Latencia de las redes celulares en Ecuador, y su influencia en las aplicaciones

Angel Daniel Roblez Tapia^a, Carlos Roberto Egas Acosta^b

^a Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador angeldrt1@hotmail.com

b Departamento de Telecomunicaciones y Redes de la Información, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador cegas@ieee.org

Resumen. La diversidad de aplicaciones en internet está creciendo de manera exponencial, algunas de ellas son sensibles a la latencia, el cual es el resultado de la transmisión de paquetes de extremo a extremo, como ejemplo de estas aplicaciones tenemos la telefonía IP, video conferencia, y juegos en tiempo real. El problema que genera la latencia ha influido en el desarrollo de tecnologías para minimizar sus efectos, como por ejemplo tamaño de los buffers, mayores anchos de banda, definición de técnicas de QoS entre otros. Muchas de las aplicaciones utilizan las redes celulares como redes acceso, redes que influyen de manera importante en la latencia total. En este artículo se realiza un análisis de la influencia de la latencia en este tipo aplicaciones y se realizan mediciones de la latencia cuando los dispositivos se conectan al internet utilizando redes celulares y relacionando estos valores, con las aplicaciones sensibles a la latencia.

Palabras Clave: —Latencia, redes celulares, QoS.

1 Introducción

Los parámetros básicos cuantificables, que permiten evaluar una red y que afectan a la calidad de servicio que la misma ofrece, son:

- Latencia: El tiempo que tarda un paquete en ir de un extremo a otro.
- Pérdida de paquetes: El número de paquetes que no llegan a su destino.
- Velocidad de transmisión: La capacidad de un enlace que puede ser utilizado para enviar paquetes de una aplicación a otra aplicación.
- Jitter: La variabilidad de la latencia para los paquetes transmitidos.

De los cuatro parámetros mencionados anteriormente, la latencia se ha convertido en la causa más importante a combatir, para proporcionar el adecuado QoS a las nuevas aplicaciones que están surgiendo, ya que las demás con el aparecimiento de las nuevas tecnologías, prácticamente no son un problema.

Las aplicaciones tienen diverso grado de sensibilidad a la latencia, reflejados en la percepción del usuario en la calidad de servicio que recibe (QoE), cuando accede a las aplicaciones utilizando internet. Los niveles de sensibilidad a los parámetros asociados con QoS de las aplicaciones más importantes, se presentan en la Tabla 1.

Tabla 1. Sensibilidad de las aplicaciones

Aplicación	Latencia	Pérdida de paquetes	Velocidad del canal	Jitter
Transferencia de ficheros	bajo	Baja	Baja	Ninguna
Trafico web	moderada	Baja	Moderada	Ninguna
Transaccionales	moderada	Ninguna	Baja	Ninguna
VoIP	alto	Moderada	Baja	Alto
Video en tiempo real	alto	Moderada	Alto	Alto

La latencia del canal, se compone del tiempo de retardo por propagación en el enlace, y; del tiempo de retardo debido al procesamiento del paquete en los nodos que conforman el canal. El retardo por propagación se caracteriza por el tiempo que le lleva a la señal en ir de la entrada del enlace, a la salida del mismo. El retardo por procesamiento en los nodos se debe al tiempo que el nodo requiere para procesar los paquetes y tomar decisiones. Este tiempo se compone principalmente por el tiempo en que los paquetes permanecen en la cola [1] hasta ser enviados y por el tiempo que requiere el nodo para procesar los paquetes y cumplir con su tarea, y cada aplicación tiene sus propios requerimientos tal como se indica en la Tabla 2

Tabla 2. Valores máximos de Latencia en aplicaciones [8] [9] [10] [11] [12] [13] [14]

Tipo de Aplicación	Máxima latencia (una vía)
IPTV	100 ms
VoD	50 ms
VoIP	150 ms
IP Call	150ms
Video streaming	300ms
Video chat	150ms
IP Call	150ms
Video conferencia	150 ms
Juegos	50 ms

El tiempo de propagación de ida y vuelta (Round Trip Time RTT) [3], que se obtiene utilizando el comando ping disponible en muchos sistemas operativos, depende de las siguientes características:

- -La velocidad de transferencia de datos.
- -El tipo del medio de transmisión.
- -La distancia física entre la fuente y el destino.
- -El número de nodos entre el origen y el destino.
- -La cantidad de tráfico.

- -El número de procesos que están siendo manejados por los nodos intermedios y el servidor remoto.
 - -La velocidad de procesamiento de los nodos intermedios y del servidor remoto.
 - -La presencia de interferencias.
 - -Políticas de la administración de las redes

Por ejemplo, se ha obtenido que la demora máxima que sufren los paquetes en la cola de un router puede llegar a 250 ms [4]; lo cual de por sí, es un problema ya que si los tiempos de latencia de ida y vuelta (RTT) son superiores a unos pocos cientos de milisegundos, la percepción humana de una aplicación de multimedia interactiva podría degradarse drásticamente

2 Red celular

Cuando se utilizan redes celulares para conectarse a internet, éstas se transforman en redes de acceso, y su rendimiento esperado para proporcionar el adecuado QoS, se ve afectado por una serie de variables ambientales y de diseño como son:

- Propagación en el ambiente (ej. indoor o outdoor, obstáculos).
- El estado de la red (ej. Nivel de carga sobre la red, horas pico, handover).
- Tipos de dispositivos y aplicaciones.

Fig. 1. Conexión a internet utilizando redes celulares

En las redes celulares cuyos dueños son empresas públicas y privadas [5], todos los recursos de red son compartidos y los parámetros tienen una mayor variabilidad, por lo que la calidad en el primer tramo de la red (red de acceso) depende de:

- El número de usuarios que se encuentran en la zona de cobertura.
- El patrón de consumo de estos usuarios y por tanto del tipo de tráfico.

3 Evaluación de la Latencia

Cuando se evalúa la calidad de servicio y en particular la latencia de la red, hay dos maneras de hacerlo: una cuantitativa y otra cualitativa [6]. Para realizar un análisis cuantitativo de la latencia de las redes celulares y realizar una comparación, se requiere que las variables que influyen en estas mediciones, sean las mismas. Esto se complica, porque requiere la autorización de los administradores de dichas redes por lo que se ha optado por evaluar la latencia utilizando la herramienta ping, que proporciona valores

que dependen de las variables anteriormente indicadas y que pueden proporcionar información con la que se puede evaluar de primera mano la influencia de la latencia en las aplicaciones y deducir algunas alternativas de solución.

Uno de los principales factores para la evolución de 3G, del 3GPP Rel99 a HSPA fue mejorar la velocidad de transmisión del usuario, sin embargo también se consideró, reducir la latencia que se tenía en las redes celulares, para proporcionar un mejor apoyo a aplicaciones que son sensibles a retardos de tiempo y que tiene sus nodos de destino conectados al internet. HSDPA y HSUPA son las dos normas establecidos de HSPA. HSPA se incluyó en 3GPP Rel5 y Rel6 para el enlace descendente y para el enlace ascendente con velocidades de datos comparables a los de ADSL. La introducción de HSPA a las redes WCDMA proporciono una experiencia similar a las de usuario con redes de acceso DSL. La evolución de HSPA también conocido como HSPA +, fue una mejora de HSPA, lo que permite a las empresas celulares 3G para explotar el pleno potencial de sus sistemas WCDMA [7]

Cuando el 3GPP trabajó en la definición de los requisitos para la evolución de HSPA, el objetivo era lograr un tiempo de ida y vuelta de 50 ms en lugar de 100 ms en la red celular (en este valor no se incluye la red internet ni otros tipos de redes de acceso y transporte).

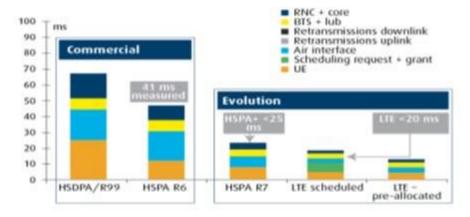


Fig. 2 Retardos de las diferentes tecnologías de redes celulares (Nokia Siemens Networks)

En la Figura 2 se presentan los resultados obtenidos por Nokia Siemens Networks, en los cuales se puede apreciar cómo ha ido reduciéndose la latencia en las diferentes tecnologías utilizadas en las redes celulares. Se puede apreciar una latencia de la red de 41 ms en condiciones de operación real con 3GPP Rel6, basadas en RNC. También muestra la latencia esperada para HSPA y LTE con valores menores a 25 ms para para HSPA + y menores que 20 ms para LTE. En el Ecuador las redes celulares están siendo reemplazadas con LTE, como se puede apreciar, la disminución de la latencia al utilizar LTE con relación a HSPA+ es de alrededor de 5 ms y con relación a HSPA Rel6 es de 20 ms. Este valor generado por las redes celulares, al compararla con las latencias de las otras redes por las cuales tienen que pasar los datos de los usuarios, nos permite

concluir que su contribución a la latencia total de extremo a extremo, puede resultar mínima si la red celular es gestionada adecuadamente ya que la latencia generada en la red internet y en las redes satelitales son muy altas.

Las medidas realizadas desde la ciudad de Quito, utilizan teléfonos celulares con servicio de internet contratado en cada una de las tres compañías que existen en el Ecuador. Los tiempos de latencia fueron medidos a servidores ubicados dentro del distrito Metropolitano de Quito, a servidores ubicados en provincia y a servidores ubicados en el exterior.

Las pruebas se realizaron desde varios puntos de la ciudad, incluyendo pruebas utilizando nodos conectados a redes wifi a los mismos servidores, de tal manera se comparó los valores obtenidos cuando se accede al internet por redes wifi con los valores obtenidos con el acceso a Internet a través de redes celulares, evaluando el tiempo de latencia adicional que se tiene cuando se utiliza redes celulares como redes de acceso. Se utilizó la aplicación Traceping para Android, que es una herramienta de diagnóstico de red que combina la funcionalidad del Traceroute y ping, esta aplicación primero encuentra el camino entre el dispositivo y el servidor de internet, y luego empieza a enviar peticiones periódicas de eco a cada host en el camino. Traceping es útil para investigar problemas en la red para saber exactamente donde está el cuello de botella.

Fig. 3 Pantalla de resultados de la herramienta Tracerping

En la Figura 3, la primera columna (*Host*) muestra los equipos que existen entre el origen y el destino, la columna *Snt* el número de paquetes ICMP enviados. La columna *Loss*% indica el porcentaje de paquetes perdidos -La aplicación nos indica las características del host de destino, tanto como valores de latencia mínimos máximos y promedios, jitter mínimo máximo y promedio en milisegundos, hostname, IP, paquetes enviados perdidos y recibidos.

En la Tabla 3 y 4, se muestra los valores de latencia promedio cuando se utiliza las tres redes celulares y la red wifi como redes de acceso, en el sector centro de la ciudad de Quito, de 8:30 a 11:30 horas y de 17:30 a 20:30 horas.

Tabla 3. Mediciones de latencia obtenidas en el sector centro de la ciudad de Quito (8:30 a 11:30)

]	RED	1		RED	2]	RED :	3		WIFI	[
	min (ms)	avg (ms)	max (ms)									
epn.edu.ec	52	86	421	16	124	223	93	114	177	6	127	1031
espe.edu.ec	49	97	291	50	282	1021	41	91	304	13	22	225
ucuenca.edu.ec	58	85	276	97	3542	11542	102	114	279	23	31	264
unl.edu.ec	68	98	272	60	247	894,8	112	124	358	27	33	100
utpl.edu.ec	47	77	351	174	966	6719	153	177	407	302	406	2012
.cisco.com	98	142	440	91	254	903	102	114	201	12	24	259
facebook.com	100	145	527	135	2144	10248	102	113	168	63	75	169
hotmail.com	238	498	1776	100	2952	8123	106	125	248	77	102	442
.upm.es	200	372	2166	117	624	5455	222	258	528	67	90	299
<u>yahoo.com</u>	191	257	507	38,2	192	389	142	164	732	115	124	368

Tabla 4. Mediciones de latencia obtenidos en el sector centro de Quito (17:30 a 20:30)

		RED	1		RED	2]	RED 3	3		WIF	[
	min	avg	max	min	avg	max	min	avg	max	min	avg	max
	(ms)	(ms)	(ms)	(ms)	(ms)	(ms)	(ms)	(ms)	(ms)	(ms)	(ms)	(ms)
epn.edu.ec	57	113	401	109	668	13236	99	112	153	4	13	196
espe.edu.ec	67	192	2207	31	109	426	43	67	245	13	20	144
<u>ucuenca.edu.ec</u>	61	87	145	59	238	1458	103	123	373	18	34	561
utpl.edu.ec	50	72	138	51	198	801	160	175	213	104	124	587
cisco.com	119	2026	19173	178	830	7254	102	116	323	66	75	166
facebook.com	160	379	2889	89	542	6312	102	111	220	101	122	688
hotmail.com	108	386	2360	89	868	9910	152	164	257	93	132	1247
<u>upm.es</u>	113	376	1360	89	2082	11617	222	245	352	205	222	532
yahoo.com	155	1099	2848	2570	4803	15514	170	273	933	106	134	649

Tabla 5. Mediciones de latencia obtenidos en el sector norte de Quito (8:30 a 11:30)

			• •									
]	RED	1]	RED	2		RED	3		WIF	[
	min	avg	max	min	avg	max	min	avg	max	min	avg	max
	(ms)	(ms)	(ms)	(ms)								
epn.edu.ec	53	231	1853	82	189	306	21	220	2153	13	46	1161
espe.edu.ec	43	159	1407	31	109	426	39	61	568,8	18	49	1119
<u>ucuenca.edu.ec</u>	63	535	4451	82	196	671	42	499	2565	20	35	265
utpl.edu.ec	163	229	1214	221	240	502	187	498	2751	222	245	783
cisco.com	388	467	1037	200	485	1274	143	176	953	153	215	1990
facebook.com	253	869	4630	175	601	2010	94	117	402,6	153	215	1990
hotmail.com	62	420	2472	189	340	982	110	174	1466	172	214	1227
<u>upm.es</u>	295	320	714	82	187	394	232	7392	17720	295	320	714
yahoo.com	525	2522	5564	82	191	311	171	239	1578	240	270	729

En las tablas 5 y 6 se muestra los valores de las mediciones de latencia producidos en las tres rede celulares y la red Wi-Fi en el sector norte de la ciudad de Quito, por la mañana de 8:30 a 11:30 horas y en la tarde de 17:30 a 20:30 horas.

Tabla 6. Mediciones de latencia obtenidos en el sector norte de Quito (17:30 a 20:30)

•]	RED	1	RED 2			RED	3	WIFI			
	min (ms)	avg (ms)	max (ms)									
epn.edu.ec	53	231	1853	93	729	2204	55	645	2010	19	46	295
espe.edu.ec	94	680	2532	97	439	1358	40	301	1541	12	55	829
ucuenca.edu.ec	84	696	5472	110	721	3337	53	61	153	33	65	799
unl.edu.ec	76	166	894	119	405	1727	66	1673	8694	34	51	412
utpl.edu.ec	284	496	2485	51	198	801	718	3138	8453	132	145	350
cisco.com	388	467	1037	176	232	959	122	357	2510	67	182	1422
facebook.com	105	194	1072	192	770	2785	93	2562	7808	112	275	1753
hotmail.com	141	258	2403	207	491	1731	126	438	2653	251	840	4751
<u>upm.es</u>	202	302	1275	91	332	729	141	4777	12148	204	231	763
yahoo.com	363	1323	133	92	272	473	53	1010	1848	60	67	74

En las tablas 7 y 8 se muestran las mediciones de los valores de latencia producidos en las tres redes celulares y la red wifi en el sector sur de la ciudad de Quito, por la mañana de 8:30 a 11:30 horas y en la tarde de 17:30 a 20:30 horas.

Tabla 7. Mediciones de latencia en el sector sur de la ciudad de Quito (8:30 a 11:30)

		RED	1]	RED :	2]	RED :	3	WIFI		
	min (ms)	avg (ms)	max (ms)									
epn.edu.ec	249	780	3417	78	380	2032	98	200	1385	15	22	157
espe.edu.ec	307	1042	4899	98	450	1622	63	84	261	14	22	135
ucuenca.edu.ec	74	137	380	112	532	1488	122	139	194	23	41	466
unl.edu.ec	62	109	355	209	754	3047	140	158	239	37	117	637
utpl.edu.ec	242	289	459	232	522	2065	193	212	456	97	195	2056
cisco.com	103	192	833	179	672	2017	127	158	388	69	75	179
facebook.com	378	1063	4850	222	687	2176	152	171	297	60	69	261
hotmail.com	20	32	342	209	568	1363	123	135	191	159	166	331
<u>upm.es</u>	237	302	1081	92	353	762	70	179	327	193	212	900
yahoo.com	157	195	633	92	683	1781	193	211	305	43	45	51

Tabla 8. Mediciones de latencia obtenidos en la ciudad de Quito (17:30 a 20:30)

		RED 1			RED	2		RED	3	WIFI		
	min (ms)	avg (ms)	max (ms)									
epn.edu.ec	4682	10164	19042	170	341	865	62	130	640	23	234	1637
espe.edu.ec	47,8	173	1548	147	280	1496	43	62	197	30	282	1248
ucuenca.edu.ec	46,2	126,2	679,8	112	532	1488	63	82	311	56	462	2968
unl.edu.ec	67	157,2	687	313	368	415	73	87	162	41	191	1298
utpl.edu.ec	228	297	810,2	229	300	1425	172	190	279	160	236	952
cisco.com	85,6	145,2	585	195	300	2143	131	338	1856	76	140	979
facebook.com	192	966,6	5070	101	221	811	103	120	261	77	153	651
hotmail.com	152	264,4	1009	220	348	1366	133	181	710	149	393	2803
<u>upm.es</u>	242	313,8	631,6	313	368	415	253	273	384	237	493	1943
<u>yahoo.com</u>	139	181,6	973,2	97	266	860	173	192	269	198	269	779

Tabla 9. Mediciones de latencia obtenidos en el Valle de los Chillos (8:30 a 11:30)

		RED	1		RED	2		RED 3	3	WIFI		
	min (ms)	avg (ms)	max (ms)									
epn.edu.ec	78	154,2	992,8	61	112	457	38	56	320	31,2	89,6	400
espe.edu.ec	55	5840,2	15657	62	258	2183	40	58	330	30,2	103,2	434
ucuenca.edu.ec	83	177,4	1202,2	77	614	2622	45	64	334	35,2	47,6	378
unl.edu.ec	314	22632	44724	55	382	2382	49	71	254	40	54	286
utpl.edu.ec	234	1296,8	8144	177	384	1708	189	219	695	155,8	189,8	945
cisco.com	117	168,6	815,4	145	205	563	126	141	299	89	182,2	516
facebook.com	105	440	3416	81	426	1474	95	126	581	94,4	150,2	538
hotmail.com	146	262	1667,2	56	366	702	145	241	1827	67,8	81	405
<u>upm.es</u>	279	464	2207	60	127	1398	235	277	712	21,4	139,2	972
yahoo.com	199	393,6	1618,6	68	152	965,2	158	186,4	635	123,4	140,8	428

Tabla 10. Mediciones de latencia obtenidos en el Valle de los Chillos (17:30 a 20:30)

		RED	1		RED	2		RED 3	3	WIFI		
	min (ms)	avg (ms)	max (ms)									
epn.edu.ec	83,2	246	830	62,6	167	749,8	48,2	96	784,6	38,4	126	772
espe.edu.ec	81,2	157	447,4	43,6	249	1709	48,4	106	1052	27,6	32	67
ucuenca.edu.ec	101	374	2231	105	347	1690	53	120	1615	34,2	124	435
unl.edu.ec	105	249	1460,4	53	401	1508	60,6	95	382,8	45	201	624
utpl.edu.ec	290	475	1968	171	442	1089	196	256	1632	157	344	2772
cisco.com	65,4	519	4320	134	410	1150	153	197	567	109	125	370
facebook.com	166	311	1185	156	335	1424	103	143	588	69,2	181	708
hotmail.com	173	702	10922	182	516	2998	137	167,6	445	85,6	197	1007
<u>upm.es</u>	265	787	5216	84,6	259	1701	254	358,2	1961	257,6	297	943
yahoo.com	173	250	933,4	69	252	1489	180	223,6	646	136,4	205	782

En las tablas anteriores se presenta el resultado promedio de todas las pruebas realizadas para las tres operadoras que existen en el Ecuador a las cuales se les ha denominado: Red 1, Red 2 y Red 3. Las medidas utilizando redes wifi, nos permiten determinar los valores de latencia que generan las operadoras celulares. En primera instancia podemos concluir que la latencia en las redes celulares en el Ecuador es mayor que las que se pueden presentar en una red wifi.

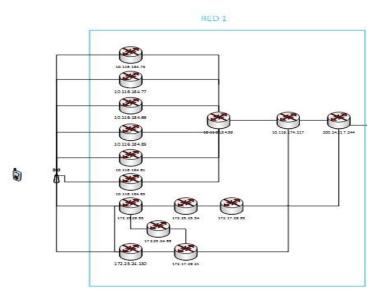


Fig. 4 Direcciones ip de los Nodos de la Topología Tentativa de la Red 1

Con los valores obtenidos con la herramienta Tracertping, se identificaron los nodos de capa 3 por los cuales pasaron los paquetes, en cada red celular y de internet, información que nos permitió obtener las siguientes topologías tentativas de las redes celulares. En la Figura 4, la topología de Red 1 tiene unos nodos para servidores dentro del país y otros fuera del país. No toma en cuenta el sector del cual se tomaron los datos ni la hora

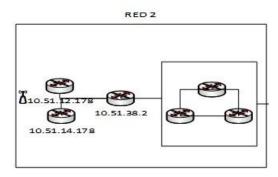


Fig. 5. Direcciones ip de los Nodos de la Topología Tentativa de la Red 2

En la Figura 5, la topología de la Red 2 no se puede determinar de la misma manera que las otras dos operadoras, debido a los problemas de firewalls y seguridades en la red que dicha operadora tiene implementado, sin embargo se presenta una topología estimada de la misma.

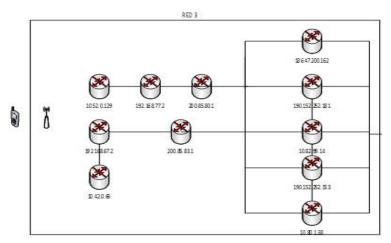


Fig. 6. Direcciones ip de los Nodos de la Topología Tentativa de la Red 3

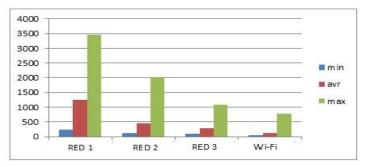
En la Figura 6, la topología de Red 3 se determinó que el primer nodo no varía dependiendo del sector en que se envié el paquete ICMP, por lo que no depende de a que servidor se realice el tracert. En el sector centro y valle, de la ciudad de Quito el primer nodo es el mismo para todas las pruebas que se realizaron mientras que para los sectores sur y norte de Quito es diferente. Las topologías de las redes celulares son estimadas, ya que no se puede saber exactamente por todos los nodos por los que está pasando debido a las seguridades (Firewalls) en las redes como es el caso de la Red 2, en la que no se obtuvo una topología detallada. En las tablas 11, 12 y 13 se presenta, el valor de s la latencia de las tres redes celulares cuando se accede a servidores nacionales o internacionales.

Tabla 11. Latencia en la red 1

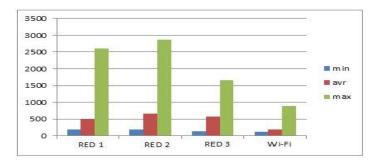
	Min (mseg)	Avr (mseg)	Max (mseg)
Servidores Nacionales	182,38	1186,24	3418,65
Servidores Internacionales	79,49	462,04	3020,36

Tabla 12. Latencia en la red 2

	Min (mseg)	Avr (mseg)	Max (mseg)
Servidores Nacionales	71,91	447,60	1910,92
Servidores Internacionales	83,47	630,51	2950,71


Tabla 13. Latencia en la red 3

	Min (mseg)	Avr (mseg)	Max (mseg)
Servidores Nacionales	53,17	217,25	1029,07
Servidores Internacionales	39,62	371,25	1422,85


Tabla 14. Latencia en la red wifi.

	Min (mseg)	Avr (mseg)	Max (mseg)
Servidores Nacionales	56,05	62,36	99,26
Servidores Internacionales	111,35	118,89	133,96

Según los resultados obtenidos y presentados las figuras 7,8 y 9 se puede comprobar que la latencia, cuando se usa las redes celulares, para acceder a internet, no proporcionan valores óptimos, mientras que acceder a internet por una red wifi, tiene una latencia máxima entre 100 ms y 150 ms el cual es aceptable. A continuación se presenta las gráfica con el promedio de todos los resultados de la medición de la latencia, hacia varios servidores, dentro y fuera del país.

Fig. 7. Latencia promedio a servidores nacionales de las operadoras celulares y de Wi-Fi indicando valores mínimos (azul), promedios (rojo) y máximos (verde).

Fig. 8. Latencia promedio de servidores internacionales de las operadoras celulares y de Wi-Fi indicando valores mínimos (azul), promedios (rojo) y máximos (verde).

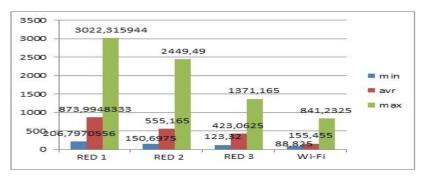


Fig. 9. Latencia total de las operadoras celulares y de Wi-Fi indicando valores mínimos (azul), promedios (rojo) y máximos (verde).

Los datos mostrados nos permiten ver que el valor mayor de latencia se presenta en la red 1 y la Red 2, con las cuales no tendríamos una buena calidad de servicio mientras que en la Red 3, el valor de la latencia es bajo y podría cumplir con los valores máximos requeridos por las aplicaciones. La variabilidad de los resultados presentados, refleja la gran cantidad de variables de las que depende la latencia y que fueron mencionados en la sección 2 de este artículo. La interpretación de los resultados puede ser diferente, dependiendo de quién lo interprete. Sin embargo desde el punto de vista del usuario los resultados coinciden con la calidad de servicio que están recibiendo. Los resultados obtenidos, demuestran que en la mayoría de los casos, la utilización de redes celulares para acceder al internet, puede aumentar el tiempo de latencia por un factor mayor a 3, llegando hasta factores de 10.

A continuación se presenta las redes que proporcionarían la latencia requerida para cada una de las aplicaciones más comunes. La siglas N/A indica que la red no cumple y la sigla A indica que la latencia si cumple con el valor requerido por la aplicación

Tabla 15. Calidad de servicio en aplicaciones celulares con la operadora Red 1

Tipo de Aplicaciones	Laten. Máx. mseg	RED 1 (Latencia en mseg)								
		CENTRO		NORTE		SUR		VALLE		
		186	483	592	481	414	1278	3182	407	
Video chat	150	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Voz IP	150	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Video streaming	300	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Videollamada	200	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Videoconferencia	150	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Llamada	200	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
IPTV	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
VoD	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Juegos	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Tabla 16. Calidad de servicio en aplicaciones celulares con la operadora Red2

Tipo de Aplicaciones	Laten. Máx. mseg.	RED 2 (Latencia en mseg)								
		CENTRO		NORTE		SUR		VALLE		
		1133	1045	267	459	560	332	303	338	
Video chat	150	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Voz IP	150	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Video streaming	300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Videollamada	200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Videoconferencia	150	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Llamada	200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
IPTV	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
VoD	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Juegos	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Tabla 17. Calidad de servicio en aplicaciones celulares con la operadora RED 3

Tipo de Aplicaciones	Laten. Máx. mseg.	RED 3 (Latencia en mseg)								
		CENTRO		NORTE		SUR		VALLE		
		139	150	945	1496	165	166	144	176	
Video chat	150	A	A	N/A	N/A	N/A	N/A	A	N/A	
Voz IP	150	A	A	N/A	N/A	N/A	N/A	A	N/A	
Video streaming	300	Α	A	N/A	N/A	A	A	A	A	
Videollamada	200	Α	Α	N/A	N/A	Α	A	A	A	
videoconferencia	150	Α	A	N/A	N/A	N/A	N/A	A	N/A	
Llamada	200	Α	Α	N/A	N/A	A	A	A	A	
IPTV	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
VoD	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Juegos	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Tabla 18. Calidad de servicio en aplicaciones celulares con la red wifi.

Tipo de Aplicaciones	Laten. Máx. mseg.	wifi (Latencia en mseg)								
		CENTRO		NORTE		SUR		VALLE		
		103	93	166	196	96	285	117	183	
Video chat	150	A	A	N/A	N/A	A	N/A	A	N/A	
Voz IP	150	A	A	N/A	N/A	A	N/A	A	N/A	
Video streaming	300	A	A	A	A	A	A	A	A	
Videollamada	200	A	A	A	A	A	N/A	A	A	
Videoconferencia	150	A	A	N/A	N/A	A	N/A	A	N/A	
Llamada	200	A	A	A	A	A	N/A	A	A	
IPTV	100	N/A	A	N/A	N/A	A	N/A	N/A	N/A	
VoD	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Juegos	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

La red 1 y 2 tienen valores de latencia tan altos en 3G que casi no cumplen con la mayoría de aplicaciones; es decir su servicio es deficiente. La red 3 satisface los requerimientos de algunas aplicaciones. Al comprarlas con la red Wi-Fi, es notorio que esta red satisface los requerimientos de muchas más aplicaciones.

4. Posibles soluciones

La migración de 3G a 4G LTE permite el aumento de velocidad y una disminución de la latencia por propagación, sin embargo, puede suceder que si la red 4G no sea adecuadamente administrada (tráfico, número de usuarios, etc.) la latencia por procesamiento en los nodos de dicha red se puede mantener alto. Para minimizar la latencia, se tienen varias opciones como los protocolos (RCP, ECN, VCP, MCP, URPC, TCP, TCP-NR, TFRC, WebRTC y UM) o la migración a nuevas tecnologías celulares como el mismo caso de 4G LTE que tiene una mejor calidad de servicio, tiempos de latencia más bajos, perdidas menores de paquetes y tasas de transmisión más altas. Es importante utilizar protocolos adecuados para disminuir la latencia que se tiene en el procesamiento de paquetes en las redes celulares, como por ejemplo para la red de 4G se tiene que los protocolos URCP, TCP-V, WebRTC y UM son los que registran menores valores de latencia.

5. Conclusiones

Para dar un servicio de calidad las operadoras celulares deben cumplir con la latencia mínima de cada aplicación; se debe tomar en cuenta la clase de paquetes de datos que se está transmitiendo para jerarquizarlos. En el caso de los servicios de tiempo real se requiere que no existan perdidas de paquetes y que la latencia sea mínima. Es difícil garantizar que en la red celular los paquetes lleguen al destino en la secuencia transmitida, por lo que es necesario un protocolo especializado en servicios de tiempo

real, como son los protocolos de los cuales se habló anteriormente, en donde se garantiza que no habrá pérdida de paquetes y son para aplicaciones en tiempo real. La velocidad de transmisión, la perdida de paquetes, la latencia, y el jitter son parámetros que pueden ser mejorados con el desarrollo de nuevas tecnologías en redes celulares como por ejemplo redes 5G. Puesto que la latencia depende de la distancia y el procesamiento de los nodos, se debería tratar de disminuir los tiempos de cola utilizando protocolos de control de la latencia y disminuir el tiempo de propagación del medio.

No todos los factores que afectan a la latencia están en control del operador, cualquier regulación que ignore esta realidad puede tener una consecuencia nociva en la masificación del servicio móvil en sus países. Así, la regulación de la calidad del servicio de las empresas de telefonía celular debe tomar en cuenta el aspecto anterior, por lo que se debe procurar definir qué se va a medir, cómo se va a medir y por sobre todo esta información debe ser publicada e informada a los usuarios.

El aparecimiento de IPV6 cambiara totalmente el modelo de negocios de las empresas de telefonía celular, ya que las convertirán en redes de servicios de telecomunicaciones, y por tanto esto puede influir en la manera como administran el servicio de sus redes y disminuir la latencia, ya que el negocio de comunicación por voz, se realizará únicamente por internet.

Si bien el desarrollo de la red 5G permitirá alcanzar velocidades de datos de 1Gbps, la latencia inherente a la propagación y al procesamiento en los nodos, consideramos que no bajará mucho, ya que concluimos que la latencia dependerá de del servicio en la transmisión de datos ofrecidos por la red de telefonía celular.

Este trabajo da resultados referenciales muy cercanos a la realidad, pretendiendo dejar claro que, para mejorar la calidad de servicio a los usuarios de la red de acceso de telefonía celular para conectarse al internet, es necesario que las operadoras celulares regulen sus parámetros de calidad de servicio, por otra parte, los organismos reguladores de las empresas proveedoras de telefonía celular deben controlar su buen funcionamiento y constantemente monitorear el servicio que proveen.

6. Referencias

- [1] R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS Provision through Buffer Management. In Proceedings ACM SIGCOMM 1998, September 1998
- [2] Maxim Podlerny "Networking Mechanisms for delay-sensitive applications" Departament of computer Science & Engineering, Saint Louis August, 2009
- [3] Phillipa Sessini and Anirban Mahanti, "Observations on Round-T rip Times of TCP Connections" University of Calgary, Calgary, AB, Canada
- [4] C. Villamizar and C. Song. High performance TCP in ANSNET. ACM SIGCOMM
- [5] D.D. Clark, J. Wrocławski, K.R. Sollins, and R. Braden. Tussle in Cyberspace: Defining tomorrow's Internet. In Proceedings ACMSIGCOMM 2002, August 2002
- [6] ITU-T,Methods for Subjective Determination of Transmission Quality. ITU-T Recommendation P.800, August 1996.
- [7] Nokia Siemens Networks "The impact of latency on application performance," 2014
- [8] Boris Bellalta, Miquel Oliver y Eduardo Casilari Prestaciones del tráfico de videoconferencia en UMTS;

- [9] Chenguang Yu, Yang Xu, Bo Liu and Yong Liu Calls, Can you SEE me now?": A Study of Mobile Video;
- [10]Kotz, G. Ayorkor Mills-Tettey and David Mobile Voice over IP (MVOIP): An Applicationlevel Protocol for Call Hand-off in Real Time Applications;
- [11] G. Ayorkor Mills-Tettey and David Kotz Dartmouth Mobile Voice over IP (MVOIP): An Application-level Protocol for Call Hand-off in Real Time Applications; College,
- [12] Alexandre Michel; Pedersen, Jakob Schou; Larsen, Lars Bo Acceptable Channel Switching Delays for Mobile TV; Fleury,
- [13] Shraboni Jana, Amit Pande, An (Jack) Chan and Prasant Mohapatra Mobile Video Chat: Issues and Challenges;
- [14]Hyunwoo Nam, Kyung Hwa Kimy, Bong Ho Kimz, Doru Calinz and Henning Schulzrinney Towards A Dynamic QoS-aware Over-The-Top Video Streaming in LTE;