlftDaIFVYgWKfJk5Uo dORZk3xBg+5yJqysiGFL1gIFSKr2ySdSDW1jEPUgAhG2v2JA7/dHY+CJJSoWlg0ph7KB3WY12ojx esn+1LBLoyyRalw7O+0mYc4EZ02X1HZoH4XtsyZvhQ6OiBcGoaj8qKhRcou8sCIfQiLxi4wo8fVY NHT37e29LKdQOza+x5RV1H4eBq6cfcu5/Nq77EhEelADDWF8/1G8Y6FWGySJ4fFsTVCf47VdU+uP aHYfA8GM1iQA5ztyPraAMcsM5Ko7rrAmrE9eTmf4u4gfLsP4RgCqL/5+hV/pvRJC+6ZL+8l4g8YI aHtoX3LOh42Xoqh4JlRi2pKGYpt/QS6jh+i3JS7JFMEBp7paLjJHEcLy4Vmn18v0/xAWasa2mt9k xRgdXEqsAy9qiEun7zJONRcifLWLSW9PPNc5N8BDaDSKfwjR6U6Mv0PGlGMv7PxerZP3JeD0rmDc VevAWFl+iIvtTnYE4NKo4R7poVNrX18gC/z5C7JPolft9dYj91f+fTa3TZdnER20jZFH4Nj6MvHl QtBuRR6qNF8lA+LGYp3Oszw7/44vXze5IL8ZdZU7io5O5zKjsC4UqyCsbqURTyjOTm4RF5BJtNuH 8oLaR39DAxXyXlrgO2PATf8Asa+qZamon0ti+Bol+8OvevJv7w7o3Avonx8w2MsAK6BI3COArrXb 1VdzqOnH7O1zwx1iEqLySVOlmOLQmtdqJCMiaBcycCWWaoFeKWPp5Dv+ntNdUl9hOslFOabEuc1q AGZeDul1hO7Yyf3Z/Ch44U8Sf+4+KZQWfgNtF8NTSTYlcNhlElIF65GfmIY24kevrGf0iI2U5jWX Ks+tr8/f5+J21C0e5NuEL1OX0LXPwpQGXZlHPoLyTA9Y1TZuz561jhrPQrVbH4XmJogl9VaxtGvf KUEtkakZ6pfm6q2FUdv5qA4PXY98h6iZnSr9NzeW/ewT532cxDI/4nT4Dc5Og3j3x1k48qrO0tIB eKtLUOPrOBq+KvzSpO4ou/ovIIsvf1xT5GKxenSzptNNL6SPTyJND+2qNay7ucqQkDwsXg9XGbn1 Ura67N9fmR9M4H5v4+UboajoFqaRusfuWSkU7GhL5tG6zaKEZ8xS1omGVVe/UXrhfpvDngUusSHe FtimzJRXbY8jZ79jAmdCKK4/oP9tVWiyN+eDGCEgomUg//U6w/5ftbFN902ZjiBR7RPyb7nwApo8 Ua+0uM+ZFsYy3C0XaaebmvGVZnHY8WppWo4LuwUufMUAUW8dn/Kw7SRnjFQG+g7QbyULqNOAR5PX jpeTz2dPYfK3Ilbd1sBmQU/ZeddU1srncUe3bsE+4xDfdBT4T/Dd4Of5SU7GzIX+gJ5Nwr19aApe 7TZo2T8IDJyft/fPMlbVKT9f98xtvEU/X+Ia3JkWDfym3Fq4a8PgP+lh5HLiz2GIMt4pyupgesK7 DnUUPJWzmnFvn/nlSwLVA/jskrtGmlKlrXX2OIObqLcnb7vO10603pkO6Ojj2zqrs3776Ph0dwKu nVbuYPoQ5tuRXdgaIkWbKHb5u7/EMdhPiKbyNeEi8N0v2fQNtOfKU6wbQmxTvHK0W/TxxpK/AF/V O5rTOr4J2ru/WiR+VsGKGTgZKzqnERfaUt/xp99ViOCKBzJ4CfURLXXuzLKt6L61m+GUerErSKnH kXfftQ/atM7Uet2YFEilHUirYBwo81ZcFx5qVng1Z0iZ70WK79GdPoOuUnWfeG1wVkRr885fk88F i8j3NzND6IhKQjo7uwps+rTRWK9cRXoxqbVe9X+XvgVm13/9nC86wY9O//ATzP+YqNq7t+I/0GSb yNR53H8fXMu8hUcMMPvmy3/+lsZx7qhXo28zYzla11sOQNWcTcWPaSb2swidb2xxFLZAvoDnHwvG oJO/gGXP17LOA8haUISnXXf/wJYRv6gIw44MbJLXP+qyvPzOVgOmFvWE3ni3R+wu50smVfLC6hXH qQgzMVhvofHsZ7g5YLiFKsaTwcvjvC1gULpJx/eTJ7IAtcBa2RdgPzkf0gRjRKZhg/lT86Ma5Gwy aeRP+e32Ypqvyxf6pNaZztM9ZRoOAuwyaRqu4cQL9vgkFH82q4sE/uX2+yuYXPr+CLbxqJuzuGk9 7vP1cxUQ8RUM9gh8OZUVqLyI9cteANOGPDeifY4GAD5eh8ER5boBNq8p88nBfodCE6KiKwNB/PqN rbRoc6t8w7bDjttkxzMX7m6U8R9Dn9/iH0b+ut2ItkPpRLeHg2sTUu4oD6EEFAwuGZKO8hOCPIKz Qg5Zb2091vlIWOnxORN3hy1ug4vivjJXQTosTOTM395bGWfff+0YYHrglpFjvFxGcgEV5NDeyjC6 rKkQWOsuYkcvDPnxWO/HyEfY6GYcWcUjho/xz4iiJe+28Gi572Hsp+sKFhnb1A7bPbi5Zpuq4nla PSHqumzyz0vfnE/dN3vViPJ5mIhjJNlRLtye5/s9nAX2FGzX5dtvi3PWdvSQbhrUW1mTsBr78ugT Jt/n8Ed2iOjWTZ8A5SnVMqN2nCiaeE1Z2VqOSM7rTeaQ90jAGeB79wfDjgGDnZXBjQWXZpMZ3ttN Rcr2LHa+6TWZI7HvJlDknTfuLQDPIBfufJYaRuhUC0NJ5/bVAPo/Yb/8K48o6wLV0I6xrRNV6RJm DoJ2rhxvDpf5DQ3+KNy8ZGlQDLmTBj4yW98f7ukHVTy9K5zpIllRC2v+zmrRlFMLvVfIJLN+9uow CSZbiTy1m3cVf1cTniOsBrybSGAcRYrMLeBj2wb1XPDP8aOtmaqw1cYo5aX4xNisv/l9BPDMS7dW 93Ex8EOtghVqgZqZI3lMiqU2Pxik+RMNsyUec9txTFw1DaFaDOuFN/QU1ipxONiWkcyQVoHFVbzj dddDi65FytnA2uEdd+H8+bA8sunJOkIA9Ziq0KTHUQqK9QfCuZQ6TITz02Yyg0+MpOQ4EoS2fcJL Ce9tCVWUM8GTGxaf+ggtr3rG92Ds7wPosLuKNzolFAca5J5++uL7FeY4tMnY59ZZAin44j6K/QAF YXotHIoadAHnPVpInIkp1YihDY7TEgANIAqlp7wFAzcII48pc5Hrb0mUdDM1CtL3cusDEtGk0UUv agKGkj0OSMrS2Br0aDQu7YUIntPK5pMEuJ83Gv60A8wP41PyS1WAJOMcxvRSai1gS/DRzLU+ZZ/c mihuJk7PMRiMf3AAZF/l/2Hx9BRH/LBBaVy/W++tVzjfHxg8QxnmHh+0e+vXTDyh0hqZRGGuSr9K WIdzcj7t3u/R1BWKq/rRJyhkMlvZGpiKLjKLl/F8sZtxdiH62clggon3MlIJDmwJ10EF5hyoJapv dOcK86CZ4d9tw7jT108rMaq+UYRn3rwzPJjRVGz2ZQ4CRugBwTGp0sFEoBCd53yJlV67b75uF5V4 GSIXhZR9UGHoM4MJn+j1yh4ZU4iUbOp+pwyLYphDNeJ4PNZfqQFIZuMUtWtF2pAkEJJPzciJEPIo a8OKQiZGS0vq0o328cqSB/gZC+u3ft7vZDrNRCtkIQY5HieJG1xigTcqOBXr4XOoQ/i4KC1KESuK gS1+dee7nuQqWr+DpBwqdx7J10QD/8YJr7Ct9zunkxZx9lL6CPIYUOk9dHF7waKGnxmpkSy03gc/ mLsLmno4aMOSp+DPZiFoGjU3rMEx0FVouKmFujKxzwCAULH2Lc0Q5YcRCx6Ud7/LknqydKdij4+M uFODnBapDZ3gulETbcSdGPSUtVYzTWt7+dBO2XQ29VfZNy+rHrhzZd/+HwAtINLfKzWrGztTN2wU toUNhoXGs66aJpgXmm0LzoipY3EcJHGUpkkSCcdbbbWgoIM5nLfQuifzveVUWitMa6CpRKnsyTXQ tFblu3vF8V4XmcAQ+yd0gcpPfjFKBLaYa59YB8tg/GgcdVl3m64plRoHlgIaeYSoW9Ms3zr3vFqW NWsLx2fNaC6G48+A5uTPDWiOvdIJzW3TmgK/sQ+fehSGDguUwOLnq8gImLzYC2EoSaKY2XEo/NkI JEh5Emq2xXORk8Kl7Tjw6wPDCixFiisNGojgCJ3U8WPAwwQL3GpQaQOnNPShDpFyMsjFfvKgeK5F A7aB50xj/TB4rkWHanjugS01PZ5TPA1/RjzXsD4rQWLFc8qaC8RBV5Pv7GuTLK/L3ApWyzNACjz1 SDXVVMkaAvG/1jAJY2fujueUaSrin2rT1AbPeQm8IImbpD7090TRwqvV0gnPNZSorwEEH9bllnaW 3gfPKaPEltg98ZxSnjrqXbq2eWCNeK5F7SWeU95t6Hm1LGt4Dpa2DWgOjpsCze1nUxaZy+xucfEr wDb/UVjj2K82/BYRtbq06MAal6QIjWTOKzh2XOF8IJhGQiQWLOjAXOf4vucpBrTSGueP4OOKA3iT EPnEHERW+BZHCCuES8r34JxS4FGF3lyo104UJDCwAQkGdd9a2TKEMCZxiiDPAHCKYi3FQBQ7qDNE 2CY8XLAo1mx7JXhzAzj9EkSMui6CKWl5qvEI4bys/fBs+YnnoBvEuCGXqYrd/BA70UPwKIu+RECw 8Yv22K1NA4DEyvlxRm0aoGA3dwQbZxL7cegB8QL4mpqML5SRDjF6zKXowMzrpYWzTztu8I06miE8 lX6EmQbwB/5XJKIczfIjKdwwllAC8IEfY6mELCK8tC/Jj2rQrTfFvWYhj2SoqoPyAUxxWzAMVTGM 402xdpa4xjKIjumYVVwm/iv9M4Rm1oKMWQzhX5io4F3/y2NLuLGlt30Up9z8X1MUZ4uIq416kDwY mw76areb7dpmwaud390romZtaTtrI8FkTUb5XcPiNpWpqSYxIBVEI2pQZ81BtrbdBLTRHFqgDFlp uyHSKq0rmA+wALQ6TVbczTNUGOGp7ZwCeDkKm4e+muoaGn+TvR+8+DA4nyLrYZoNLibryXvExMtY NeaG3oDWgXoNaL34VUPr+LUTWvdGyFFCuhlyasLUA2rnUtyA1pHkBgNphPQiP1YTfEo06I1S5DkF CUyULCatHgdXAuLI9ZBdhjwlBKcpoVoUrG83dA2ZbBHCxaABoLtIuNL7WbYNEWXIUfLDIIVuonji NXipRK6ZkTdPxpOrCIECPpQPrEpE/1mgZQc7qxo5Z6wf6LacHCRztagfX1RTADdfAJQeI9YOs58I /UY7tfGBgtQDKCIeJjVCHlgUFcup/o06lAgARORDiDy5KEJmGAWSUuzWgTrmEcl2XgKrhS/jNLSK akC9t7H2QL3C6mkP1Pt0K2yIjSqgkj1VZWnZ0/mUD0pN0Z5utU2g3nTMbwbqJqGrnapt5JlakQmo txBfsiKj6C4apVZUR57Ic7fL6YeA6e2GX0OvX2SAtDrrYwXaB0O2wL1mX6vThNI3zk9LkL554BtA +vk0v7lddcDkwFsKzmYqBLedsLiujnwCDmJOGZUA0Cn8cLCY18zc0jANQzJIJJAXwpL3FSt3ifP8 UYyMC4B1FyQFQWFDJni+xLnM8B6nMF/HMcyd1ChNESByLJBpEQKwwu0X21vmpGgWqg1BXgHDKS1O wYdaIFCtp2XzVEYBxQivgkfPA1APYU5mRfupsCfLAVP6Jb6Tp4oWZSO+K6tXPvxzJpB0yMtnQLjD 618q658ZjEns6uHeyfmBwifA2i0z91XCgI2fNiZuEHvMN+6WlvpTnz9Z5nJSa49BCNKjS5wVPFOg AhqQacgIpaUYxNodSqGWp8KcWS+lXf7keHmbbTAqQcvemgADDRLOYAchbAmz/NSTJsrjGNxN4Llx gtRDAiHtHZFfMEYhQDWA9xU+zSC1GmoSll4IGwMzJsWKgHhQAaZEPnh2p2/riL07CzAlVAAyl52J vQDj2QNfiLZmoxTqBZiB9KaT2tULMELCUhc936gAO5zMV5skGFwV0i3yeTEB6+BgKpJ08iWLZioe g58pZ5k7+XIANsP//C/ey4vHivwjSYZUG4dcKmTxKE4D0I+ljgNqPg/BJSYzNRFjfgpxCMt5AIs/ 7OGmtys59QRRBFCgQshO2NvR+CIhR6Rr60/T/RMFJhMNC68idCVEPDlL8gCDX2FOFwUhMuzdk1+y S7DPKQVQjQolOCAoQBSSbBDL2YRo0QwBVJvCN1BIUW3CkjBhly98P9onvGY5nAiw8h3mZgE/AegE hCD99c3eyT+OTl4dPMK74+Xs8jJbPkar5X++mcx/e7nMPmRL5kxT+iC6xRNC9LAxEcVzj7LRAtls zako5rUqmrSV9KCh2WxKikZjVYEBARXAGxIXIOoeJeu+JCXhtWocr1zo4b++PRyfHR8dHZw9KiwG sJ39wOnu3h6Cn1EZ76qnjSW4bmorQbinxMCyJY7sU1hAsF/gJwNVhmnRiU/EgPFPAowVsnAxbA52 peWTap/B1IKYPvpH+gAMK1z3bcHCRP8kltroZkKAHDg16J/m+uimMgUW1bchTrfD2afs4pmkz1Rg Nc+grudxUv0XpGvLfF5lXjIHNujZZozejsR32qeJpKLYJ4a89Hb/s6AybDnn75T37RPeACu+cSW/ VS4hRhucrimjdIVfG1nwMOZhVhS9liq1VAp2mHyioBoMt3W4YloEZLGUK6om1cq2V2ZdA9MPDocS Jrxc5tNstQJHq/wRDIr8NyAC/psNEcRkI1BEoEbSCFlAbK1S7XVhlwyYiowIZlexLJZ4gcVOhIg3 RkAs/kGyGj9cSFmlYhe5IBDyIdyRzans9eqU08NtrA1jJt0Wgc5QrxGAi3AN4BMfhDvWtjl4kTEw RCxiIFKS6NRTUZOixoNbOwsRVA7mV9gXQJMQQt83HNi6xONrUSoQVNogHVadOmMDqLBh4mlzA/DF plnQIJEuY4xDXf+m+2iiou4DWgug2D6/bJ+XpualbTW4uRYF3Eg1bIn9Lf3XJkCCvJw7ktDKfUkp As20o5QooZ33/W5Uy5b+97HPcqq+pthn81KioKZfSsjN6MmQJcX2l4nOaUIRFRRvF0ZvtCkJwNwM V9SK6J4QQL8ZHqlf1xF989fyLJHtbAI8oqYK3xO19ajGFGvQNuo9MyPjAl9VHdPCVup9bCynexcN bac+xbuMVS0O/RiXtiwX2XqQfxisr3CxC412Geyd7g+eZ6sr+SPTDXddr5nkzQWzp7TBVsqV/JEq V+y3eylXwrtF9KFOupUPAywsmrD7IL2ywaUYIEczZXmfMH6GKfVPboL1hpb1ylWRx9orV0ZttVeu vjiJW69clVYzJnJ0mNEj4h4R3wjCRUba2RYRy6VE4Va/lPql1GopmfV0irj7pdQvpXssJapI9Uup X0qtlpKakCUFHI3Q7ZdSv5TusZQodVa/lPqldIelZLSLtuZz6Q3RxQVtdzGu9oZoQ0CIYkWvFudm Q7SSdzmgFmhYpeVf2Z1e5TOWX/g8u8AFIouSSIXF1eymjnyfhcY0psC4HuySRQAxMV4XPyrGa/x2 L+O1bw3AaREZ5I6QV4mAXLAq4gpmxORao2985F5GSOqMfJBoKMwldut1LZZH2tXbWq9xhzSIGQMf JCHgXxRBm8QYXoYtMboO5GdG7AoWRn5CYrwag1mMYaBaJEuKyCSQe+MCNtzFDu7urYYGGRughQa1 aEBjaJCxybXQINNQdwwNsnWm+4D21uveej3sQ4P6y63nc34JOrve/ju93HorUXZ9lJkMm/j6o8x6 6zWjAyYIr48y6xplJk2OvfW6X0rIYL2+mWefzqdL3MxVYq6u7tneet0vpXsupcqqQyxg7U2ODWpy FXupB6WIkFQ94NKoMUtTntu6IhqyYIl9VVRmtZlUzrf5WiIc2U6/QaN/+NhXZQirjnWOfVXK6d5F Jum0OqnQu8tY1UyOMxL7es3shpO5iIFdlSZFlh1NzI3MfFY+Y9YqFhxb/sDsj7uRNDUyy+MGUyMW kZ2rAPw14rGZq4A/ttkf6QK2ZyYKm6FmKyK5hxHIepF+HYM1DjeJGAl4KxMiYsslM0CdqkB72MxU 0FAOSwultegFqTbDuxAWtPqGkwpYtrYw6r7cO3v08nQsE+aRRvpDdSCuRm/9x9Iaqj155/+o5NMT /gJvhKsAUzAjpG6M+6PZ8kDi99ZqsrIZiCBrvR7PVXsUlD3SnrwL1B6V1AbeiPHzJeAPR1JomBY3 5WytHj3t8y5EB2ze7kl0gNGwlCCsxXIZyYUXRJ6LS3usrAXl/mSZ2wUjB+6/CR2wHYiZ0ja0YmL+ 9pgOts1lUI1qNRNEZxWCxzj25K2SzMBUmsEPQckMGie1Qf73bAYA8uWWkKw5Sl59NXmgLUXmOq4s YBfWhS53PFnBDpWm+nZtrgeXWsUhNjS8dBCg4BfAGrFWg/N8P5szplj2VgGl2X9dIRsa6cDsX4Pj fbzgetjpTciheGxDDnj8sMjBdXBtBHj4E1DwO+y6ujpDSY8cNLYBcXhvEn8VcNDFbBNwYHlLKRiA cdl3yVG1tZqswKFwcNcq8qzIQX3SgBwcbCnkbUVM7uHiPiMS8tTS3hKEoj7R69kKcrDL/bYUSWj/ gyOHSsYZtmiPHDqxIFXCpxpVggkq4VOgNuNb20AOVcFkUnvkkP+ejfNhLb2pm0QHCQ+7roffzQ5G 2jRNGmX6faADeHXcJMFdlaBnAvPPtqAD9Pgm6FA8tkEHnSB4E0EiSIBBKQ/KQUT54DZWExIoNRp/ hAilIEpgdwjABIxrlsj6lSakh8ANAegYQYofR6ApToHVeL3tuRGrjV+gwXbUiMKwAq0N3QWLpKmz xNDgjcBoD2J+XC2Ly5TAHsff12QrI+ZT7Aye1Mr1J+88VSsndgadJ3HLNZVwwXzJWK1HqqyuLCcY A6WvuuWktDP4I9zuBbMREGkagUfLaDfRS2tfzzbQwv0JFVn7W6EFKD1gUQzYfQzgkyzuYa6bDMpN yUxuAbt3OAQPJaPaslom6M781vgUt29lqM2DCSrURp68RJBCrSzDuUlNDLViyfs9TtiEE3B/dBiB EgIBtdA/oIo3SWYTAKhNF5lVgRK70iVij+rbulYmNnJNzpUt32BugAZfj4kuflRiovGbzbJgZEv0 R7hvhjH7e2kEuFMnEeSHyt/YnYMR7o50GJLAnZRsyCUgKE8qkCWiFFxFiRvV2a3gAmxIO3vg/lBG HcO66oBP1gNnIkKDaWHVGaa7FoURg5QmW9Y2JPqh2RJN+EEL4G3BVahLMyVgR7VYa2SJpvrFB8Wa /oq4Ei196T6cfTx0Hw/dx0PjYmPOBq4cJmCTrv/Ikh772yfBsvFnu31SRh5SPNNnqPYZqveIPKRx Uv1S6pfSHZZSpbbcKfKwAQ9XXtp2kYdCPdDsKG2Ar1oRPV6lYboBZ6sf0w3V4mOpQMlW9pybH5/+ 3Dbu0KTNFbOvW1BqcYc1zs1VjWiTmft3ZSQhizp0wzKwkCmsGwILEXxZ19eLHxV9Hb/9gfq6SsBp 19fvQsAp4k+3pa8XFy+R4kpjwl1vNxBmaO3EaNIwE9El/YvJ52z5PLt+ny3rcLpRYTc2oEljNzcA X9itJsYm4wsxeqLBzENELpIohlrrJr5Rgzu1U9HWme4D2qvsvcreq+y9yl4QwXz9eacUU/Z6Vq9n /cF6looiVA2G3ukiNBjdDWMEFFKDUdmrmiqie8KiKimIQm1mC0VL+bpZ01IBj649EMX2aDu3GyhD WHVMy7aq97HTVDRhOmudxgyvBnCoj1ULTUvqVEzB4lqX/IEpWZI8arCLSJENKlZiUrGKHxUVC7/9 YSoWY4kCs1KKPBtk2SBilju2TFoMIsxwzSgii5BbhGtpiX/VDu636xItgsNMjburimVy4zUqBMZd ++Vcoomx/kYFy2h3alawzFF4mxQs01iW31gOYGN3ev2q1696/arXr3r9athTRBGcsZ/fvp9n5+vl 7LdsfbXMby+v6gbNk2yN+6pWN5OpIaLg61fVKejuVfVeVb+Dqi4DNagu1S+lfindYyn1FFE9RdQf SxGlBGqoWnJlTNp6oEZTRS0MiFRjVltJxfzbwgmq+TPpx83mQ1Wd101i2zcfKhaHql+dzYdKOd27 eKdAjeaxqpkPt0QQJU2MnB/Kk39rwQ+VaqbDExDb8+vIGUnEgBlSqr+xxhd/o8sL2RFihfkjx0Ma F0IpYiTMeyHMkiBlINY2mc8QgbACvA24FtX1YZomCL3MtPBHLgpyHCdwwNwOw6JeVhkcEQXI5gyi OInSNLCQz7O8FGQ2IpWfVenEiUg4NDTNSUH+5PloPEtfU9qmBBR4ThSmSDf10BPkc9bKK5vnBMzk iYzeALklsXK1qxpt4CH5MmZ0RaxoP2WjvzuUI6ako2j2RcdHTkqSuL6L3Lniu7J65cO9xWVpGCKD fjif3RRnBJ0L9nNhdaM/n2UrcIo+zy8M6hFPD9x/P382n01/K1Qr1o0XLw9Oxwdvx2+OTx8p3FNs ub2cMIVrQV4f//3g+YFIjnWU19l67PD6+dXFx06vg/6EfXN+lX/kzVGWE2vr0XJyMcsW64PFBJrk hbnNh3sn5we1dt/x03/eYij5rns9Wc4m61kuRornFJGj9xvn5pGn92nO1kAx7mQNn+Zseky/l5Op pAac5ueLyY3pfT7g+8vJZfWwEARn2fx5c+Ye3Sdk6ygiDKWwpkqegLqU53n4sr8tS6HnsdjKhlL4 T01toQqd4UAQbdlYCsXy1lJI+mEVYVuTjuPlbdbsJPOd0km2/3kxuZ5NB9N8scim63w5cnHWi8cW rgH22OY5oxNDRVyMYx80AzGIC8F3w09pLZCsFGJIF/RBS8DIDR0fWeGKW1TOcOX8ckYe5CeYGAIm C5CIL5wbJUvA2yciWV85WohUYnnUlLowKdy+ogD9aTOxIZiV3IDls4MkgYklUz+pHELpklWskaFA oRtAQqYHaeyHKbIlzRQ7taR5QjegJefb6Qb4PCAF1A8d0C+ExU02m2gAWtdU0g0AtCBx1wtCAAzw +oUWvqVIIRV460oCBddTn7xzVQKFkm7AnIaq9UcvrX09ujdSOUowgePl7PKyiAUVwOfXt4fjs+Oj o4MzSUfZQBaAbrQpgbW/Hd2AWKpu4oTgMSkGXduScCOWu5IsVcCyCCAOsJGkp8uNiW/o3uz5Bobs fEZO3YyDkCo9ujjkcdzyM6OaCCKfhewwDj15ixIO6IUZZogSDsjTxzilDSrrN46bCuhiwy1kWsDd lkIvYzRuYO2IGZRRsEIzaNFll6uoTqSa1AH3KA79wEnA9tFMbQT515au0Ie+1MA5JB/bcAC+7ogD TKQC2qFTnjjeCHgB+iJ0tBg0MbHRLkHPmgYxrsl4XYo/EByQu6tRtt8TD5iJGjZJNcJWqEnPJrZC LD+ozX7sJ0kCaiR+/G+tJoIHTKukVk+s4gFCIqg+0UkECR5QaY4tuEMtjZIVqk/0eraBBxqkeWs8 ELfDA3KtGjnqiHAvtyeRSjAmYVG4nhHv9oDgQckKq7E3I4JW82qCBFXBBEP0kKDZlKGrcyqJTSXQ YdwMvQj06kHge57PxX4n3CCntRAtlnoAKuM0BtMxMEoQ4cRugiddcAOgfxNuKB7bcAMePyhuUFmO RfqihjJ63GAkeNokZQlu0KRfE25QWI4TgeO2VlNX3JBYcYP6RJfnBDe0IjlWS6O4QX2i17Md3GCV +q1xQ/LwuGET1qCbtDckbDIkSJFQjSpBBJXo6UmOob2kw8ErJIOMqetBubatKTKrAQRZM4FspgRp BZKT1yzPFZLj0I0i7mp7EOBASY5hHdwWcADIaAIOxWMbcMDjTsDBHeEudlyRFEdwN0M/ESqeBgVK jQZ5VGHgJuA7hOMhLYh8tZerI8kdwXIKykMQsMJbAcsNg8ldvA5+iO9hRUWzvMADd6JSwDvhtnin uC1U33cIr0fq4eoA3JPBmmwyx2rWBZio4CmBmR3XwIPJ2fQF8TU42k0ILe8NICBBczbYQYI7inwP 12eA+BYUuOB85k2rgQS1vIoL2NXuFDBwDoud5o5AJu3CoZEwQIz4Al7Pr2/2Tv5xdPLq4FElHh9X NvvHbybz314usw/ZMltMM2VKSliAtYbABjDyAmtHCcIg7lvydoCAlX246il32QpjvsEl4VlvWgKh 9eHsU3bxTEY1KGETwnkgzzfccMGovOH+ww6DwdS08jR3g7Y/LF9UG7K/QgnBtBucDbVpMEEEfeDJ O8TVUCuKmAmkvYjaFfRSyesNAvX7cDTYvAQlatMHr1kc606mmqgiM7q5iirSwHTjETupmyR68dgm 0fG4k0T3R37g4+ImH+zEHm6nEwFfmpBWJHoUOABKKQLnnHSDC+GJO4JLPcDFNcBWuO+gYFTvJNQj xCzArBP7oHKH7YWfWmUBG4U6jKoIeAMkAKk7AuoCXKJjOvd0qZ5AI/Vhgo0ikCynALeAItqYELHe 0mWgqqlU1qpPdFnLaxLLikn1KMR44uR3PEAr3rKaVFfLa18TRJiQL7iBkd1ohRATCF6MvBi0b1iq W5XzLynVsVh9jDe75BA3qUWI2DSuPF2sKzsktiGBXq4v8/lQ8N5tkuv1ieCW3lIKc4DHXtKHnsiB UrLXCzPOqiLa9XLJ+dPLdkvYojgha7OC07ubcDcILTKtLWrZIN9xljbJ9+KxTb7jcSf57o7CFAcK As4TaAqO2yzfg1EIpYtrwLh9IEH8BVl5cvnTk2RbIQIeMAUCyNMgxE0FUCh5ve3FfMuwP13Mw/wD XJLGXhSBFsS4LYmYNw+lIXqfXZeRArDgSkwc49QkRkR5MELMPjARNFxcyoTwTN5lUloZPJ8CbUEY +EyZx10PZDGW8noLTUNZYm0Ho8DDVVwATAB6nrycytgwtN1PogSoCsYS0q4umraYaqInW6LtNEHc 9jNVa5ZWwcqka1jfmnxFBgZfJSG7Gtx+jxDdFb1tfZPerE+EsnzKM7Y29GSNlfK12vuNs0rla61c sgq+e/na0bIe8xPpPiZzUYKULuXkqyIBehsm31oNbLWtY/SgNDUJ4OKxTQDjcVcBjKROSFMAe2Sj me8hKxXsAOGrESLdUwcEVQjeNsoketRsTwD7uLkwRo0IooBJ4AsJYCb1ExbriVumYiM2UQWwYSgr rRSvFiHdjytp0WRrVsQxU6cdOBCAl5jFmQ/APcqmstnQak1n128trHR2/YluHSBymxktYBhg1ywi sVGM5tbq6SLTbbZvmwe8mq1m0zkufbSgg5rpXAn83QYI4CuVrVYfl3cJL4dmEUItdGf2IGBbIEAb +q2BAK3cHgQU5hFkuP95QIAmlrYCAkq392G+zGaXSGVlDoMiqZwdXlXCOf5GEs6N2Xi4sBaOSqh6 AeLqkSie6JocPxVwtR+uI/XdGGou3lJzxEv5j/v/kDoCZRR51Ak0vsKlbNK+4NhFECJy3B0IbeW4 o6fQtjPO+c2Kju86Hq4wdovcQFPznDRII/wfDks/gUJPdq3qdb9rxjmM+h4uaQ3RCnjsIyHuSqVZ 0ZMfPOP8+PryxYcPq2wtzOcwQgHGwdsAx0WEWYqKq3jxmlgL7AVYasmYlCWU+BdRFnB7YHK9EJn4 wgKPt4oeogSwmCJ1EcYaLBMwE6iF0TWAcA0/TZH/ibjB2PEEphQNQYgG7o/ErZTQ99NAmaWyLpGB PIpRXwhWBRc4CfzDAiEWrWH2B36hNMIvfIdb3CSeRxL+zc1scYkM+Cte0nBwsDv86+nOHm2xKqHb LwmqqyOLFm4auQK00ul4GPdEMR7aZ6I0MQJNxbdY0hIe4CBQFid+p3Yp0Qv8KDtSe9uyml9ny/Vs OpnvzfmJ9lqn8nn/L6a38K7weSZZ+0c1vmU5e32ie/5xAHmopct/G4nuhfTbn6wng+K/hWr7y2x9 DVoCOEuy+WD50+xid7g8vhAaOPkI+ji/Lvrpz/xfg+N90LXw/HJFQyaylR3SlWzF34hspWMKeSgd kduUraBygSaObHjcahwgVEwX1OWWg3iDXIWIw5HpK7ap6hxBEIALPStAIA6O1yCwin3cxg7jsh/g Gl7wo9ADhp4uSNrG0eyCPAYMKnA7C3lmlKwIwcOx7+KKd0AEpUD1GELcHVrohUglgo27IK8R55x2 BikHEHIuWHAR4vyg6TA3v9CFy8FRTi/LYfQHk7lwgkx+1HVjHmVLlVK1KIPLVi5b/ZeLC1H0RcL+ 4YuIcMU8P38xPj4dPzo7+uWRF4aPi//9+PiJG6qZ9KxAa21fijWGwAbWHjM/DHnpLF9P1iUDzZvZ +opv/kJEkhdfrfBWfnsjS6y/0UgqIyXQiwa59Y0HM8kh6IXwNyyEmQR8KqnSGB/NYjd2NrDN4Myx WbDFE5PxuqPd2qzVaiavUm9FoBckBnLw4GyG0DQbyCrZqaWPqxQx2sNvKLfcPKb3MDITAzZmAKqZ A9I4IBIongI/3KPs0oC9qdWV9bZ7iDdajAg76PEwJkDf5bK0anPnkrdhpAYKs1mZq/ZwYWYxc/u2 z2tGaiU2QKiyAva29GmKT0qLgXSqGslHiLqHdqzbB0OZ2kLEfEPt5K37eGsbu9Xgrq1rtRtoSPSx 35A7BGeAh8gA5AMjRhSWHobsrQ5KajnsVo/rIz4Xf5Cakiapsz2uEtiBbFKEcZYVj02ipHisaHnP JyvwJ0IBZBRaVcD0Bk3OJk+Qe+A5aYy8Ek5EZolL7gWK0fRcHaD38YhiCmBVjeAMTViWSRIWx12Z 2tO58C8gUaDXJmEc++BsjfFPQYNbDUh1greUVVuQKFZ5UDWmSZwwi0ovUQQ/2vchURI4ieD9QQzC w0qUkAV7Iu+jsZoOkTVBQXOJTGDkfeVXFFD3LhKioIQgISXdpXQN0giCgnSDSDcODZJDh8RQQyPi 0N1IDkML0h1D15ADw8Dl/a17v/3ev+B+PPt82Gef9exnP3utE2SEP/0dkzgOkKHvyVFHFvih0SGF PM/ehajTdmhNHbEOPpiVYiNVnyD5lSZLujBOhCmGBzGFWjok9h8u4JJxvWT49d+bXVu6Sp6u8GRX CNz0B+srGEFtCSd+qhrXkYuRZJfjxa97H+lQMeXZ/tnN1QkPLmVztaQiXP2rmCYm6gUII+iJjCbF hVOd5/MtKS8/SZj87S6dCpCFWocNeX++nVl1zTDzwCfwUBNEdgeas2OOEmk08kDVZqYaaftLjMBT Mf6VryzwDeM27s/pbnzLZMuvP4ENcSbTf7+qmkk5NTja0OW2PcImdNudvyv6hj428fXYsOhfn/zr dpuR+/vw2YqFd3prFU+Hj+/xdCCFFvL7y9Xup4ZdPznNKXrj1VSg+T6xq4aHxsENMVnc36mgXByj uItGVa/aEUafHG2KFKo3Bry/uPrGN5DJgdRKY49fGmREXgvm0A+ezguI83E4DMGbtZ0GDRf0aRgE qmmOP9O8paujVfGbEZA9JQHG+DNvyHKlOh28Et85/if82NLIa0TXYKGC8z8mNR2OL38gLT9Vhrfa H1vqqFnfkicNmRkHWmQK06vqx2/8rPhbuMFnou2w8E/YnYQrtT5buHJhtGFq+pT2039sC/3OC8IU abPAaZI4SwPmtpfucbNjVpql5c0OKg3Vn6fdaeeKaelavkLLl+shls8Fn6Hd3TPWKh0WEbW+N//l ZZuZNx4t2/hYWHjM//34uOD/e6pgoYk06Fi9E2cMkuau8VMFE1UgNqiTpmLkQYGIPs2VWvpDzlKd /yQtLJtD9CpfImDfoUOfEovz0Q8eztL5LedMStjrqtZZzBpoKXzl9sSNwl5TTBXnhfC3IYFvz5Vl qPH+FpWO7aIOUiswJ5dXnX6T8px9qlkK5MpCU+YGKSIXnMXIfS3OixLvCC0rCtRTVXj6K5mM1AFv WlTTOfn3E625usFiagImk7IAiGMZm2C87FE6y1sF7VCWZHUFEOqM+hce49aQVoi8Qtei56teTvCl RFxSQpZv9io5u6Z+ELo/q4CqZE6zfMFuT9iEhs8yvQ+wO/+NxCKBT46q2nxGgyRiolL+Nul957JS 18pWetT1dYGpG9dLmITDFJTSZsq+/ds0R2ebmMewUuGRPiU/L+wGj8d2Q+Df4s9AMgXiFiAse8H7 +vdX3VepLXbTZlPQFuDCPz/p9iL1QK+TTbS5Qol/g52Qqc6QsEPpa8py8Q8YCn9LzxOqEXmuNBWC SleBjAn1gUGhyd9TUBJfi1WtQaySLnapW5Va6x95Duv8XvavppTmuGZ0leA/mp7zqxeyuRjzUPqJ xk0pfdYUlA/bu7got31hWf28AmplNrgOEYhUJB++WFMvkeJpmGMuNC6o00Q//T7r82zBYrVz7GWI AYZmgW6euAddYSSWGh7ceEcHi0SYHVPpB73WUDAuE14gfqxCAb64AG0wNXpK1wkEikmYPzQbf0DS VM3dFlIsbqtnv5bxdjVFQ0FeEQBIwBXIsIeH29sp2TuJJ2H0VLR8Ndc+dq/OVCPcMItFUFXMmjpz Glt3lVCb1wqaxNhK23DTESd3fxedld909orXdaKnVjn7y0Dy97mgW+6NxhGd7OM2sWe9gnosd9ZE HFtSsJ2qD3JMLEZfDUTsheP+bj6alN2O9BczL8ChHHw0mf5NWiF5tXB2he+MKMMmATZbssuonRGe dSalT+RFwo7C5asI4/t+hr+JQ2OXnPJe9A8dwbZ4ssBjj6itP3SixEkHG1lhw5akTD6oV9LriS6Z qn2n7Gy4US+D0mDSP8YZkCH8P2Dgk19DhUuRJuMJapcpr7+Bks15Njnq5t6Rv1NY3iCd6XIe2wZ+ iytQbewpWTsfvvwyguVBG5cYhngh5rqr6BqZMPkP4tFWeTTA3DyJuR2j1ogU6TYcFiadE4E3np6Y znDBtrK+Od3L45K7e4LletextFNwlZHFIc0u0+BRqfXPVVMQKUpkBE6gXEu8NNU5fjhwha6hpUL6 pMLRT6wKEqIjFdxDsp48eezdAJwJ1yzXmGn/wqmI3FSAc1y+wXvLibpNUFE6msG+mSHFJZZVDk7T 38tlX1Zef4qP1u7VZ4rEvhf7o/smyoViFih0Q+znSavA8UwmvzD4YmZNH4sbUmKU9Ps0fKGageBr 0t/fjBTU61RB1HSznOGOB9RvxK5CVGRpWLeBRddnLKzbTgOKcuanpOIufYw3vXdWJYlbebYKefKy ZEJaNeB2Siud6ftDi44UVs9xQX1r4PhhZK8LCU/awjeGzBZOPD5uzs62xZEYjdI/o0MUc5qQ13Do 9LY2T3od+ZUjfcMwBsjqUC7OCqaSEPJyzBpzSOHPGzGAssQ3D0kUtMaaPI92uth2+ROE+HAPH0lR U/+azkY4ZMu5CWa0LE/WKh108Oh95I8I6hTE0hWha4IasYnXMfmt3xMtvU/izUHXDPFAA9ZgmqcZ x2u2o08RCaJBcrWobPATZqHu0gMTRiWmnK7yhT3PG+e13nrQFaYrIdNrqqW6PuuR0PzjnorDUnE3 v2iM/N5fjUSmX9+uKCtwYpUwHMYqIk6VCzPHNR/khskmCKWeFgyFDW+0y0Fc323VST/vxqQR/e1V fPvXfPbdPKXHe9VN2cJshxVB7eYh0cbadS/bb97pX8utiSV6Jj4Z9UOsGaROV4EM7IlStuQj49ud ZL9akU96oN3PTmWF3839CbUhhnSz/sSR4jtRQti5FVYG3LRLqVVlSfDSJCeVYCvbB5YxKt7UPH6+ GxONF4NuQgAJ5Fy0G/Sfvbw2TSG29KqJomlKEnLGVrz59Vr+lRko5Fw1SjqWu4siAIn+rjF3NtBg 3vj3QFD2aYIAsQRhLXHAGwLCFHJPm7CzWYhrQnm7xIEEakIj/mVnRWGYy0j6uqurAyVkut6GW/X6 Xuar0W7mtUff1DgqlILB7ybZspkri5e1MDG545s5R6WaEfeJiZ5z8/R++86fvvEE53FcP5lzPOtb hjwDrK/7fMMQg0LrwPYjYQ7/8EvT/fyqcPJ54NUrXwDe9G1zTStYr6fbNXoug3srgaVkJXRNcf/z oyVdZae+dzmIHRrWODX9GEBrXtHG5ovp0BU/t+berB/EIPWY8TuHcdZbRH5yHryWyWBZMMzr82kY SOFAeRRw+sJpJtmSePkAN+S9dddA8e/1WeuAev8qEyTTztcc+DcX+Mzzy1lu088j0TpO/xAs2ZMY A3riIe+PyzaXHA3y3jNFj2jTdde3KRzVvL0MXu/qtsz49LdCdwzLA0rIUbykFSYlOS7GMluUc6+E tcyMa+o8imTLJHgNgr0jSBrdr/sGz/GhKUhQt4NDcPn7bTTJR/ipNTeR2/7bLcfnXodNQPissdMa JGSQp+X6cxTrHVTQOGNmrThTLJm7wyoMzjTIIHuWeyLKyHrhYrB8R/i/qQPauKsGvgd1UMPw39WB 0H/UwaaBmce8Esl/1EHougb3gbnsLBUZqIjqaVYUKTk86PSfeAxORZLnb08xNwnMR0jHhbBZmR/7 I3aSoL0mbfaAbpmlw+XDu8tGPz9+s6ATYwQRiDQ/0GSKgFWnq0Mev5dhauopzREDdHBfbyXwrCaU KaKH7YL60qDozxvAb6hVfwhln+VmbDWoIEQ5O1HJc4CA6CLaU4yFiG+ZlMSUB1zn/le+V2+jnr+7 eEroj8wA3cS4PA/XuGtK5HjpW6Qs7xNOupfyB0yPF+L6WSLD6ig/fac11gslURZr69mDgqep8MTe B6Y2mOolfO7rIDZPQxVxUfbCKFq9LBRCtRsj99/fz6Nwku/az+GVZMN9t7rSUhPcyvV7d8G6MssA ntycIwaa4kKMYTkwr/53hCm0PhBEJ1S9z/XV5JD0XkmnosnNQRmWOvHuMM+QSycBCvrtbqAnSVef nnkL3IfPfPnTbwks/Sgpw6NXlxFSaluso8ffxYZHR/y31xr5QnVNnK1QUC3ss33xe8XJeOHyzzJi XGBw0bmbgowlGkctTTWE79dbSbtSV31uB8Sgv3YNSzWoXSufiUHKlD63/TPHDBfC3rqDzsenzNct oIehWUwmgqcB8eN1Q6Cdm9hfVmIYbH/8XQTLBhHWr5WWD2Cx4xeKiy1LORbz/XEBSyIerTVVhJ4J PUSXzm5NbZUeB49Fnkcyy5gk7Wyb3m85dVH7jXWEWoXusk6K2LkyjC4KoTXh4q0ExNzFb59LFqv2 fI9gkiKInsDCjQ5P+qHQn/ea8Gj5rlte7uBdMiCSpBob3DugEoCj2e7ANNMsY2aKP4CiJekdYiDC 1u+0Vu+lUoc4xNvTl2GNCXclmru6YS4FBZZ2mWIt/NEq6Ydi8oNyUvqzaymcKA7cnOdz0h8/53Zs M394JRhVVZEomfEYS7lJNZXi42mv4hsFX8aLECr60xO8lr4KrMfgaISm8ZNovVuOBCOhLy4n7fos CWN5BqnKCzJj7I0GXYHh8m9iEUUFJsrPHi109uDkhyZjfmubvA76N90nRHtIk1ZGLZuAefSjoPnJ 42wD0mfrqxxv2JnWt1PuVLaEABjEWiIXThmuHFnqFducLv2y7Tz5mJTBJHAFLVuQ4Kx1oi8rIM/o Q270U+Dqi9NcJiqE4M0I52mZ9ZViWJ2RUufK4XamyaRz3YdCFwhNxJKooThvJ07X6jpkyaagqcm+ pyRiWWTMm234+KDoxZrSz1Ujpty7c+tNGfJxswgyHiw6HMP11L06DX+WHFsLm1gxNZJcsQScg8/5 l1+CnVChQXMF8uvMYH+FhMfT/D1VD3Uw6k1S5hahtqize7FUyZRc2y8SEBJQiMNsaVsVnaTJsw4b V1qLWuMeZYndUSWzJ6VM95fVfBUcI3MKiH0ySLtJzGFsaxD5uHTP2spSKgW+s2vRkU7u6doF0QM+ f3ewqK1qgQ8AOPzYkJjNjZzfQi8TDxBqKNzR5D2K35zstyzSKg2yE/Fsd9gCqvd0HF2ucEz7FNpw tMsYB94AF6omwlZorWyyLNXYSUPknD10pmG24xdLdnaNLf5Gnv/2Mkq8FW5rEzWwd/PmUp2H2kvI pmnJvM40nITeJFHqjTkMDk8+tfrn8m5Sztbs7Vu8f4iNIq6PhLWbmS5dvNJDx1J1YdtdB0REjG/I I6TOd4kJFFnpzXdOvGXdd3eMukOtZ8sXqb8GSA1HxfxzDiyFVaGNc16ugCcmfwhS+9itqoiu4hWp mFHkMQaoWr0jE3FO9+WbNgJ70RIj+gy0GNYn4UbG3XFFbtQcEzDyN0VIRQ6VXK0OEDKldsO0T9jC avn3oDuQzKcRN7y7p3t3cYTIGJuaRwW5b0isGdDIzNMw/siQEjWhSj8UdKg7GECYBV/AqDGv2Bvr K3Ft3F7JDBU57BTfCPqwxy51BHeEbsJj+6dE2kltTQ76NJKDocmuXC4ZSj+FOdTfC5XlF821+y8p tghanD+TrwVfaU0/SebHH0JnMucsKGlYww2mL6QVTwbZUGY0lW3PyupNDOMLdChS4m5eru6tkn6o VVw44a42ZStB0iZVUQtR5GvjS4vf1bEYeAeOTWldMWQ8pUg22btgOhtsi38ymKphowmybNy/Gn9i RCR0+oXdMV98bdJxal+ib95mx1TFJUPEeKXkSMjZnTpcY9LWTLaWDdYqvK2EPlgcnbMa3o+8rRNs R7f9292sX/rMNCL0mY1oVOBCgDDf0kzdng3B76RqmvgeN/kUvznuurtoOr1j5Wtmggj4kg1jhz0m 7hupxK142pry/NjznGhBSEZTiemH2S9cp6NiiU+1Za86UUh1SnmuHJExj7yoBYvfnDH125X267xu Bh57Buv5mbUqyHeZjea90tUbqUpiKYkAqMVWhLHT0ZieiUGlL4FHuWstfOes1KV4cjQUpMxQIo08 F8GE4x9Y3qxhplb+1xZ8XnhmRZ8WC2v6Bc7//Ej9f4us9Rc7C347p/+5l2np5HoA4S3TAYD7Ga0+ JS/iyr95+hjESIa7hyAYxg3vyhPkYCGIks9LekIebe5G9QzOIkZOHSz3WsAGBdlsPr4BN7S2ovez /XLZthtac6GaM3v2eq1XmJn72+OgOxjrYtD99RLqDH2zfRUUFAjmx8zkdvp4XZ8iIEH9f6TM6QWI 0/GHce43gwGGHpRB/du5KCriDVKf14MEFhPv3d77YW4ujobA/K2iLsvZiLhvEo70Rsn4WoGQMx97 gK+dD+pk7Wiu1kZycSRL9MpdJJUC3Gh8eYIl5X+xN7UEh8NziJGVxs3ul8yH8/UOfkvvpCz8EX53 t9cyH8ZmKs0AanoQac9Pj+dN27yrwcnHK53HMv6oKuJO34s9nqOlVi+0wJuL/ZnKduMAzM23q+uz 7aWxXMCVXaPLSkPsXENdhtNzma8mF3cYtDRgg1kUdeu82FStyU68z+f9qiPoIcicXEDgbdMMWRGZ Jn2xNvGFZlK1Zq7M4UIQ+vKwwyns8XW+8zwb/dVqV+hSAgMA+DC3VEkadH/XXhJTJ+l1pF5QCA4E 1y6HPuxhu5+X1/Fy+9IGLOHqweHVlRThyo+7nb+FAfT+53i7g4T3yy3fHMw0viXebcKTAzJK3yhB Bgj9uOFkF2SgDrmfbmmCZ2f5o3Y/aotvOTERbJtPr68vDxcy6LVpfdXeKNGODYic2kp/zcjq9vMA h4MNyGrGCpwvP6N2fjeNyZklgYXOwZdG84V2DMr0EynLavwXVVeWuX2B6miB6eIBMkBf9c9eRrMy VrdZCVdTbsNlXx/XCveTmmmfnWdfCLNoZdA0jo/LSA20a0xZAL6hAj6zNEkgAcRLTcjmYXFyze0s mlEtzA0lRaaZjmHwnOCzmO9T7kdm4AzMqIGGDJRKTrFuYcYJd5ZHsLRIDbnGKEC9TTKfpLT0Ugky 1niNGZQCgiW969b2yTpFwuh5ZBojSiw3T9NqS6XGB6FWZx+KudMSnGDeoJH7rUdn333+SFW9JFZY 2jwBzPT193gPd+H4MUfcUz1iNseN/U4qgK3058n/B4M/e0/80ZdOVw9gmlrAoJAb/0F8a6VZZ8Vy A40QthrTydn22BKImAGomSM1Z9Lsbu21O1GMOX5An+REGvAB2bMmnYGYMpN5gLj4nHTAjSdo8SFd HexeGHeSptMFr3QGHSP2/hYq3686wcG3rV7Ho8tAw7XDhcYx2yb/61MDfaFVefbTx0tApdVEUnO6 y4O5Wh6GnpVd4ju2ey2NuqLDPfHBjO6HjFupzql/iw0Kw5JYXW73C4KneTdvxlQaqI0e/tK+AM8n IAe577tC8Vsf8mfkQ9r+W+xCEtkG5+U2n/6hE5vNhbQqb18NySd+AlMLcvKZytbIDMnpWdF47OUM flzsAb3NvhTNSRvEhw0fCv4xPFqJSInJBoXQWyHpAN2Oh+hHFTP3BbFHnphXDiDdNrWRv/znrizp u98HPVCCB7o41mWlQxrK31Aokgg2anSGID75D9P0vG/k42Y8QhWTcMDVUqhRZIGBD4Q0l5F+6ZSU YJXBeRkx/4rU0NYoHpjnYFvOTV3oLMlcxYa9PvKjzHxyCHJFBO/a3bXzEvXU/VhQWreNPkUM3d1q nJIPcY/6lvnpG1eRPYJIFt9Gxj6DvE11DFzffqDH2J9cR8Tamb/AwpuJfg/cY7ZvNqiVO/YbNO5x s/hkc9r/hPlK1HDxgT/u1228DdxFdF0Wm9wK9RlEEilgc+lf3rsPnk1B9YyiJRNI018GZ8f+Sdhp pAA9U83pHTuN2q7QhvboylGngitv1Bx66+60chPNHhYtgl0snisZJe+g+PfmARhl2aoiMkF3bVb3 EQEh7XRoNow3W07u0bv3DZvaxMA4XXDttTYMIullCHWVYRagwRZfYpyjqh0dQgq/KWgxDICn+g/G TQEGXiA+g3ZOrmcdHTeilV7/8WMSD2QhWprYG1DLqONDNk5MnGv584Doiqby/TxuEoHjc0Alcydc /dpif/47+p6FcYiRl5beMXGLoRN/d3kdoKhCfLR/Kj6AeTwaC4iL4k99mwObX1a7XWK2KogSN4+1 CgJfKnr0v/BKg41vtVGSBc/P28d++LhjkTWA9E55C9fkZbCTRrPPmbkfIkYnFBsDmKtYsIs9drxt SusDvuh6KRfw9AlcNXoSUWxMukLLZSYu1/tiOr8YX8RXr/VK0Ilga5PKmnWBmps7pwIZ7Fb58Lx4 q4TddRXT0dRlU7MbFgxdaQmmaxneE3BY47MTv+OXBWj3AGqHrFiM2+wTdcXvAXrx/FGSDRc6R/Fv MatERRDSWYJHo5Ha1MmQPETgqq5nyWHaEeekqKd9gobGwkktKVUM1vHaWUDJj9hqoCRFieSg2whU ANMKPJy/C4RXn8M8KxKwRLCmndv9UlMs57A8Tlml+2+DeOLbTUr594h3rcZYLO+7GBZYG15eeh+I +tzDLlMiJ5DhBhu2/MQJJz1AUHmI3yvpS9GlLLp1uJVEIx770TTxRdT59LGtYG6w4Jvit8DBEsDC 53jNCqa+T/QT1VNvrZ6tCIBnlpOYPhzXftR1KN2BjlZ78TCNhIkDvtL/WRZQ9Cq6mM6pNuivDZ3l D5/qnKB/3hyyHJk8+E9gX1yz7KLPbv91nrSSneNaltgdQc9MStxpv+/P1Pufe/zlCwrEMm9odg1e vDu4tzeqeRlQjJQmO2fwzK/M+2R3ytxfHU+la3rj5CX1RODoVatYTn3VqTKD9MCsWoc7IjX3GBjb TGgs99ZJ7cLKKLfwTqtVkF6ay0jmEHwz8kr2KlLRhu/4I601rI2M3O6bNw1u1W6qt5VtWypfTlIl aofbqaJe43C5YN7QoUNZWfqmcHLK+aCxu14IoRowWOQmRbbSMrMQAV38TTKeoePM00fWXLfYNLP+ eeZfff5OGj8mycGvVGQKOMpgKLm1E+tWIH5h9UAugIZaNO3XbWk+L9BHqwEJx+FAKQSOdAzDbOPI oacoWOSf6fnUpXFLbXjg6IO/omJyXdPrg6VEnS3ANLJecK95f24CfzsD/1G7KHy2Hzmj7wDoyYwV phSxviR/D2YY+mmBMDg1Oil3j4BYlJ8VM9L8cE1KOCSdG4aoFkBT+NehTfXTPWeuS32/i4HHIR6Z P+QvxfSmWy9fOdzSEvNwmhWQyvBc4GcqMHsJCHn9OtAK1BhVwJe5IVgI0KjQyvT8SoHU6fT/mlbw jWostrxfMp7G7YTLD0WB38mUcFKxF3P3Yr/nhcm41kJuFHu+S3kzoOJlGGFDdDX6149DvW8T8UsW jB8zz6hrl5EhLs3s2Lm1mvqGQX3CPBLC830bbUkRfWAJNTNfzACGSsD6g2Qx70hM89335qW11yTb 02KmJ/TbuqCjRIQtO3h4ICGAKzxVT+aivHjh52pWDv4E4MJiRLgnRcY4rKbGqOgWpk/HlVsN7DvK rVCdlDmXilFGluYCDWcGHc4ILz/tqKNVFwXbW6tEnB0aYHeGUqk0JfL+CYTt0HqnqMs6fumx3zS5 l74zw2pxNocYPFvTM3/LUpkckG9Gbp8aJwPX3cfN2AB1qVy1XZOHcjceOIZ+7HFG0KIjVIzRvZ1A rzSjPXP2e4h+uXHGUaL3eU2kYOHTKaOosg4FwM+StRx/o706RoxikFhtgyQP7rofDyv9l6PFbovj ZNqiul2D3dNqvCpdOQrPEhOfQs1AR9cWyfxTlKDZM+4xiiscoy35StLG1YkGkWajj+u8SJ1Dnpby VLfmdcmCpLGXFCaoWef0jY0M96NFUV5oPQOCg58mcU/3bof7+c20e43LOLAovGrHoqJO0hE3Ysu/ 373cjZxXPCfaP5xocK70ov3Y2Af5xW5MLuBTY7EU3QJolJXOb2veuLDDddnci/bJP2+jDXh7Lud2 ibxKZIl923NeVr/hxPaUGl6/4Sbisr81KTLysK3RPwox/T2nwr2fQOCKb8xWv5CxMsjFQiq0CSot Z/rSbJ1zB7q0P7kEV6nt/tcV0KmrLCkspTC5iH7rWbZHcfhXb95wP1q3LbuSLjiTLqx6mqpxJ3Ra 18FX/vD54VNxUb3lgeQCap9dN97LiOaDOOGFtpt3DE4rO9TwHi7tSU63MhCqo1ivLMa+5p1hjJSa hsdpuHQouq49/hJkGysCzgG+P674BbBfubym9ySuVd/PNjRqrT9X3x5aZ71eL6W4LqDzNraekPgi 75hfkmKjMroDIy854/9LH3ABrSOGTFQMOcfIOmHwiAUuWWlMCBFl1b0A8ZxXUPaNFo0LjXz+Q/ky gPJxinDhVp1+pcCWxkw2RgWN2HYilQXs5JjTBiFdK+l7RCBQPf+p1qAQyiS8827aG25FM2BiZLjt T8A5FJY6Hb0q1a87Odkw5Jjw/ahZucPyoBpx1TLf9mGpvWZBTdNBfGfi9gUyMftvpWmJx4k+v5MF rFGy88nmpfh6CSf6+Mditzao4zgxAM9Q2yfPrF3DS2JCwm7743b2ckfLYifpeA5nfOuXMq+Ej/Pb XWqLtWKPS9CvSSl3tmfQd5Cj74i9g74bqqq2HSH73FyaK1M/7yMZEOqtF2CPBCZ7irXEKdJ+BXi/ /3HePMjOS4Z0YG6a+sw0oMeEB649mAW7lCbYGYFTubV7jboDX++dtcefcZqd2x8JzkgIDlJaoHZm t/YmMigCdk34tw7S/tm0wq5TqjNHd1NBi6LYa4yB2sfvy6QJhP0+VrabeDmu0+KKLJLVSwY9YC/S Jf2i6Uf5qv623Y7SY62MHRO1fRlVQwan8wqAXz/cevpd3nknG9UxvaTeIU02zHes/qvLcfVTeNqP ZMFla4vn836j7UQzTakUuIkMmMoiz/ivB1H7BjOpR/daK/m5Uamu0F1Ijh+buVl3tndgGY2Bdjxm 1LWUON4M/9FB/0H1F+5J77T+VlDQebx7diFrrbSvG92XvfJ/jmJlOP0SS6WDFuQwBYvlDKvAGmea mHPfa+pJ1Gh6v0bHF1mrClRO+ztnuqIbv/N1X45Uo4kcHdQAfklObUc2RDV9g5D/WjCuVn0FnzNh ap5zJw4VECwWGDZnc6LmRF7kVlkBQxzFRirH/5/2rjserq1dD+FEihYhIroIIgiiM6JHSbQcvQ+R MVoMBjM4iN6iRqKLFp2DaCMSnTAIE0aL3okyRncn597vkzPfOee7f93vj3ue/dt7r7XXvM/vt2a/ a6/1zqy1nwQxu4U2JO6bjfFV0b1PAREq6w1CCWJduCJhr7ZBmxNlwIgkPngqXREJeg2fMShnAZlg Txq3pnFFfhmKuCOXNexi63v4Ox+NRxtk7TzwT67jUciAzb4GesGIKfFHHZjyXtOV6NkdOkMaO8Q9 imf2V/UYKlobeEbvndr6SzXpzquslG/OdNT4SR1ckuBdEoxMR0Ry+GykiKdhwo3lD1mnSp517Hc1 eyzL3GnzpOCSHHAHfz4st3z+avKFWGTM0VXUnkZaoX4phf46YxzVU6ZLcwqNXhvEQ2TFI7Qvn5Yq d5uAReqnr0xu+DvahxRd8PDVBAWx2Khb5rCsMIp+EeczjF41UwDdl8T55haRBh/IjTNANwHAZ8WT a/R2oLWdWlR720A0ozDXvDNtdTafRAkIDHTaV3cvDZE9XEmTugAqLxjfFkefJrem0TI/Wric9qXp MajJ5PVooeouOlvpnulNc/E8RBP8ESTdNNeWKBYLQpYaHAABom+qTFUnvNM99mO4kV+i+TwcFuC4 brZ1nFVis3v+k5FVXRk0XAyRjzSqsyepxf68cShUtZuoETBhIhsy+jEI+gC6FFvDYjUuMl6+a1Tu /mQFl3FYm1f9JXXL4Y1PGL9eZ8qa+mEGn31dRYAS8raX1/qeg+BryZXuJcGDd9Wf4Q8kNOCTWON6 yvaxtN4cl6My0pMq7HT5MLAGF9sMLXSzcmQOpPOBjrOJP7lu8HoXcxAh5WAsjlSIS4ZRHhfdgW3o eHkUYvl3C2M/lSJZhv3TKTJ7YiNf7Sdtq8469wjHjzXwAgP1KbD8K32eM/H7RN4Knj5jMw98O0Qn 2Z74BqamifDYWjGMpkQ4PAtyJjtqJCX3MmfPE6O/cUwv0BZY3swcKiN+EsLFNGK9vppAOq+33p+D YJN4s1bLBNfc5dOdj02J1Lv3Od0sNdMpDsLodTQ27LIw6MhEMgyb2zM86hfOLSh9aasUtxwqLW+y 8S5VR3EKnsr0Nl2mOiHFW3Q6eGLpmQJunJ2/2BILDRd+zny5V+HVgOkHtCDvHOhOXgpkbv20L9HD uuv0qcXYi9K9RpMi+CemxnxbnTsZbmETfJ2OmN4k26l25iZHGZJKRxZhPQXP6908MDe7CgHgK3bb qirTlQnwg8YMaERDG7VAKoR8ykz9mqPx2Eyod33IVI3oZ/HBtgKRyLrchu1uhkLF6Gk4OnKsPRtR wtLyriPJVaOEuR9dr/z8PBSmlKHvhjsYVvDCBV3TFp1fFT5i9UZL+fCgdFCPk90uCbyJM3K4I2Fc vaj3HlIX7J59rrO0YutnlehViHQM0dAbr01a/S1DsV/E3LmetrSFFAlVD7saCV5h2n0p94ubpHRb UsakAaUlTdsJmW/WOXrZXfVV273NlHoarsan/ZeqJu7iwkrZUTxFlZnuQY3kqjIiyeexhXyIKgFz cJ9U61LqkyHe9IMPRqAWcTaxIzQQ9GpA9uWaQoZ7MNnEYpVg2OunpzQoJfOjHm+q+aDBpQh/RDmj ZQJf8driDextcyMgmihVl3ErFqLyrP0A2cmTVLP6npqKJVeazPfTMyfrB+lKZiqlWZRJK8bo5KVG 6nqJObeN58Ds44Ff93wLTohVsdpu3XnkaAr3azf82EzbDqAFhZ3he9TmCJbjpJK7S6vGGZFVrCud ruYFDRLmWM0R3wtxIt90jXejr/lhaunqbCiS6SCSm6I+UTjaPIRX735X3EFtQ1i4pzrkk+CbDh81 twLy/RZUJkd730xDcDgAtmLXIPQFJ2FwruJU33hvujPHu0r1sE8w+LOPcI6pQ89QL2NlXdQaNXfx QovA0oTtxdZhMdf32tg8hGT7r8ttecgU05x3LF/lkDypdtAuQ7jAQ37YHtlTTd3pZAl0BDXprk4/ MGZmJD4x03azBrGcl1oL/pJaEs+MqUrliKpopvbDHKZ/69WBsKzXdYlyjTzwFMMVNUikHyQ2KBQ6 ReW6yoVvtKuUuIiza9V1czGneZnRjXYFvn3vPs+4b3hvCqrvD3P96jBrB5bM9F6cGKSb9O6wXK5p lrPoUK6eHytyusQuq11y9VaaSMY6Qw+Swp4pAYPxWq515yXvxcdCIaWt7VtTC7WrOFAf94gFu6nx tqAQBXDJJKOG80sBqMx1Al9xpH6NSGmGlFKANe9BdrkARi1a0KWqNlTqnrsygEQNh5maKnYLXMfI q8cLBIYuHBZDVj+4jOkYgRSuvZforYOuSa57UHGnyoarUFhumFW0KkokzzjabOSHAvs5WC4b2o6a 2pPYSUa49WXW7EWFeRgAGxqwdRoLiKwL5tvxbiOZzv0Hrs4TnMCOzbZMJAv9hnTujuOx6b31F/Fl iier/LeIvWR5twrnJ3kgArvKw4PzNb+mR2nM2mzeO4mvN+vgl0wWLuXZVluXYevvOEbUhwc29Zkh X36Zrmf+dg26NwbhnPAcxESIDlNixWdjj2Nn7/ts4Eo4T2slIBCZ0YDobg2FjGrNjfHgpbQ7DbeB NJMuXC9FY9ZqGbebDOplbPr0ubi4bCs4jXKaM2tx9uoV6YXQC0jgtcQSWx8Su4Y+kPrgeBa3uQSQ g0nqkrS0HtBL22ItzGfoXfFNXEwjvZ6ke2L5o22NouiyA5lq4ILsIxIDSGg0uwDVeZYoN8ngHESR wDW9+q3a+kvmux1ukY+8nYAJhXQMnDSzTPUCTBUcDm5R+s1d4G2OjEOat5ebdFMWqtdbDXBLTMt6 E5EOOreO2Up197S8bhaLVY8y6DHtlJPSzKpvtOY45JfkTJgmpaubzFwlqSxR3//F1sMPvqrgFYiz 6FA50ZGZLjTxYshr2ENumJefPJYBH+fYzrWzdOkeNj5eQrIOqR6PsVXX05OxyuLDivs7CXoYXLeZ zrR6wsvLyxLV2hd5BaSl0GBTgwKptkImhL2PF0vEQpKm5RzK21ZltyWzQsabIdxvm4WCuL+NHxjW 6HExlasdozVZRj/NNXIr5rOBMrateuCup9fqcRFU3bU/CJMYraE8fnWS5iE4bE7ifJy3+cq6Tr0d bzWH9Fq6L0kQWm+a0kOgd0jh6OqcDncFJZvZhsnbdRPTlmfXPCJAlFwSD+Y4qlvFSvubc46HXnzK J19WPH27XtmThBI9FOTwPNlKnPALk+YAfozeFCyS5sNd7yPqMAZ7K5t2YOmDP4UExfNbE9UyYEAF SDYmzePa6gH3Tg7vvLo1cw2Sr8gaWFiD0FW60sx0I0/xrCI3a/tgyX4xUEovh5XM87eFtqlBE0OY OMkBL3XUx4BtlVGq9oiv+6huM8jTtbithL1Q4bmJbeviHqvxAtinVKrxbtSQcOCX4In23qpgU9eu /eb9herw8ebEbetOAHBBWzdlfUDFjFNjHLTqnCWFVmBaXHh7FMV8ZxypA/940xaW4h/dnaZJMgA1 2YzxYPGxEhBRkiWrHZAgdigLtnMb+MBT3IKa6vscC+rUbQkQX5V3V86gJfKQXVdp0Qd5+ubLuEbs +r9FVGJkDHTDGiujymGZQYutytkwg8F5k+0erdFHsulkFqdxl5u2oYslV3nG29Xm3mBlvEeUQZ4f O+6jJIzVzNevj3IMx/cuQW0YbUmq5QFmSsxZEQ9UKodv5yVOFkw6fiErCvxldV1CAuL5XvH00q0E 7fWFXYzUl+X6UUFiCGtTmoYXb0JcphNqqKt6fQG9+Gb0LrExh9aAUgczjLOm3c9BQTZt5MZ8b2vl NUi/nzFudO2GXxVVfmeYq0lndJ3mltJEInLM6BgqpWwBIelTjc18/GSnyBXROocYOC5BozmWdymp iVLb52afaDAKzR/SBYt/zAVDSFxE9wQrlMyWJN9rVmCf1h0rKLI2prMbgmME5xKigZXCxMqs0QBb mzp99lfXZ0ArLFBzWc1AUGTTvgogmVUUbh0FVx8LnS6p8JGm0ZTcL3ulgTT3PdF2o4z8z//Q/3+Z GWX/9ifTgRe+zibU41Pb+J36n/9FwsCO1k6w3xTLrKPLHZvvXlbEER+fd0ixk7ju/zEkNpNp6/wr 0lcVZAZZrEKOsrL+o3wzMbDohm2sWOmT5lstrR8s6T9YXJDWNWSUvueD8K81m5jshd0WPg3ZN7oQ PgFGz2bUn+6Qg1XrKCXLQgKyjbggnDc/mQVpZJY7D7I5VzNykFbewP66K84cJQq/bbG7Omg2YFK+ YzqbiOxqcthXQUA9Zk80gyO4Rp2xmPAHWbelHGKXz0nmk5OOBlkIaP5hTVcDsQxJRACAxLnvNSUj snYCabk4OUMFQE4uNt9ryppFQsSd8f3F5P+/ER/7UHPmLlXQxoOj4A7c4MOwOm67gEqEKd2F0CzT tZ5hhW+xw4kynLOTws9eVw599Eu2nU9tFy5F1nk4Lc+SI/rQRYaiyb+SRFSqJdv1MIuJLUmoE198 o+hAXmR43s80Po+Ld+kiWGYMvtL0JugFVedz+ToRuJwr6YJc432OjxFXg8JQaDFinh1amHxj2EUP YLqA5znu+Psf4BbLt9hH2RJSXjiurJBpxSqQk9Nflk62QZQqfXu4V8mmRxEf2dbb/6j+GeWIGkWr 6jHzzk37UXc0/zT9Pd+207Fjr5DCXMyOmarFnFonsQhaq2Tv5EFemffB+SvBO1e15Lyonnp71nO2 JUc6gEpgh7R1aC/a/G3uLD1SOa+1FxPOX5k5H5iG/wLbyUcxDKIcfVtPc05yzbw3quS0bICo7Xvd A0ftt4zpbA1jBE7biCiUKu133IeJHss70ga8A83hprfsoM2NXyMLagTGJYmSx/sm2dL4nn6MESfu 2rMklbfxFjPgzgu5UxT4tnqHQ51sCWtzz1et1TtaFr7/h6+BBzAbKEHwJY54d6b5nTu7QV2dHP52 6DM0xGlCPt6lb9sI8A6OhTtcqcIM6A3qUYnGFG+XhQ+KDt2Pi7/pFle+0WiQ5zEMjhvfOpnal6Fs uKC8UVSxq3j7tgeZ1nni8G8mV+Od8L7fu8pWFt/rEfOzfxwVYwjxm8UTfgM1bZq3PNqJMV9vk0gV QyafPW7kuKPLJDz/ROdip5CDWq2bouFASgu7E/0U5gNV3aMJbr4kU/PZJlXU5MqkGh27bJ1u4Y7W jXrtb3w+ZWq5YGr/6BrZyBng6qj4Zq6o/1MruKmTRTPbcw//PGGnFARxIZAfZLEZ8WpxZciFubSd ErxVSZ/XaXWUJH1jE7lbePAQfJ20F3t4+ZijEd6myWBEGx7kEJKiFgvWSflaeY1NfJGC2qV81Ohu alMtdSPuHJBnUbb/0PbAROYKH9gnrIE6K6zS/sGNd8WOdMMyHLpdHW4DsXqKyWbP2dpE5UWZszuw 8I6NqS/oDpsZTARUuvWzSmgj4I98dIMF9XoU737cJAAA1Y8+auns/LeDniFFVzvq812qY5VpiphT 43f5RVpz1qTFfezlWQNPDmXF4wY/lvONKo4ie9L8OHasNGJFHTJY5RonPiVLo6SjW9d0i+N+8tZC Z9sDU8tJIisDhX7uYt6OjoPduUCtQYRh0BhhPlffY/b+yg0npoP8uzdvWsp3uQvWcS7IrZcF3eXE UOkamStk9+mPJebE1lRvwSNvbYn9OkLenheS22Q1/ZMcmpc/ee99VmCCg69l8gaTSEooIySPzerW 3vVG2CPeCzHKqPWEHdFhoVvGSmZkPqph5y8w6GcnJWScu+jzKETqObqYnJtFqL/FJkDIKJ0Eq+HD Z7BFS1ztnV1EVNqkuJzHtxJAAbmWhRINfql2ncyfZjxP0sPQM3SIPRlGSnJi5BEfvLhEcark88y0 ca00PbaXCZVemC+I4BH7OkMrNWGG6a8aShYUshjQdHO1+Gal1APrjR0PfmmkWpfjZ8+05rtnHf9Y tFxV1cwOe1mHySepMAcS7zriawUOuBnUz/bmg+91LPPlx4udMUTF9mtNqzwiGaguxKVo/ncr7jei R+89Cgtm8riz+CplDyo/1s/u+ZCd5WmhEa59kypoiEIjsFV1GibfF+R0GJze45QrfFBXLDtHIiu7 ucoF+EeDICLmA5w1CXI426kf3uH5fvr+2CaEsYKTo6uNo6v5Y09nG6jp9zZCSBB+CXWeDk/Qix/P XfqdcR2+J/hv+ZTfVFMIDTsmTJSA1wGAWfxw78rvDInO/2Pc96OcNaE9oST6GZxY/3cC6YSMhHLi Zwhk+/fi4oRshDLdZ4Cz/xvRbkIqQlXrM7zk+BONa0IKQkXgM6Td+gt94H+52wQyeWfoE/gL0TxC GkLFnTN8Evv3+juEbIQKNGe4KPEXejSENITqFGcQkfkTrQpCCsLFjGdQtf2LpY2ENISrHs5g6/QX ayAIaQjndf7wLbv/2SxPQg7CeOwMBnF/EJ0Rmv8+yPkR8vEAwL+EPITmvx9U/gjqlz+a/3OISUjw +x7/R1S9+oHgf/p/LXXSn76X0eA3JlIAoC3lB4Pvo4LvMevJ6d/4/whW/L23BDjjN3sAGADCp13x ZyeAI0AA4I4/WgP4AQ4AKIAPnwPjz9/L+PFXXfCfhOFzjgDb3xqzIj5tBXAD2OHLzfHlNvjjw98Y XfBXoPj9CZ7ZHKD3Txa8J+KZ3PE5a4AH4G/8Z/BfGLzkFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHYAAHic7Jp1UFzN+ucHd2ew4O7u Hiy4u7tbcHcIDsHd3TUkuLuG4O4BJniCw07e3Pvbu796a+vu/re19zv1Od2nT8/p00/3091V3bMz GNuFjQQ7gP8mYQAU4OUVAQD7L2kQ/+AvoQMAvP+4f3l9ff1n8ut/9P+UnsH8bj8ocNtBg4EB87vN 4cDAg0EAgwgGCQwyGBQwqGDQ/nQBAAYYTDBYYLDBAMHggMEFgwcGHwwBmDdgCMEQgSEGQwKGFAwZ GHIwFGAowVCBoQZDA4YWDB0YejAMYBjBMIFhBsMChhUMGxh2MBxgOMFwgeEGw/OPfvlP/qO/lyrA CfxzA7eFJMARHLoAvP/7UPC/FQ64x/zzXb/HgrUz5L/Se/88lvrXvMa01wTWhCsQfP/zOUAZYAIw A9iBr1YAi/+jkv8IHQAJ8btsSMCfseff+c/vvD/s/sSVAKYAW3DJZuC6//4WF3AoAQ7dwPw7Iga/ 7V/t+e9+d/S/m/Hf0P9N+f+UshwUNDbY43/7OhmASIvEyQ7cjFwwvz0aHlJP3MnRzcLRzUjd29nC 1YDZy8GetAgakrbgLxv+R/8fqyVlQnGAFVviVvop9IBJdt0jGN12FSaByk1FuLfJSTfmjmzN/1lo SQYeMvUTjmkybaPVtBehFf/WaYR9H5yFguTIQSQma7+shSbQX08Y1zMlbDRuP45LeQ4Kmj/fwEgh HQ4uuGA1LLrOzO02FqYRdkrchgiPsLJ2SXC32IhtZEjACCI7VqpNXhurb5CcGo0/W1hsikeBUsnX b4PqchZalrg9KkpD5Uy/GDohI8Uh7uktnY9Y1LiHojYDriMrrMU7BJt9T9F63yHbziRRnPUR3Do2 2DX62NES4Ju4GFqlx5ICfuzaspS884ZlVVcL4WQiioLbfj3cBlo0XED3rRDnx2/h4hQXKn2zQzLk aTloLe610MhxoqtSCOzpTNxkus9WflauZJ1r8k/WFHkQi1sskawgGxa+1twRvD0/KWbTKxL4Dx94 t22G7eL9GXh7glhuawKSQJ18xEI2njqNvmPlPHaBPs2/59jfM/P/6qMxSDNwOGAfnYb8PSvDQxq5 WNi7sjD/vv7HN/+j34pN6pOFYkOPOA85R3c5n/4UHcm5FgPfFfUNDn4M5PidGivJxmZrU5tO97uj kCX7/avTy5iL+0Xostl4fEjSdVUaZCjZqVj5/tGhwy9GSUuiGmLagqR3ky4L61tMIs6z+sQHm0OM 0bKjsr8mL2FIs4m7poGSyAdlpftc6WYnpLbNC0T9RXX5pM8LiVPhZdp6VPOrwtKNfMO7fnrZq4v4 flTN13h30TDbwWzaLc0ZiHqmWmUYb3L5zamYMm9VpwvMahA/hZ1KxLxixSkhEevoTREgU+Uc3p9l QGYlALytMC1sv7Dvm5yPx8vRXj+we9K65kM+KuyW/9TPbwogbOxuul9bY+uY3Hcyf3/CR9E3xGLf Dfg7N5qswwMwg1entR1/FrAeNq42TizmTmbuDuAJ7/dMBzI4dVkbTnrp0XhErSmxPf62iikT1W5O lZ8kLbso1UYx3tT8SupCSR4BXgSk1HbOCw91L3vwMHOEHuMHxZvpIaTy05A9ZGfm6SkpGQV1Bfr5 wOsmkCs+0a47eS7x/0iDp5n7hnZ+uxZzc7ag2PEzYen1xcmXR1g0Ys78krS/Baa037xHSG7+fub0 dMycmrjT/Edf/qAK5kapXfJ3E6H2jmsa02cMpLpb/o3Nh9CjDz9qQDONKvxZMegnXTG7cCwKi0V3 wvVF1kD6Y/vaEfIL1W3uzPvrMNtHvkxfrMatvBFyjMti655NhuhYySwxraRFd86emzMIaCLCaAEn jJKlXTV+xXxIr88qwoI/xU0EBa9Ce728Oi/KYdywsgRRcYqsz36ebbb/8nUi9LlOal/YWlnf1FvK wzC9oQOSKUpe+ZhxQNEmwLugb8KR63xgFg4nRr57D1J6V+j5JvL49GyT/9rtnD1elW3sIavzDFR7 iib7MJmNFJcnRPvdyjCpX0yFnjYPO3IA7XZHHWYfLajWbydFvIEnMgSefuJFCHH+rtL9KqBnY82+ rS4e7XZNxJFkR8ThO91boHRPkNv3hFB7YCLFwx7pGoy56zKROxp6kyGrO/Tp8bpv0Nwyw0tzeM/W WRuc4fbWcEDHT+4bk/xIBpZO3AagoYPjD8dbgdwzj1ONtuauxq65tfXjNg+9hm1YDpaIPKiqnsbW 5o0NkMP2nhxLLKa2f5dm29ZJm8/NjKUd1AtKsTO2162yafHSu8Uqe/1eS5u4LnQP0VQM2+L5DVBb JNq2jWtx68oc/koYNRAnSPf53Y5xMmy5MQRsOPeAF3WB0knC4lgit7aw+pFKTNCPRRl2bUqbm0Ss dgeCqedfy2h65DLPpF/ZSKOM36FIoLdM366tXA3nIiDh3j6hfH1vYg1YL1UEOHohbaOADopphTNm QmmqeooXExR6sF6eGaes7XIdrZo7qF4/VVvrSvtJphsirsHvG7fias2RS3yxw3kTPh/KGy8c/7wF o+Jr6/thdxMtypHFRrVBCcrJEdPc3c9VHZ3n3F1+Aq29EGWR1CfDTKku/xC/mQBIgwCrG1RQUNbq LUEehZzMkKW/NhpnNZ9gW6obI60+ok9BD9JuV7syL2Rw0MMg1cIYThjFK2VMYjk7w/zYzfNo+Pbp RGwd9qUHJwQVAc5e8BIS4pEvzlTMplmZ2xOPkb2J25zKWzBGOMshJ7rjZjLGRCarhWFdjJs8Z5b7 q0lKyEWDipNEzsNsYWhvj9Un4JnPRBE9NsS5R47Uvab26bnHw7OjZ/najxvuTz6rmgPtEQHIH+hy 5ixfx8sYGXY4s/y8jpTmM3WwZZywMYodnUtyJRNCdAhgonSwpPmlD3sZtlaVocktPGjTKPB7caF0 BrHqir41L/AAvkylt8uIxJV1h0sSKgkAPQRpo/1aR963NLTAw93tb7zpXsYbHuQ29ArZOe5LF4wu hrP9NrTAVTFGPs92pwvP2t4BRd1kprjmzcvhDTSBR5/NJ1wglCxsTkp2phe+PKgfFASgRNJsejUq IX6WEU5gdgz03QtXm1Xms/XCfyQ72SN8nwgbX9TyBY0iYqftmq5GQIAowUNf2jK7gIEEga3rJzWJ PHnVeWdvwBEMCbPZexrTz3RsodDZR/y/zs8lyQT13j06zIY7WzBCKm2sNGRmiZmYe3tsdw4x4P8U rX2kxO+3JXoXk2F2Jcj/k0QyQM+YGmmRgLa9J4YDY4vDXzDBmEHCE6TeD4u1843Bp/67TXkBQz5y lNrHTgIUdY9j7XtJQf/YXZvhBNmhOv0wr9Di4piqWVSmZVxxlp9X3i0JvNspQ8YjccQm8h/a+kgv JhZUQgMC3XAU7PBH6dNcSsq+cnyueFh+XI3eijRGtaoQISvh9wq1foFGYl8y1BivvKXc5bh0zq7X SP31YosR6RV5O8c5H8XT0nyxROCj+QJJcKgeXNMS90Ds1Go7L0Bv1cNfqe6BjAPh8V5VhyF1fDWj qIh7t/H2IrFW2EEHVRR+xNlp2tIprs5lqPYg8ZASW6b72Y0e9AHvzOu+hSE7cmncuIFcxMSDvpLc Fc0C6No8hiqo3aYjE3dbmN/LdqGO2boyUzLBRetDfp7DL06DsMqNXaV5KaNKCOIeRI9A4crrm0Qr 623nQ6RkZpZ8Ip296bOW4g+aS3DrpQrcNjgeLjsx+HDCeyUSdVyAJ/ZjcHoVvigBlV3/8etkvPkp VVOaUUk1cu+DCyeaemft8+2uyTRHAQCEgq0RtDsR26wKA6jZi/XnRXwSi6U75asPijAZJJrnjNzz 7rWJSkrb5Wd9x2o0WL6rAk39U5bSeXin0fQrezVUNEGyZk62swVHVCgnKiq403Ubewz3me0rNfYN aHuRZISm4xRZsOvLhY+jDOV06OvrahmztR1czXLbvm1tCN2gJX3arSDNWAg+qC92XRa6X9U9BZ3Z /3rY2KjNDbAy8zSz0wIyYuYtHUSQwBawF+MXV3TWeHTMr2yuUA9o0iUgOau0IvkBHiCWfVOrfDue Nz2MNok1PlG1V6yFT/NHvRo1bBjLoxuqGyK9i0o0eI3BKWFCeplgtZLxmwt7E8j6jOIo50XD3gbH njVX33eiBbRuifV+GwzzQxUyPSsFVn7oszbDp6jWyU+6jICa3SrbImNWoBxMKCsKDhDdpnFl2U4g Ps/KrEbo3SImrNIM/hOgRasv2o58v7mCeU6+w3IYpd6+E7tkjdAFIIuhzsASDlw8In8ZmpmCXXXs hp7QqllXbnG/nYGx3qT0dt4tfdu6NhevjSAuZwCFx5hERzxq3FeyuXoKRVUCgfxF4Prr8qu6GlHD EnS60Wu26GX0FvSIEeHBKF/dzXLH3nL2LnRoLM/SB8REy5Ez3cCO5q6O1rm11c2Nb9RE5WM6xYjW 6sXjYmeIHPfqdq0h7G80+zYERHI/So9Ra24wOWHhAVnZgMrNXeLfeEVVL8yMlJkWe0Psm+ExhbDY 4x84gqqjkHfsw9URLd5UFIvaoxe4Aa19k78XbJUahyVqaJPFyxqnIrEKwMRv5hXtRwgYQUXqaxCw cD4aL/sbib+2RryIcLnliX+eTGzFmWQ/tIXk4v7Zu6qegc9HAWIRm7w0hYkXl7rsxPS0Xgs704md x+ydCS2h4KCOSZreUk6QQWAqrWuPl00K5yq5lo8jWzbmDG+eE3sh/TpmjywlnLzFNldTREpBIhjE wHBa4+E5U0Hr5dZTcAiEJkLobH78MWHX2tz03fgw+Jx3z762+rgIP1KRE6VEU0LANrYQt990Yioe kwbaw8pS1qPoouA95Cijw06RoEHkDj967h3OLDyyxtttGg5OL13WLz8IHA4oO4DVBS7H6srRfIlw y4wP3kTWBuIoTZ8ndmJJDPVzQl7XLX9J5soAJxxLqPN+KM+HL0PrWYd4MLIzxNUR6c5ZWcVvopid U4zuzNBD3dJJ8q9mqq5Zq29T5ty3BURbVupjLzOMEO89zG2QohwBkVBxjWszpJ20Q4uclFh7Txbh GEbUmEKBVk1dNC3U8ukNHQCFnF3CCLq2un0/YnaBaFfy4ZWd0EtC0lvTC6HQqfufmxo3H3cD+GU7 4WTfEEBdUCrXxDWxMNmGDYmxXfAmf7dQB2mU7soPBp+G6C46sl7Z66iFClfhWlzgdMLk6xL2ViYq Faq+wkCvXKawrRNtM2YNITV/Y9UN0qmWkIh5zETgDyflUSfWTidCyTjQF5L2Y2F8pzcfzhpNgZ4/ nLycX45CeoDX9TUi/vquZiBHvEajm5Q0QLouVk4b77aRJ19HE3b0iULksAWtYPvHJiEh6WzuZkns kVfA/LXWBtdUu1AeSbRApOoOItH6zjgXMq5T0Z2niximzJuwAUlAnUez9C9C6nTpk7k8lTuTdM6J jL1gWLmcuxYuhT6LJIqRFH3ftijuNw1lK18G+hjrxZ+GmUfxHMh4mrg1YQeb3DQI3RaXoNgJn1XO g3V7zHkzdW+1LFxzB/GGFvBN3L0nCWlxeXtqY9ChFuzfuyNo8+jSbWd8bsdRxOaSeF/PS3yFu2jw kkSRZDOmPYspkg7RwEwTlEbNy8FxX63wpIrhVeKoeKwfEmqwwTdanMPBoxiH2EzRt087cAVidT7Q Mru5WK5poAk9vZoaMY7OAsGfmNeNLvMlOaSGFB0Rsn9ZAKUSzPl70NbBzuZOKIvwqEZYf3k/RY0C zLd0oGjSyZUNzIrF7q9UU+hF7JnaXkgUeyyYY4rEfkvV3cAm2EHCGay1MAlrUZVlGUpe6lAIoYmg bP5JZwG/QBZjAKkAk+EwMDVlZT4Ljt6WHhfx3RckTtVmUcmyZG2aDAcOlAlm5fGyg92JlpfoO7E+ tZz4cK5lYQx63axBkNc625Sd1pyCrdYXlVrhqTsbzRDGyAP4419mvgI1bCthgd15k4zIBkaHEFWb k6RVDxxIczfWOIUn88iiS9WtBoV0bfJzsYYnS5phRVYCbAdsiJ6EsNLjKOWeHNoar5qjGl0Lpej9 OoaHOttcw2VIeaFMlhh12H1wnJDZBPjRMD+fljSXZW/VlNrOZW/nD2VU8r8ncoRb7ewZVfo++FcW Eb2EL3T1FJwU/YDQIFFtBaLclNPTDhEnB8PQ6h84EFIw4SEw7iyHU203eMRJo3o+G2sbFgXsd2Ma 7tQRLxvBOkn5mO+5Pv3atr0ruk6m9019G6LIOC87RG80992iqzQ7npI2U9zgZCSiKECUGBVaSxeI PjlfOcsWrMYlEVyMTSPCI9THol42brSVTFZFIAY7ZvpAsnfFVZdspyCrcZYZN56BOys19Bmb37Iy fUniUeFKb0vdQM6jWb8ppcPJqHEk5vXRCP5QC9fNva//SguH8UkVBwS7nIqkkyFjqsru3WEF29ve HX2ATRmL8bFA7pik7fyCROMO/VH2ysFJvLQuxdydU1PWZa3Of4/daEWCj6ri20BPrYJbKaW4X7+W SlL1odUj3xThoBwttvxxtGmhLItaoHJlWVaB91R+sI8y4YR8GTuH8tHHvMYaPsYZCgqzzNqQEEjz Q/ZQE44MfH2q5My3GfhTyBVJK5Oky8hWsLdc7LmZljuRqfgzyLljfpbK9rCcoaFBzPVZCFO9sbHW sGpjsZboUp3IoYXFYjMplsp+w5xQJSf0mSmrYksQmeGjEImZKQSREyUt79UUbFp26L0duPFoK3wi SlGs9zfZROEzHHoN875pj3XuV4v/IAh222jdqkmhTzUX8EwFTB7GcHWaY+mNTbZoSQ/w0nNw4pNq VFja8rPZDlNDmbPzAFN2kd9wotC0nJZ+pS15Z7K3tmOLPC4bWdhv+H56VFk8IjKABp9q4iFFNl3N qraappptLkIeK7VCHFZlGIcZJDdDHD6qbi1FwU5KcEFg1Uyc+z1LkFm9kayb0Hiz/ChpZIL3tLco VeA0kmXjEwDXJcOvxMwZt1uq18K7t5ZRweJCrlGwQqVlK/vgbWbiKU9x89xU3zHS1GBlNhlBn8aI gQNEdm7IUVlkPz0u/BsBKrMaUEd5xVh8QV72pb6gWZMMj92B87iDpoAE8x7MDAqzpFxBaldQrEvl QSSyWfRx5aegAeAox/4F/BVMCjMLW4v2uOPDtp7qQ5OE3ApdTbdTXV8B23mB3qeUHYEW9yrrCQw2 TbVvJpSVdGNDCQvYlQgUrtnyd+3vnXA+KtqDMI2Ql5RVYhF6qlhaJPToY6oEGj00KuSZNRoKV8LP LQyQgUZVo81M/uatXQyyoze1w5IpgnWWFuxm8mNvqgewRPCVm9Q/qPM2iscNGknFFS9WI/RyE+ob 30hsWxYn4jKgdViWxobtWA7FUu4eRDM19pi3gzCLDHBshQmb5DPb9NbodMq+dDIme1XjUgecpl5Q tdcfQCx59E+i1LGoTuFaLrqkZXWkmE9E034ZRMF/i1+zj8uigng2KGn7fkCV9lM6HRUUnKxkMvXm Cz+KfcFL7ZuCLry3RLIEufY4TjMoJ+Jn9DuYfu69hlg5+C0m5434lX3cP9IumkZ8wmAZvtiIVmWu 6j2/RFgubV/3o+BJGwrzrItapiELYW0A5sTCPu891RbDdoGI3YsQEhktUQuojDrt79EIPnr1US+Z P0/vgeTSdC2oGSiSu0syZXybsToRo23OnOx9myZRs5n0BF69NpiT7SewnhP0ilLca2335EoFFtmN 9CXGzactUK+e4sS0NSc2Wz5l4a9F27//eQqAJUH5iRYOs9pk9PE5D5P0BnlFay87j+zxrjGtX/gV eeVcxOlXWx7P49pM9nPu0dTL2bX560Q3S5+PlG74qpbgqiZN8/sSv6E5o9zJLZcbLZrrNsLnhbEn pnevK/mTdYMYrCH7c2/gelguapVt/SIIuvoS8x12R4/CR5s0xzQq7H2B9AwsG4GyFaAMDnVV2sF0 pNTUMq/5o74MGaqcHIas8wGEIz/SacgylkEEKz9yRcEmo8s43svOhEEdaN8GeSyjXqsibZm+ywVQ XEqrJ4vN8wzVzlzMfJsVS8nKXfnrZ6XX6qXjHlAnI8lLEJmf+tWH9Nz8lgJefOwaToOxnecqsgrL h+2t5TfKufALeQkM7bbRHjs9Bc9bpROglHb5483mUw5AsNa7nQ+Y6nFHK1WcW0rTC6orhpaqi6pD UzVM3N/0ZzYfLuNfvitT8aV2pYhG14jf2e76x55LTUIvKb2uLEAvtSlCs8SaMHB59HSN3xWdR9az dzedV8p1fVM3WwEA1fwtTHJWxyEV3FPDNRbUuYAavwqrcq5opagOgjUkU97RndBM+OBPiBEE/UIk BgFJvmnMod6MNVYHRjZTiqnbtliIqhtL9otVfqR1SIcLogZZKIpp7O1cSiJNzXKiW/pIhNuNibt2 T5BZOtykwuqPYfDdoBnSxcLG1JfSYin3+Rndhta9lJ/lLjAVzkq3VOSf36Q16G1iTkuu8lttbpdk CdUP3lgwmIsuZPdfe0/NHyEckwjc0LRayrs8Fqawi3R28gv7zQVXBx6kvR7FXNTnd2liqMd6WXrT w50iRe2bLtWeQVT7AvxKEXpErgnPIIwGcuKymrM6bNbvZXxSxwOpu3yeXyaeAttLMd+zNyanh1kY CFXTSkhzOGiOxVMKJTmpfknRXnMrCdIswXNJR9PBulePl8Fq+JpvebHAA2DdC/Kv5ph8IBSGE3zW Tu5EIDmtkskeOPdeOJgggxXRyvcvSHcPxkEfOeVFdxHND5pkiYsdgGYThzDCGjeUM3GIVtTz5HKG c4Vq8pPnsQSwcLlROH5VKra5P/aQS5/9pZ0QEnerHLD6VRXLP3VhCqMz3OrqLO4NRwRbnvmh7yke 2jbW0t20lKfCEK7AkcLncl/iFTUsz1roSQcClMTSyh6ZVi8qm5DkKJ5Fsiq/twnej/w1R1W1YZkr 9vzT2wyX33QWA3J7WMqgG1ctftlW2LF0s4iMDnF6Jm17QgKx17ZlVBnX+PfRc7NJSWA5RDKGyVtm lhtvg85fPxfGJPPpsybYgIBbInqnrsLnA3giYW+iKfPFiWEg2fM6eOmwRFbGiKJZryacTtnEpWmW 10OnFfNAG+EWNX75WNV8CbqfVXCCywnQAB/MatUH96QS7jJP1owB+UZPBQUfiotD28qXirPn7ltf vmLQX77Aa8ZBemrUOXnBXdljlAh3h1d/MuWvoXfaNn1nAMcfj0lEuzU6tNjuw4ErwNiwdMEMjqVf YnDcZn+JRvJcWBkfo98TSiOseGiXlVrNIFatK5pxCWuy29MT4HllFOAIDBeby35Xrg3S2moD+gCb xE7Ic5xzpApLCgLEzVqaitKf4Bnn6WblVR5o4ZwOwN+MKeQx2Hb3GVht8dIl4rIAc5n9wZAE5qLy O7/SoErDHdOD3SM5v13utNRBvVelyFn41z3ZgA+T88gm4XZdUxN2UzZ6uqs2uBdFPYPaDlaR1pb1 j/rnHL4fk8+gH4kXOydBfIobj4Qz7BNqfNoKk54onWPh1K0uBjX6uAxL4b8yrYZQlR636rZTqL36 3TmSo1I+SlNv4AhibnRTk3z8Jt9El/ZI4KiZF9FzenQEHgZ+fmoViZyISIyesFsAWegnLPGjgBdn E78XZ9+lhl74eU52ayThJsYpBtcrnY01ick6mqL2mq/gFa7TOy5XuZnJ2EbQUD+PvD/ASBpLYkiY Hacw32JqL7Y6wPjaKue8U9O90LRlGc5Wm3P0XIuzad56pbm+XCYY5+/Vd8louAwzfqLGwupD7s1F ULGZdFJuqLmJKBc0bjSoB8FnsEC35FKVSjJ22mXCqbMNdzzMETyGeUFE8nnMzFqOcw6rfCEHId5Q IV20D0WK9qrua57UiuZLEv/uEHkuiypTr/yY7ED2mAUjsf8l29Yt4qUxv9D1LlrMF5n2YEhuArc4 5rB2brRngc7PvBoKeBcn6aN6Jc1iu6yJnXU7pqgqAoaIm2GPVwG9vdd1T64QRgdyMcvkpe/4/AWj DiW5EIFvQrWK85GjCu2LobyJ8ib4wuh+qibU3HmSCyOcF+FIGfZth4ZHfB7IJ/YSNpWH5iT+qr9z MRc427Ts5NRvj6NhWbp9ndRrcj85ci7y1to90LW6uSs09HPAHk2AesOvh1eYv91dQX3qixkGx4Ih /hzr+bO74mDi6mbh4sryZ8vyH3e/t1r+2r1sSZywHRBFlrwNfhoo8Gdai8EUG96EaWI6g0M2GyLe 9WYlEHu6BaaIETVNXZG7TacqPg+wnChmGiATZFXBSvYNz4XLDNw6v/AG7Zr2W6fhSQ/IIvu3beV2 W7NJpnl5RKUqQ9plyMm8k/jE4T2gIY9t7hK3kk3OppQR25UZ1VB7qjT5ij/rkHHCbjua3gjDVSMz qWR/bh9PWF/aNLe3MQYB6XDChF0qVciInExDTxDgqifD1Ls0fEg0fDgTmT3iLvK3dkgYyAR9BseQ IP4cd/pjB2cTK4t/WuGv+H/ZQH9mBrGfFRn2omNbIGXdgAeNvMmDx0RrDo7WABR9SpJF/vBrOPsa TyzAqDvAK1xSsDFRSeXtUgsp6yrn/Xfs9bqjDQxoDSya5pJIxE1p1u8/ynq2TelJ5kAcCJrkdBl2 UzR0Y9N4yFx0ZvtTQqnG9AlDY/agAd6Ux09Co1d2QYaZpjnYKe9PRPW3MpNfQdsOMilnrY10o+VH kLEePwgOBD8wZuw20N8pGgywBH/r0teYJfnbWpOZgqz+OlEI+efA159a/6nvv+6w/VXlko99tgOs yBHnoV2hc/4qX/vwihWdQg3lbgHDHljzy+xpNktt9Xj4dsPLpTQU+IH5AXZd97HJ/Pf9wUkRdTZv 783Hwjmt75Z7RLpCdm2TOLCo6nd28bmf9wZ8jmjUDjASyJoxZU1RzGrvUT7++F68E9Gk5OJagKmQ 2oScESeU1bdX5WDUsM5eYMS6sGhDq3eLbBs4ZvoyFN+HY8r/bVh1UC0RAPljlQp7hoyPv1lUHt9v gZWHIBPpwungRNgizY+nv17VRe5axMYzX727Yxwn0GUaJWfGiYv516IRxN/ZBjevKmMAbJdF2D+H 5f61R/xXX1hXV3BdZUXv8ix77ePJDxFhxcvIkIdMTsv0Q0nk5KO3dKhOpdJKI7vZumm7SXCnQs4I 3p81c0r7+etHd1sHf4/XRGYrtI5qH8Wa3ZdPMII4SOPzo3XqLovNtTE7R0pHaJThX8U4WSgE1Krw eBXxrRKTm1LntaNVKauAMesYMmJmzmnYfERbP/1oaFLWspeDBaNxYJz3FcImo+j1xMq4/gefZhUU B9StWRLcNWjj7g4NwRPc3d29cQiaQHDXAI07BAsujUMHCRKkcQ3uTqNz587Lnap/5m0/n9q11lff PsMGQ7o4JrQxKz4MPMUNY3wlso6LKLbSVtEnMjLonuh30zqOqiMpCaJnCjhJKS8X+35KIiLXLs5a idVaMd09/ZKPx6Zoj5bG6kR6TT94IhwxggGWqjQFqqkvcNkC4Q8TfAi2axo4/C0LKQZ/BG1dQnMG c5fzIvfpLSY6B2Wm/7l7F/GpEC2tZcJO78PzqdulFw8fWr2inzEE/qR/bTW2xGvPmz71HuihiHxh 8s3k1LtX1Pr2RciibTdAfMrrxRd2n7KMq1ZijvV4Yt3OtfSgrd11GvLRe62BBKUOho4IpnYZOHXl HzZI/YCz2Bs5Y85jTmJB8OX88gyvTm6CUVU7eXmH1UJ4J8VCxqqrPNmkthY+8gWMxy9KujmHHwhl Fiup1/kDZBXSys1uwRSme+X9/m1LZQGh9vno9XWPyNPkQ/zI5+CIYLDYFgFES27+EVjhdlw0dkqa HdnL99j0TTn/l2vsyINDRONbzhBGwvSO79gYa7q82xTNQmAlpJvWmYcrNkOQF7PxXrk+c4tSO1Up ldD5nd5A9XmxI7QcVxSycSjAbRdbiXEPcFdBbVuOp28pDY+lZtjNtQU+BMcMb8+Chkq6fJ79YGuI idw/l3kAz4L1aBXKg55/htgmo3VUseVWTQjWp7dUhjGgdUITg/irbCtkQgQAzpE6AfK73oeI5XV8 v7/MFVRCJgrX0wdRutycTf/CuOiM1YjLmfdaUTIGe/8jEY6xKlEC/mvjfYn+z5fQ/9sH/8MEJ/or niVyeMF+GW9fhakWrkBp2FyjxvTJdGyZ+o0nf+w2RhykgGhEUna7OhJ2vbahHGuIChaOkGOdXVqS 6umJmxuwxKzXVuX93SxfKlVAznfF1ax57f/i/wnjNQ/O45Xo/cdyDghETOJI1SAzPBfp1WMhiySg p5OG4Zo4aPTXrO1BmWLmA7wqi0Nx+6kIOmqNVvlZWyeBw5B0fHcxztvd+9c27+ajYqdNgG9OqTTy FsP6l9EdgFQ6f+pV9G4fv3FEjUqhqQ373mVPt1LAyKw8l7meGCPs6xILm8p+Difc1Dz/PRwJ2J4N mbyyMcye/1t0Zu+K2pdc5pjDoR9gXu6IIaLQMVQarVjDXRDOY/dXbjs7K/LewpI1zSD5KqxMa1Jy d5S1MEBRDLMgjJ5mhgXLCms1S9Awp2HVGEvIliK6+HjNafLqL5wLJ9TYCww9j3XEjkz0WdAkkh2k LrPGwUZ2so91TPIu+zj9mlz2blwpVPfY90+Ro/dPyyzf+K3fJxqBc6eVn5bFS3Dmo2IRX7UzB1NH SqKRG4r7LACT+4DWdzrjuz1rP5Fg4+vpyEGtm2JZdQM/pq5UkSg3hTFKHGCd3w3djbPEc+VTvLE7 vvdLRl0H0SqfP/0KcTrcj/V0y6eIXRYXtohau90d/cx0im9NhRL33BU1QXy9nXduL/ZGM8JSUe1U XV18aJ9TTrqfM4PVcP0q6+9n5ksye28wxO4g+3YHAKd/AMXbhXqQupCrhJI1KEJiAhcHE0i2gn9M WbUuUydqdyh1m7s/sH0b1BbZJMBah3Q5oVSL592yYYgvZnE/rHecbzVvRGn+cL+ztmrF1f5wDKLe 0qvw0NhvG30v/hlHfmI8TSesRjWKjVpYzLn8567n8Hafz5BGvk8k/2JbMNmvuYhszsXYt9/CsqmT W75fEzoJ9FE+Gv7M4lBTIx69kthlDmkOUSgVybpKX2uK+lfKJYtKN9keBSM6e2Zv3WJdVRJWpO2g vhg6uQNSBeFD0bcWLJQjC42TH08WFXVUyXF84twnr3wUdRyXh0V1YlwYLXMiPQLARnYYNlt7Q+ht IFDSiXFbYPX3y0/NXPhGeh7DI1slUmSyilucBjnCHbGja+UcbhPhUnVcgaVKdHNDS4M1+7+i9BmC 4lnKEJWi5loO1TWioIoOUodoZk47uK0O8yKf7S+R5mqdEmT6TpeFdC6R0UDEPMXNsuJhyd7b0+8p y+3gWlHJA7QOdMOX+HPlSEYWjJuXf/nzSRDXAve28JShl9uODfQ2OB75IuoxZ+eyjrQuqJsPOyWI aCOD75BozL0q8eowm1MGVjykfOvQm75nd9LpZ9SLDy8RWrURvGrQRhiraXiEnz6M2FSJ3yIPhM94 h+AJyawLJLjZMriiAA0vgygsTeibF4pHavdWbGBYb555XZwqWy6D8eGIoN/bHfcICbVkNEh2sOVa RAMloDcxrZHk0/HKkcQcHmiXXOYXr+Q7Pl6Wn2OYpwim2Bh1DTKbRm0erMuZ9S2YYmKlmNy8PD8V G9niQSMgomcEcAOp1bGOgOLM+X10O90XYbHUv3Gg9SxtPy4uRi22HPv3mu8omeqqek5crFD49L6x M0ViArjX6h1lP7KKMySPmksMFpaerqQmtJX9eqLCRyPAP4TR4f3T1UZiI6cExuoe9brH9c102LHO HfhGivqIVh85UIoKyMkIfHNqljN1gsgg+WJ/6DFd6Xo4T/5aPxOKvZGX/nSP3ptpVxuRiPcpan7u baCegLc+w+I2Zp2QWabruSmDZKK2c5o8aq+3rhsn+Hq59fQ+O4kExf3+q5P0YJN7i9eLQIAoA68j L4Lp4jcpRh0VpWBDv3hN9Oy66Che6KLlYJsEU3MDe/2vG4TJ1wf2RSecYiS9O05S53nGMekywmVG pzL0boPMI+k5nnL+gJyDCwnp0GFpYIakWm2ScQqt3J/Cb4SN7ywLEGnSTcYWP6BKLfL1KeAF/EXG 0bA6O+HrZMmirtJu9QOMcWQAWsk+12pwGB2h01FTW+Z/lb2u6hBwtbqjQ1Rll+MqyVr4Ysvr9Kfi 8G2sM6yGEfuiPh9heLoDWTIScWCs9IJ6CxsSKbT9hNHsEzcZI9t+TmhObd3l/FXnPeaz+uVtmGin LMcs3TSua7Gk68o6wjL5C8JLf+VnhulIqczkfQTFaBxa6YBsmVSZwPsg1QBH/wK3DH3dUa43pP/k K+XLXpJ5dAQEcfr/t694/zupGR27rQCJX3v7esLLEX+ezqUoxhIMq81+pfhIQqP2qzFNMYRTRz5B MIPzk+eynbkztaW5i6RWqurS2J+mcE49ToCBqHC+10OeF0vv2+2TQGtPpCMxYxMEpUVxEMN+559Q ztqp4BlJgd9L5O1xVO/r7gvNb2LLzoIJ4i2XFEOLXNvAhFEr3lDYoc2OIhCbL5A8YZZBWYL7xIPv lKFAUn6n4Vrw2wUOfbpPubSA87/u87/YZzZUkzT3Xqlq4bJ2zIemtMVZ8ecVGpi0Q8ellgAOCzeh mL3szDuuXNQdUD2v+iCHSm9kAu55VJoFld2w+XF7GwxEsXBgicP2UmmZ97kJ1O4f7QF1NEDVBNT3 JAycx+224Z7fDwJb1e7J92dOOi1NWSUVp/xi6EW8YsYpgYee9bykAqIftnPZGnd4SN4csS/dZ06t iqti/iDvgBUmgwsee36mBRPJ+aXJSnMHG0hjhgM06V8YyLhVmYW8xEZ+a8VxkP0Mh0S2Wkct1nWk gsXNsSbS4vn8yuZspk6N9s8nz7Z5hBeIAvHkr1fzbF58i8a7g/HtZiQHpT2N6dFRQg7trkHgroic oKMly5zVqWuDH0lyGyShQ5wigW5HXI1VO7kkqxihOE8lZwfFodM6FMyq2xMjbqQ48jD6p/IWu7hs RO/TvwMo0Io/mm9fblY83L3nAKoyGeW1vlT8dl3H79kNBz7vyuj1izGeVoYG+QuwDbc0snGCTA0E o6K7fHe3MdZvkcImnHDmHzF0buHhqHYYrINJuDnUSfIwexLVPFnX24BZp9k7LtfTf0Mjet0KZ/YY M0JeGtb9IM8nV6Bij6vd76WKjQ92LhJAdDs/qHiw5ITv0yfI887SENYhT3xKyi1ZIBjbvj+IqNTP sjFBdfJVP8z0XLubWn6H+/uM07z9/sus2Du13IyHf+M/oJprKGhUA954apLfHWnHLlSo23aAY0wY Zkn2bVt+qoMqzokD/hJKezMGkp2xv0LB5iYbizujNxUF4nSl9gTnzNdR3uhq4+56Xqu/dNAbUGxj Gu7SvPNLycdcx4/eWwla231gCXFm7//0gGdRv3lPsInj0KvQU+W+qKAfsDYAISiq//bQg6aPPDA5 ayM6lVcS4UtjzYpm7OVLOuFchpeLZ8AZM0XaZ4wG8zIlvHSA0p5ZNMwqp8GXTsTaMaN2EBzsH9r1 /CoM9G2/IivoLFT2DzTUSk3ASh5mpVpWhjLJwbdc6lxRqpCvy3PMkFdLZ/VgNoPfwvZRLdRl6YxV cngabENHIQAh7LPJV8OiwvkvNQU+0iVsn50rLJxbMPO3A+0rhxxSwWXdkka/WpcrDT8aZUl3I0Jy 9Nj5iGpQ4Z5GR3wlPmuBUnGeLTD/Tg23zQ7WnfL0SwPDxc1Wd5VXZzGYEM18w2lu7vyO++U2yd9l y9o2H9xz4t4D2zZf/2POYuQfYrFuPh0OuPIkg2eFGwAqn6knDBWlf+4tG92OLctuuTrPHtrLA1RN wz0Bf8nFIsW/t1kmd0y/WPgauC0qEVqcZJ+d3y/RKdQCG/YUiRNKQt+c7dYiG1ukbpXTm4OEJVtL 7ETCiHKPHshT1hbVomf5n4L0vyZhmztU8vj6zVS7zBDfFjeXv/SvyZQeVtp+qPavCuxVwBmkM1X1 HAwWdaqI8Qmre5TA0XvV4qnulhbuvvTeO54wqr9QBi0tJEhG8xsk8E+zdn3DY2LBnyAkJb4yM3f9 AzB9dfcarPKA1kCjPKMsbEBBSib+mqLpgeXUXv7+Tz/o36BLmricaTTYIz9itko8ubN//yoYUlz3 eJlwd1QI75YXc8g3wck56ER9qTlTvP4DtXjexbkePdHjR/j2wURLblnqwCxUFn4fKBD+hUW3qZrJ reX7ilO9TV7lCCaBCguplRPb0ZIdLOGzBHUtTZFvXpQlHzbJ4adPJd87BmY/G6ZiCuvmMzm11nX1 nvxi5/HNqbRrTzSr78hCkduvMxFfdjaJuKSBkyemrv4UxbuOwSP9a7pVZO/F6wsrbGVGvkTeNVEy V5CvC2r8W0KsfVQ1iMpGVmKipSg2RoZy4XoDNjMLAmQaObXmdRhiINXN7iht+eNYSzBLkHR/04VT IXoGDg1iqQNxtAFaHsptv4mAsvBBHwDAAKjVVebSKOmUg7HyandytVQpMw/T+VKkutwKbpW9ehPa HfADgCuBq34MRh1OBstI4Xnf0XPRlMjuI6Azic58MoAznqlrZXK6dvb25DnUshKHCHXxLGUWhFeO UZDFAMLnOY8yaEfxdSkDUV9EhCWVG4itFISvI13I3Ra2iYYaKTpg3cdbvWhyiCe/SRNNQKo5NYzm JU4LGBBnSndJwvSGTdjrgKqaYWzhwe/laJN55ueXAf/4GfCPFIoBuuhE+nJaFK8gNCLFWMey3rjI ybvkws8PEml9CD7WefVl18pQJndSHVE6pTHLh/tiNAiNlEOTGR61his+FQgiIWqxTAfcXGYSWom0 W9pesCbY4PjrM92XvJ+fLHGdsvnqJbXvhtFSFaWTzrbBWPghQQN7GqIW15aXuR9PImgVDJ57P3Nx GIgh6xQfqvazN8/gyUciRdDIJgQdd5rheyVgKv10/rhZoyk5yx6DW1OblSosG7tCl42sln3i4P1X jffTymHj83S6aiTz26aEHCufAOhKQvdBNF1JmgHzmfVKpmU9uVZ6ZWp81HTRnzQj2Yaf1Cu9P+DW fHkHRgErjwKrDQzzNolIdwdpRiJG3Dm0HpGecEmjvqTo0x8qkbT92AQfOm2+25+ZQACLEbUyklX8 3d3MxGEiKyP0kVWIFHo3rD6voPYVPTFqmo9pTQboRFtZqay57n16WTVuQZiDAjzG5zIXrRtvH8ej tH1XzCC23a4CrBSvtoMdXmn+TV5M3fwUF1lVueKP/G2gil3cpDlWSzMe33fqO8SJJW2MZk2w0Eva yMMUDOvIr/HkjsZpNCcAaEBohAq/BDv03Tz+xguM6ws7vPV4N0tsaajXTqJCw1RMSqhQNv8szYRH UkHbbnIiOEdliLpCcRHTv9fxdQfZylVu5lCE5YGr08Bp4YmkfRHsGQIiIRFHXx/u7Ck1uRfcLf2l R8ZrzaKx5jYyblzAPF8IkYlSRZCQMq67voxJGz0ycFULkmyHxskp/SElVekeWyl4K4aaF+8l+a+e 5GAn1VOqPMNRyYK7Q3LtgZwBexzE16xQtLjIsQOvMTd0KMnRVfBEeTdfbRb+pW7ZZ/6v+ZjytItI kem2bf8C50GZ4gSPkfPn+BH6IrosqngsN3ahGcLqLKgrLFw4RGNZJsZ14pLh0x+6zlAJjp5bDb6c 2p0etFX7QwrfttsY8o7cLSSeUf9TFmSYpdwY/a8p6//b4fL+jx4bEjvIgxV2PwAJnwnRS91iKVNr lYGV3COMaBLOPqCOpx+vFEQS55Q4M9OiBxeUvlxQEPuUDUjIIta6SWl6O9548F14iQa5SXu0eDQr x9psymF9emtcCp21qsG6POFnL/osxAPL8Ys+scPI9BkjKvNSY1xkc8zmMfZrJLSECZgb5JNN1/84 ApKzQBsRfTpted+sUc+Vtr3rlsvC9LlR0ZpdFzTSBdk+WC7yaQoW3kKG7hcdl/AuWrqDm7qDf3vc Tr7i/sfiMstw4QYRAeELxv87EvP970eI1zP1WhbFCz6feMHtOQ0vYnx9L5OKfqgh8Z5fSutkpW+W Eor2c6RVLPXTp9AXU0OhzP6tBf4+g2XxwOZA3+FTWBuPhm80n0pxnZNTZHXhb3pngGvXkfOvjnat jHq/0OD2vA4O6Wb1YiRZdO0+TivTefXUBzlY9n7JtK1RtLgS6RJDjrxMnovQ4qdHHMR2N7Lysiiu RJ2twE/q3YrxdH1reOSd6LNoa3Z4iNuQSDxiqXjlvOI+1TCua48JrWYK4i6qo2peWawZSq1zN9eN BPzxkIzRwppW3d2v25yJq2G9A9J5wVhqVWXVKh4RJzbUfRiAgIjwQn+vaWNP/66u0xIajT3TW3x5 ZV14/+zC4Y+sU7uueRdyyp1qRATT29eCdSuNmuBPeF5wW9LaLJ+16pov6Ba3UQjsOA2iKP4Dx0NT eBPsswI/98psyWoT51NZLqZJvsmxPpNu1RaUnpGU+y6EMj7rM76xXuKw8jTftcy45SLHfqYpg5Op sK3KvueafMQsZkaAOFAUpksQXSeDrKfZv5MhA4ltU2vlIFXiYo2ENpMrnHiDvTPxP6+ntaRlUzdY fzfmodk5RqW2xB/rHRsRo9WbxN6F6nXEx95g4ivw5rWVVurlcAce3ICHQTo7pqqKfQJcN/IDPO71 Wp4RXno1TrVg+dmxv++6Zbo0nq68sv/m3mYK2rd75zMh2pt4BQ0tzVOcTgVvlOVgywLLWdCXp3/q wRV5Rdb9gR3UH0Us6Cs8sfT02uZZxfXfc35E1i83EQojWs/OF5hlk+zwoz2h9zNc1sJ+dysrWsoa eAnpofBXty6SDHCP/7ZIy3v3t5b6x4szruAU7tsrEuE8j82sRMw9D1NTB8hfu6+hauIKXneDnoCu ut9QLqXct+gDi2BF39p4F7QQTTfFrJI2s19Ksul6k9Cdlwo4KcGXObaHBeLnZFGeh+sP7d8eTg5e Tx0liGRvU77XIaljbGd5KMykne13h75TI7gXoWBgDK/qkveOHLD/rH0uoC505e93AS9owV4VwryK 4/59ilgDF6c1ak/f9fuoyHZHUGnvAfeucdGCi9WsvuZZmqEX1tpEMy6W0m79ikhO0zy11GzK+76W i+18134P/Ied3qYGuby0hvCOHHfzU8hVxeiJGB0eBAtvD3Pw5VQcpqTyEMNm3g8vEWn5q4nIUnpi bRg+bllxH4GSFKIJOvUzRlPNT2T39iPM/zlWatl2CBRjYHhZPf2DsQoaJK22O708sd+ZocytEeea YKnp56VQekZv2iiB13U/5TB6TGB9S5ug/Sn5tbLymdbnw48/hBOzM1zoV2CHpPGSirVhzMwX/Nnx UJrzV8T/hIots2qLbloEBGTOd//xxvHfrDzJO/YkHE2F9roP9YSrg3Ht1MJW78eR9pCsKSINLAxc SPdm0S2FW31tRmlH+8BtS/ZLJCvmurdl1V3zWiuuFj+uTLC0dH19fXxs9yTdcd/gcM/Oa15jDubr pde6j56+fr+WDp9d+D5ubEDMgv2TT86er2dCX6GD+jvXJxYSxrZN855Rik27r2fDTj63O+vrVzd0 XQBu+ay02eEgkbcG8rxJ7vs9agkVtSZIEqHCeUDi8alpInOTqeA9VNb67pktV/p+MMhDxIxT/no4 QG0bFPIleNSWdvtzYJyLqFn/yZWVZ0v6XIiJWYJ608tajWzrBDF105o8bhL3iP4S3xvk+gQUKrw5 ovbabrU4O/z86OS3D7fJpKx//XEV09t1bcOXpxf6cVSifqxX/It/smrFR+57P3NVu3Nfv3U+y38M 0uSoajmldSTD62f5vEfCImMUImqbEXUFKGb/oG4/kx59PFs7kweLUyjKi86v6imYNF2wnkRyweY/ r+JQNMnLpYmYzYhGejxm9q+187qACWQE3y3BjxLqF6Ovdd2bkmDNSq+iclbfNc0TVJWbl7lbCEPs P4FhqeD1nSW4QJqJiGgH8+xohlHRCPSIfARa37T7b2MpDm6IWfbWkw9+5aLuX7m0oqNuN9J+8ezt fqO+VNgliXkohi8GNHNDs5YoqKgCgyQoOhIH1fxbxdrN6vay4H515LpY5G3x22ssQsndY2eTcZee GY0JplCfRU/O3KH7gcWEVQYs8Q0/rY58KIlhKzny5MbY/lZF1TmwKKtTzUYMQOVwaxM0pWoNwwX/ 9tmKQDXSYqPWTC63RCgS8H0Pg+lXL7ueKZxgMHt8gt0ShGQ3Y9R1syiCEVpfWK6wtfYSsbR8ldkq GSVW264zyr9SQPMxjTVd8GbbavmVuoHoiMw4gyyb+hyj4rmmB35aK435Qcxae6WgaVHLZ/lW/xTT niniP9iBVwG6PUIrpuYAIvW9uJMgX6bRl5fw5xR9CTj8YHhmVjjJnHo98OWmItCMdH3q7WkL9YUK KUF/50NX1E7yztB8b3rX8cP2yezl8HPa87L/zPBqRdzlUgTipYNQiOQfIuq9XEHzBH1D3hPY6BHd RpOJCo7YpNowGRuOoEc5956278UxnPnyHerd5eVoF6Gr+v75jR7uwdoW9VFdJ8wrqUb8S3sW/0CN M0hAO3Q8+8udWoMpxGrXuPH1kP1qO3HIRj+3+w/kRxNkxAVOwBjCsZ7EA9IWomKeiCNxfaoXbgrZ 8VxjNwSIHcm8sqD9nd7huNyRel4ZMIIu95Jzj+zHXc4jqxDVVHC/TF0P91KrM+/D6Ykp2sKXZ11C smuJQ0Gbe0ka02JLG8HwvVt1KLPXbUfI4BFTMriKWlSRtAxH/gNqMtDAibk/JUiEoSzw7IXy7TWx 5JWyQxoMAjEWUTOEfNkgkwVHK5784nMkuO4PHvkIuOK1p5HXImLIZ44SSaR+MCNiHCZlxhkgrTpg ir8Z/gH0KOFR6JCik9AoTb6q2gcNwS3HlhhHZB2PGvhNmOMh0bjA99pqrMyxlHVZ6tfBrXjqbFfg aY/hZjzLTagDVh0i4WmTGBRzhjAoUZubuLmExpcQqgy0CtcxgdxaXZAM6hAMNZCP1TT+/pYanrgd /d0qewjju4vzBiZS2ln07QUlV3qnBymlONrwrVjWtYhismEInUTl1JP0mSjc5UZeH6J/Kx6mUrPu fhvraXvn/nsYcYHlT5mZKyHREyMIL0hz+0KLKaRSJ2t5+vaJUVeSN9YkPVZ3380wXeBWY9XA/LZB S0eClnet79qqA0N6yElEkwDYM1W9P6ix9/A7LrwvzZm80ehEHBpD3yovEm9Nj/UjzzNewUksD3gb NGWNGZNHXAgcijZfWFceBAM/xmpGGwvFBH2LNsPN919bEna2Y+xWKWImYSEAxBczJAIkbzToZsxh f6ysG6iqBt8YHA1s7yui7bjTzzGVI/J/gCyJGTf+xhR8rqSxmi0JjHWO8UtyzRBVIeKA2fucZei9 s6Rilw7RaSxLLGcpHFehZP9DqZtfYvmvjNfe+rhDy4XVO9AsICoBKr77RctVWVxvO3CI2FbEWnI3 ASQzR1Pav+UVvE8SdaOuVJxEPgSbBCbzLxuYf9zVUEtJ7ZubJOc/sr/PnyPE6qoqv3WyS9P4xN6k WAmlmCi/YsLA5s5Q1mH79f0qJmecyst00nIjwXu3UicGgl+PLZ+98xEc6XGQna6UQYrhsoPHCP6k u4w2nGZQT8AOaeqf12Nr5LcyIBWVcOcjdzGFcMG3P66jWMp6NlkWblhnqYGRriTivvNNIJvyy7XD AdIKZWhdqV4R4jFInNzuKt1e1mcH9GNHW0+H/UQlaq72o5Pc9Ylm+QDIR/jt0nhg5DcOoaX+IFF9 8qcN3qXS+RHKOR2XqJ053gxnXr9azxfk5vsm9cf5RkHVOsodOWGWp20zDM6Q2l+S8bIa3cTumSb4 YaXtLq/tAkHWeY5upL6djlx/KEx7e6VGxYYfDUusJfrpUrJekD877PuLGR/VRyEh/4MxFXpiZRb+ sD1nfsStwELdqCHMG+t/vnLKCZaQMFWp0zsl+VmQsEy52pJpIhaf5XUJyk3a3DU5iW+dUi6ZaUA1 n0yyt+apb+uA689k4V7j5fU+8unPmNvPklwnGRaVtiloB4tnTKeTCKaLVaLpYbJxls9hVx6gfKpj F6r6bQobjpumiP3+O2GAQgO9rai4VrlsGs0RfrB1qOtGcRlpqhsqQTql1oTccJxPvkA0AT7AmJpQ DWycELFbMuYJpPfW+0lARHoBSA8NcBJkoDmqDhdiEJCaoA5uVOqItwV3SqNpUBSfX1prsSFrJA/R WgcxWNgo9Cpx0Cvx/tPo22FQgmfUbWGkccbwnBPgOjMp+LTO7c4tUBWpDULSImkjKXLuyCcB8dQs lpplDliRhQKM/Hv05RQOVdQX7AoMEM7/1d5VhsWxZdvGJbh7cG8s0GhwbSC4BregjUtCgluwoIFg wSW4u7uEBIemcQgW3EOAR+7M93KHd2fm/Xm/3qz6urqqTp3VX9fZp/Y53bX3on8CfqJNTOyHQnRS 3FXCHzfydH3ek87RTv3n4Npmv1wI/d1+7qHH8SS6Ahs9oc8Cg+2BvHx00zrdpu3+AlwM1VoKTDD9 C2KZiDHqBVb+nRATTlgDRV0g/undbdKHk/dohrfUcjqu4LsAYXg5wBii06M1ROMwAhI+aQn83GTI MiiMNtKEXnl+C6wrCuCRMYDXMcH3VkiO4N+IFEhJb/U+1PCIvh4XqMY4IgnxC0VtZQbAA9M4N34u Tf5cirxqEnntt6sL+CSec/kKgTPJrnb+iYMmxiQ9MjdhQ94jySmPiHAHlq7WWOllnIwGCUK3k3Lj x2J35QVfligWzGGDZi4+GcB91+bex76UKr6+tQOiFo/SoB86W+hLJrUTiHjDBgjF2YcU9+WakBwq lxun1U5sWHpyaEuPPi1IoMwrqSp502GXTCjgvQ6QiIOlHJ6kfBxxAmu1FDHRfJxsX3wq+PLm+/ZE zsxFwieSW+Ud/IOM5Qm+6aam4bLtzqbtlhgVxo/V1YFdWvZbGU3Y7wxRaUkZM+eiN0/Yg1lhhxSF pLakif5G8/kYhUZAOFOwVt1PY1OVunjQIiscvZ0YWMHeSNk3Pg0X4qVyt92WcfWMz2Hp240vXGnk YUT5djeB7ETxlQttWhomQqllvPWhbCWw5h04yWp45P3Tw+fbcFP8xqH5bhVwOFfftCopeLbqTp9L J9T1QavIU4KeVdtcOMq4TuI4GNTfCqQgg7gOTZA9BLoY8C7R6liPe0v1eoPHwmaJnoGJV2zIevO0 /VDpORBUH/PTUgmUyxbyluMrzdJL568ySOPZ7Rqk20nJBsC4v6eHBhDsTpolbM73dy2WcjMYL3fU V9SHpVdWXDgESKHzTnctsoLzkTP4ez9m5RTTHX7B9H68ykyh0jzyinerM7dKxX6YCzdlwPJdGIY9 NukjyZicr48UAa1xw7TfxruBEf5UZNpKDEljd/5hrbzUEAEAK2oCpgYeWy41rpQBvt2SJ+yrHjEf u0hnT3QfIpX/nncPR6np5yP/uzHlMN2ejmkt5AmBzq5+eaKthgox816DTo1QCw9aST08yYgA8Z80 OoZDidxWPqlUNhHeS9UNnvtyZanY04IGqAcUl+PYMe51hspt24VF2eO0S7w6thuF+yC854U/G/Ms mPbTPdYWlwdunA6gQbcN9WK0BUF+4rGIgQggFbkiU5OmYEVmMbgEng4+W7lBNtOrDpqEaACYVlNB QrxCCNyW2HHGuEwOb7LYEHK01tdjzVhZVUTo/6N+e8UVYXZShs58MCRs4LNEsXgL3Y7bzwIvMbeG aBb4CmJ0iVHJnjU7eA+8Yu1yaS4zS79C3KkBVx6P9Ut01bIY6K2AgD6GROrlBhrcOYCUgNr3EZQB 6xk7bQXSok/lwLrX5Ng1OnVb+UKHB1eDl4fCehZrlt8GJDR8czEBpaNzzV3co1eJGCujJHURAaX8 nNY7LtOy3J1zR7yhjtiZBVVH/utOTOXs5UeR9gJyckd7CjohOYXj96VmQdPaXi8D9XdB7HAnRF19 VN+/NrURY7wxFJCoPQ7CWDGKosMTmVLTz56b7zwE4ml0hw7vLo8wKAdJ441zyuPEUrug8LS7Jiuf KNWx9pSifYpnFUy7ESX4FP2Cqjdoq6KjH+2Z5AwZPim3MlGMlAeWAmOIth4LPZFW+9qICXmV1Xog +kRB2BRIqieYqih4+A5J6eJcYF/y6NbMf60X6eO7F5tfsPLykz5TtQgSMTq7B0yfqDd/KK+iiezY d79w4yLSU3W0W1n06kl9HL5L9TH6xM1nTXN+9MAAxoFG5Wj1Ys4MSpZy+4iPEdp+P4VibH9RHNHr Ht/YfcVHOroRdnV2JeP69UQpV32YFucz50ZXOrs0noT5UypOpjW9xn0mgkqcwcleu5PzI9cnbJYR af5mwMisDR5RLm2dJaphFDmUqfNCxMLgxHDC2gr1RBlnuZWEybWGFPY+RPnbyhP7c4m8Zc4IDKRK z2aKJ7RinuJfMKZFBsc5hDgUGgSHxpz8pXPfIlTnIh4w5KPk9sQX2tLiqyC1rdLHVomBJfOu/UVE cLB5vJHwzEmeJNrOyMvLKz2tdAqAcdFI0AgqT0NSYjJjcgNYutuzzVXhA3jw8DR/mDfy9EnvJncO cmazuBnHOH+KKOS/GW4GA9h7E+BZ7+ChhiyywYoaXw7wK8stA4xRpE2qz3fQs3jO+Zs0S8zzxweE qs+FKJ/APzsYkjchvjgZmWQ8vRhBpCNmRqsx9iPTfK+OZ53+QnYShc44CkMIkUWLNfewGLMsiEGV Sl2P4CCM+YXEs6yC3I3p6A/P2pX2hjEhpOiaqkaYQFqJJo3bT1EnTfIt6TqyRlkuktaiUUNITu3d rTSUojt79obnz2NC4PIUr728B0IstGLuEFOZG43VpgWmLg9MUtCeV8JSDwEcpDN6m5pFDbHIZvsn nwpADftNV5gFkbiQYhF2286XDMfp8k7tAxRRGE7NFW5uBUobj3MnsTdos2FMOt57JSrfhC8Gec+V ESod51mg1AsME9TTq84chjwObrVHlDvTxt10GqUquNLUmPnomznssVQZ45N5UPq88/XJWOgFz2zj cyELEsHkOSPOw0AG4DnYZoKob4sIyafwdkNdKiJNRG0Vha8rVzOloGqRWB6O9Oay5KwwB0xcdG1h ez8JfEVwmcVLsm2ZvdUBHZLK7sJ2b0KdoP7Iw0uN9NQ2t80iVr8qgKn7B8idQG2FiUEhgR07t74A T3rYnZtxsXHOJ/kNibGKDtPaRX/xSyPrIGsSVgEbsR/dV/CkaMbUSKU4c0sSs77ObEKsDkJAVvJC FNY3r88uAwtP6SovcC0574cuijUJ79mTf2y/Evps8YGKEvFrHZGv9BvCjc8WiR+xik5r1OKqGsI+ C10WW1G2jFqtsczdDmPU6zH1Ra2TKOmqu4VKCuZeRsj7qqlMJjgFI1JPi2sS5r0WGETqKyozhYnK yMksUHL2Sg+czCgWPR9CHHF6F1dAS/IkN9Mv30KzSl13erIkX54lO3gnXr5MG5fDVjQAUVUcbz2N zbZn8uxYJyMIAd0mLjSMNxdioXz6vkQw6AD3BI0AV04TMjX4YRwvIjHX07Q24CriODGu1awy8oy7 lyEZqRaNWR+8HRyTvbfTBkaO/ODJwemAE4hppqtx8yzJieib6M0CUYH3TKTBgDPIWYnsvRUwZzWa oneBi//QFmUECCgx4vJ8I+mbnApm0RRDviIMbpVqopOPVQv8CkKdgG6BjZoGFMF36uKy62fx4tRv fZ0TUtuoWIKPC+3lkMyOSbawsrN4g8Ofx4c91cAGP9GfzMzPrI7bIDQpyeohLGziG1rI74IFgCgK L/pKyKThpBq5CC2jtPaQ6wIbm1/uK79ETZs3DtXQgbmtwuaJV7gJ5Ck3OS6ytyTEMSoLa5HQNb2D 2UcMjWMPEPDHOuAM6KzsYkcnA9875JASupPUHIdaB4ITmoO1h4lqqOttj+GkF9I9vhK/gQTAlLmL ntb9qF7AUliiWkUmoxyxfcy62ZFDVbqFKgmF+5zi57RBOlczR4eOrGr4flxCc5Hvu5khCmlZQfyn dVfPS492dVGipTbT1EJkWsNCP8mBms1H1pzru6I3OSACTra14nYI38XqLbDNEBu+unfdznI5ymsU CNxzbEn+uWrPcydglGGk0p8us2FTxJVWSN8RJs8dRO6QJk+tlBBaReCMZMXWaQXHOyE/1hGrGJ8G rYPLepHN7DdQrpPvoFAQ4CSjypwdR6QjKvga+lL7LfiRI36H/YoDeS+QXB7k3yvsuG+2stfy4XC4 ca+Vtpn1bnDZ4WeI4SFoy1PMqxmUJdaiTMCPNHk0u2qLaXOW12OP6TBhyVKaTholEDXg5UhpOKgY MCHfiaecKyNDJVkZV47o1I1qucdCKRdHhGmrynprYArb4gLuGnV+JTs3oKk1XBbMmUwNTGHIhjo/ jWmTVZp1AlwwZvDJ8p0LZ57QAPa33gMuoKsirfCNJ63yMEo1PzfZvSinzehsqJ0tQmP7ifh+X9tY SYIQRooUzMrMDs1ZB8Vsk9HgnXOqcAWdxSiyy7D27DyiC7+FZf8aJdnGMxTehdAIZXwbk5q4/Bye vfFC1vq6BqynEJyYhu23tiBnPzB55XRz7WLBuHWF4OzLd5o5FJG1i4+Sl5Bd77QCG4UDJ1pohr9M qXtKwyWQMwqbWkwcv5VdnjQmFJzmjXkin4jDf6ZqjZm4ystIC0PtKAqyIM0nbMqG/myyegKaZ0mi nxjUKnu5y4EQvvJVNUXWSg+fvnbuGW2aZFmEW/UWjdg0uX11ujQTxSPHTYE7fhTH9nT2siRDvWfw Et8DGiQ6riVgtWg3NPuvEPkRU+HyGHqASs+SanRf5cQEKSYlTOtaG5qk0MDQdW93aGB7DM2hmCva W3dAVWunpcESQJl+0g1Rj2LY9b5Zw8z3xPDtcn9n73qgdlxZ90B9f0N9RGatBAwUNp/gKkMFJrxe gvOHUkMsA2ty2zyXjz4TnLccXidhrYJcrB7RqNpZ4w1LyMalGGFZ7lJDaHpQMFbzqUkwreA/4S6r jKaWJeBaqvNdonx7iuUey82OzCT7OEh9JnO38eN4HF+PB9MeazlQW50V03M811zNNGGSBZyyFZJf FppsCquNOQxgs2t43r0g/oZf1o4405qOGUa233hYZQkeIrG2a0hFj/LRZiNl4uaUyn7zoWa3YGJ3 4qWnP57pEyxGBoSdsx7uSrMgAw1XuiL/8WARWpfUHSq3p1LH+Kg5Rd55CQTAF4f7jNkCbw8RZ6Q6 2bg/XNJ0G8D3ywSrRWkzMJbizwr5l+I3DKzYvmIqwW/46lny68hjkHfM2+kJyss6v3bvlfkztJuj PT/ZdTSk+rA1LBaNuH75KTMpTBswaXwCY/okHxp8dp7+spOhyQ+/ZRqk5uzJnGnPReU1NgCMVyfn mEhthyd22Cb4yBHFCR9DxUJAWYp2yPVVbOpQXtGyAfCZnpSHsOR7TD9hwg3znV2fR6sMHZSR0vga 8PPBq1KY/Hm2Wgl8RrXCWyapaEjU1f7bi7koqKvnEL28npMQQEPEwlbsK12PqvJWN6LlOkC9DXY0 2bxstXq4ZxlAgh8OhqkPRLn6gQqpJnmNYmZPd9/qy/nivobqHiIwf4QGGbmoTvsLGvMJ2+B8uwo3 m2a6jrAjrO3oHfUSXgf+RQcn6Pfo6xzoMi95GqOK8JjJZNaAtSnm88hmA/QI51Sh+4bxNYy8lvEA ZZHuja4f2wpllDatTYYZkSmZYH04WlefTRWA+FuEZqyxPqnfxvfoCjNazQpLoC7W80Vu2oMMO8+/ YqDNnLYSmYssuFmw+q5CswicdejcB1WkjiMamvBPG4hV/LoJzS7wJ8/nDSN+ULIhWQ0/x0+01Arc ZvXX4+S1DWz8Ut37BnN9DxCFWdLsPscmrR+YVU83Wug5rvcyqRNGnvzHmEc3lqZi34lS29A5Z1qm kXUnnam1FknFnqteZTr3VuPUHyKhBnes/EW9OtTtSV6P9rq2MtJ9IRHLyxmHHkeiEWWMJ6q1uIn5 /XqOZQMO0s+nbkgEJ1tXaOdRXM3xsK0asdHcC3K5ZFjCZcGfq19dDOFt58sRhocRj0MBSQ7NKxB/ yCO3gwMyw7IQllbDWW9Q8vW9hwDOu1bN0hNt3Wr779fHE3JduLiI7vY1TMAx5Mm5ZKgQqqTI4JVT lu8JsNiSveKNz6V/q/e2GEOCbm8QKVlWFjmGPYUFRAMBJ+KQUH1tjGN8b0efF7VZdwQDZcz3uZYz nnxwctMNa45ZbCSc5vpuuy3b9m1dByd17KeJYug+/0JndnVhkopaOUcYOWLL4x7DVCf8sPlOaaVC dWCTdq7/MWCGaxezqwbUJNlQ6clyTPGjStk1RUjwrBxnFJMcVmA/oBSxCftiuDaPuBDeMICuYu2/ Q4+R7riuloGXXp9GUWWk0Iz1BKMLSKYsV4I1LMnHv1FVyKzTcXCzZ2LNuO7oXLzo/mhICgAbBMLt S3xKJPCOha/mZXQsTzcPbHTg+psd59MtempweQZqD89ZBTa26w4PEgnOHTmhYH07FzxBkWroHlPd AFfUIqisk44xBUCeG2UETPHCthW21d8KE7nLvrWax1rTfmnNwF1UpSrby6xrRp2NrqbDUmJGMqdV UwF4I+75yTI1aVmYYcGa5VtI1ZSOtVuPZlPIOIWtERyTuj8ASaWP8oMQGAgzLKLY2Ih667koP4zs Om8CIR8p/ZqVdLI2d/npwwGEG6JRMPZlB+hwV+FPTYIUQibQY7SP5Xuq6nbqc3p4aitnSU5tUv5J 7KOBRcTRFP2udMMNzSPvK7qvDlXWRXJ4Y+WsenSxh8dxKJ8lDvyUyZle2SRgs7EA+xy4IRHOzyPn zWBuHyESBXkN3AFJ7H3pT195veZuG/LIoNw/QDd2QOkDUh8akfwaeUU+14RmaiItLjBjOSHV91k6 4hXwVTTAN25DGMn0+2Kl7Lrlky2GqH6uMvNHxuA/O+PpL5CNwO8t46G3S0tltDBO9ta4wsZkmK5Y i26wRMvatH3ePGhs2tf6tjugqlIm0PELpry7OT4BkbeMrrlWsyzKDMNIq+xVE9I2nBNkqZVydA9b tUZ6PqrFC5Fa3ageybJGvB6pCTOnwmHJzS9rQd6TvPK9snXWfqrkAnlXSWolTCQ2pOa7V0viRaJE yHReaKQj5WfgzlvMEPdrOjKTl7SXKah8LW1FIktkyS5hUSoAUG1zOi+Ia0N941AiYexxgJ9LTrRK nmO8+tut8FcMb4lRuOlmCkylaPFmGxVVcMvHMov9Ek0ZCVnw3ajgxGZiSRB2GIlGc6TDpewBvgNZ 28dUiqOFhatr4h6tqqfX40Uf5OtVohvxm/2lcCuZURMZtSssOsj5+BjCaZuI6RS2ioGSt+voiUn8 VouCk29OuVNLsZZUsPPjJ5ZcE1TSWNtbhF69dDndX595wXlwY1LSafG+laxce84sH1Ps199IseN4 lOaXxAMbgteTgY+L5h8bp70Rakv2jeM3sTc/YiQ6Px6z/+mTkl67tBHf/+XdOzJPqKiWMH4dB9mt Fdrjk93iALPRYNkhIgogfJ09Vt3nTshg5znu00C0ASdpVjfq72N+Gfi7TcKrYBlqxFxlhKDdgnxG qjePETKO6WZrSJzAtrzBqmQSPd2GFIxe0e7qibVGKh6f3kIlCUijTejIYDHRnruo0YkJbF48QWks VEg7frwF8SS76a+mce0BnuTrScoeku6NQ1bC/Wtz6r52GX/7JYHgsxX2IkXEgRCYHzIEqtVqtdfi XPG+ye+uN86Exu+5xUYVFEeUTceLhtoTj0QpQ7G/lSk3oI3sUdsjcFIzol0l8XcWZrWnqPI5PKMd TNVCYm18u5Bh4ml2gCe8ZR6Oa8PA+BozQfjwNXxxwCyDZvhPLqT6mf2JhHc3ahADpCxem0pvcyrM en3TJjLZEpp+SqdKZJcZhze1+/WZpaYw3FiX1ccdiJy45JPL+vf26o9Vphjjjf+llQXb33mpSvft 45L7gRCndpdi7EEvV57qaz/k+XMivV/9zT2yudKRNyH7MISwYFo2slmiZIO5nuRCmXtfFepr17mp HdlMwyZM5Rjt7Ngwck7Cj2cpju9T6AVJylHPbCt7PKbPc6qZrTcRRjwAqlpYI/4RAonWHJJfCNPx cFEo5kpuR6MTVefXP7SIuvS+RN3fvLv5Kh7orgslO0ITa0hc/H7QJjRmHBwoKBNa/aW/IGJwamdQ hJPfNsorJ7whuOHuE87FGlJZHZrVzyna5xzlxHoFNF/gnia3UJTh5gkfd6HeOYSfJyGzPNPKmkzk KXN78yN2c6xsDuFCtmInVJqB00GpPmq7jnthGmhv3rQETd7nI1VdcFeMEb33uBU6vzzuCqNJ/Vjo uM5qJTJ8kkm9YiGRswZkXViUkJjCkmtaVudYPRjTB+ENs2nuVrNHUhTz5+jooVafR9L6Us3zxLdE NYo1zYui1dE5F325ijV/v+Ie/btfd8JTRXgUA27PxmG30CGm1q/7Zk+gogntRctVsaWfgehZb2FQ nZMNaWaSKETDPRy2C2UUiibcvUUrfP2a63xrfhsyy2Q5o6Xn2LUQmeZ2LzbwFIu3gkB45B6Lzwlc /xy7sKGWL/RlVbIxuPqlr47X5mVqmD9sKVE9/Dv1EVoWW/GNoVtY/EtRzZ7Oz1PiNagh6SNT1IQY +WVV70GhVRJ6NWJAhZzXp3RAt1TgHNGsL2cdJjTd/lFyLrHN3Im7YpthFbyjVGu8K3FUPpMzLqwC uOtlBZFqTT1bTJWx7WLYTe+5WXw3Sb94g3zVepEdqTsbd3a7O762kaRW0XrexK7awrB7zL7lWpPc w1/y6qCV49iuuHWx0VTkpeS52QL14ucmJ7Rz71iRrFPH+h1axnNQD3/F4nODAYz3QL2DVlOlVXLd gzevX3aJw6Ld6y9CuN86mrS2fzWJcBh+dbCmqE0InMlLdecpa6pbM8rr+95K9vHFT3cZk9XjsbtH fxnct7m8nth8v3UC+JsexN8e9/C0gVg4ev4R1GfxrhLSzYUhfQF/g+KQZitIGtAVFpdFeYzyAelD FapuNjUPREwsYB64Fuv5ruXkjL/cqpuxp7fTlKTTBE1EQ49ChNfndUCj0eLSqCfrk7uwK320iEWb 6fXM5rtTTBuFJmyhirDAXH0mOwb6EaMQpaxKp0kapzoKOqQa8rPqcwGqaJA3q8n590mjcYPKU8P1 961DHQ5Xcq9dvdZvVUIjmeadzqAR8tmswg5xOwhChZhI8yEmnCp/+U1ZBBF6fuXHhyD8kR8fzsLR XNXF0cmV09zd1c3R4e/58eGYM3/rpPx/RUu8il0XF0nfQeCb0DhvB7xa6Lj2pDYOKLb0pCJiEjQl Hp9A7x5fedCmW+A1axO/cHy7cvUUuwVN9qCk6lyaldULVRUFPuLQgCDBUeowbvQ7TUXCqFesVkA8 DkUYfM7WLYcuWA2/iEXtfewyK6Jwqd2Ss2YbHbsG5ZNvVurogzwO4EZ3ab3xtB5aR5IVaCdO07NF ZmCyofF6h8KXpd0lMBGtWJNG8akqebPaIdCnApxvgxvwrkEsak30+7zAUT4owNrM29DRpJsmyCug 4Ilj2r3nEOUwNzmK/LC1O+VCVd6PbXNcQ1IwaPYzWYT8qPW8+IeyDSnS6Nk1xg1dm3efCpk+YUSI Q1gaOM5GPW25hphGYAsL16VyXp8rvaMRt+0CQZRlS2zs+sUPg6d4QBuf8Bbc7PAae3ny+lII0exT Oo2hAffxOG3pVKMgmj6QJIgqd+DMW+px18z0gOUaNNJVpHdC7u1fJ7Y2KND50HFvfksIv9Qx/mSj pk5O/zHQ30jT6ITMc2G0Ym+JkTQxgaHZJPB6ve+zt0x74Sc/p8fbyCUD0eJsea9TfRR97WvSBTx0 CLZe016FbfbLgQ3EZrTGM7GhKQnAzUfvM9VAM/lKc+YewtdDcTid66p6gSzz5iYzx98jZr12v8pF 0dCg46vXRYyVCmDbhvIFCXaGxHT9IKPNa1uvY67pIi/OsOWN/chJpEPxkS6F4uQDOarelwbb1bu4 b9q1P7pA88J47DIhtcXU2QQ/CXxcy8bRaaM4DmqPQbO0jM+VjVBFkXsDA9BnepgfFcKj+7CGCQdN l2JaP861Xv0kQViqEnAr5WNYtU6MaO+eWwJX3ik9PlF3pkCswyHNyV/OmQfCQWRq4HRfaXCl2FVs /E7GfFlxJI49NoElJuV7K/qmuPxj3K1wuthEZddh9azfu4NZZ+66nPipVG5uk2kVdyeTQzPlVeEX g/szSfps0HFAXTSV/FZyqT83aOxaduUpCfPYBLVUTV0tQnXBOM7N12+eXm4fWm3ebTkhTmR7zfr3 p5Vdh31EX40+P2CjvXrW/zUF9DmUt8TTBDzyjuAOPgDLdb5dp7ElhXNrN/pMF//nKc+GMeCvrL6B Zug29d6mBRF++aA/35kdXSz/Y/a/ERnX+QzGhRNyIN8ite49rZBZEe4RqKn/igUP7zmhs+seDQne fNULtJfXz9KUPXSAePxfRsQ+vvDxdj9bBA2SX2aW6lW/jq1EjKwBp7767OMAGWdQhEfPkTbHLNHD 9jfUKmBi2wbbPIW93O3ICYnBGQxSb+LzlnVj2JQQlWLrCiAICVeZrodnOeXzlGwLJ/OKtSRuQSIA Zy4jcLk/id2LAY/K158pIzIPZvkTYSBncLq0zdBegn7W02hjJZT2LY49a3bGngNH9+rdUJ2yf2+C jKX3clvfponBblveFedDMYwUTKbAg3h8INXSy1v5goqbE3i8/lMKVYlXONZvzswVI/nJ5/Nhy+ds p+lnrKqbatKl6AGnUJrWlYGn4JgmXDjHbbWPvIXlN7fhvordyoE/Ru0CMz/RsoXzfplYdYk3TthM 2kg66RfoyAp7H7UYLewHHih1OfX49FO0+bau0fTxIaMWLAmS7r8H2fqCn2T5fiwI3xle86gbPQj6 w6dGdRRXbxZVw3FbThtn/GBm7Kcg4cXT2+9Tvy0aDh4I+GdqPA/xF9o8Dwn+USrkz8i97yZ/Eg55 WPGhOMJv7CL/lVTCw/oP0//8hgL1/y4Z0EPGh4l0fkON5t+n1XnI9jBBzW/I0f6bdDUPqR7mc/kN c7p/kt3lIcXD5Bi/ocf4L1JlPKR5GLP8G2jAfxHB/JDmYbjLbxDy//vgl/9xeR5EjfwGhcC/iCF5 SPPwifI/NZjIP3m+/CHFw1nKb4CM/mLO8rD6Pw79/wzq+/77FxOBhwT/OC77M3pM/0Tw91Haw9r/ 6N/+jCaLP3/8372dqiLSH8qNOPeLIuL9Xf8F4K/xyx/+0gv6j0be/0/86uGmAKf7xR5gAzD/Q/nO BuAIgAA4AR73awsAB8AB4AoA3u/Z3L//KuO4P+pyf6bn/R4E8OIPfUfp+20zgDvA9r7c+L7c8n6t /Aejy/0R1/uX1T2zMUD7v1m4/9Ca5Ljndb0/3+uf2Od/8H+L/wJIikwBAAA= ------=_NextPart_01D91C3E.31FF3820 Content-Location: file:///C:/8CEA55D4/960-RTE-34-4_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01D91C3E.31FF3820--