Sistema de radiación doble banda con polarización circular

Frank Seguí Camacho
Francisco Marante Rizo
Resumen

El progresivo desarrollo de las comunicaciones inalámbricas a nivel mundial, y la necesidad de que los dispositivos puedan ser utilizados en distintas bandas de frecuencia de forma simultánea para satisfacer los servicios que se brindan en ellas, pone en marcha investigaciones con el fin de buscar soluciones económicas, sencillas y con la calidad requerida. Ante esta situación las antenas de microcinta por sus características resultan una de las opciones más indicadas para lograr una solución. En este artículo se propone el diseño y simulación de una antena multibanda con polarización circular empleando una alimentación de microcinta en las bandas de frecuencias de 1800 MHz y 2.4 GHz. La misma, atendiendo a los resultados que arrojó la investigación puede ser empleada para telefonía celular LTE en la banda 3 de 1800 MHz y aplicaciones WLAN como Wi-Fi y Bluetooth en la banda de 2.4 GHz. Todo el proceso de diseño, simulación y optimización se realizó en el software CST Studio Suite 2017.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Seguí Camacho, F., & Marante Rizo, F. . (2022). Sistema de radiación doble banda con polarización circular. Revista Tecnológica - ESPOL, 34(2), 64–84. https://doi.org/10.37815/rte.v34n2.876
Sección
Artículos

Citas

Braasch, M. (1996). Multipath effects, in Global Positioning System: Theory and Applications.

Brookner, E., Hall W., and Westlake R. (1985). Faraday loss for L-band radar and communications systems. IEEE Transactions on Aerospace and Electronic Systems, Vol 21, No 4, pp. 459–469, https://doi.org/10.1109/TAES.1985.310634

Collazo, C. (2020). Diseño de antena reconfigurable en frecuencia para aplicaciones Wifi, Bluetooth y localización de dispositivos en la banda civil [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].

Balanis, C (2016), Antenna Theory Analysis And Design, Fourth Edition. John Wiley & Sons. https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p9781118642061

Counselman, C. (1999). Multipath rejecting GPS antennas. Proceedings of the IEEE, Vol 87, No 1, pp. 86-91, https://doi.org/10.1109/5.736343

CST STUDIO SUITE® (2021). https://www.3ds.com.

Cabrera, A y Paz, N. (2018). Antena de Microcinta Doble Banda con Polarización Circular para Aplicaciones WLAN. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].

Davies, K. (1965). Ionospheric Radio Propagation, NBS Monograph 80, 181, US Government Printing Office, Washington DC. https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph80.pdf

Doust, E., Hemmati, V. and Wight, J. (2008). An aperture-coupled circularly polarized stacked microstrip antenna for GPS frequency bands L1, L2, and L5. IEEE Antennas and Propagation Society International Symposium, pp: 1-4, https://doi.org/10.1109/APS.2008.461944020

Carrazana, G. (2019). Diseño de una antena reconfigurable en frecuencia para operar en las bandas de servicios WiFi de 2.4GHz y 5GHz. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].

Liu H., et al. (2014). A multibroadband planar antenna for GSM/UMTS/LTE and WLAN/WiMAX handsets, IEEE Transactions on Antennas and Propagation, Vol 62, No 5, pp 2856–2860, https://doi.org/10.1109/TAP.2014.2308525

Heidari, A., Heyrani, M., y Nakhkash, M. (2009). A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications, Progress In Electromagnetics Research, Vol. 92, pp. 195–208, https://doi.org/10.2528/PIER09032401

High Frequency Circuit Materials (2021). RT/duroid ® 5880 Glass Microfiber Reinforced Polytetrafluoroethylene Composite Rogers Corporation Microwave Materials Division. ISO 9002 CERTIFIED http://www.rogerscorp.com/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/rt-duroid-5870-5880-data-sheet.pdf.

García, H. y Núñez, J. (2017). Arreglo de antenas de microcinta con polarización circular para la banda de 60 GHz. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].

Guerra, M. (2020). Sistemas de Alimentación para 5G. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].

Oulhaj, O., Touhami, N., Aghoutane, M. y Tazon, A. (2016). A miniature microstrip patch antenna array with defected ground structure. International Journal of Microwave and Optical Technology, Vol. 11, No. 1, pp. 32-39. htpps://www.researchgate.net/publication/298045954_A_miniature_microstrip_patch_antenna_array_with_defected_ground_structure

Kumar, P. and Masa-Campos, J. (2017). A novel dual polarized waveguide fed circular patch antenna for Ku band applications. Microwave and Optical Technology Letters, Vol. 59, pp. 1743-1750, https://doi.org/10.1002/mop.30622

Kumar, P. and Bisht, N. (2011). Stacked coupled circular microstrip patch antenna for dual band. Applications. Proceeding of Progress in Electromagnetics Research Symposium, pp. 629-632. https://www.researchgate.net/publication/266346102_Stacked_Coupled_Circular_Microstrip_Patch_Antenna_for_Dual_Band_Applications_PIERS_Proceedings_pp_629-632_Sept_2011

Kumar, P. (2014). Computation of resonant frequency of gap-coupled ring microstrip antennas. International Journal of Automation and Computing, Vol. 11, No. 6, pp. 671-675. https://link.springer.com/content/pdf/10.1007/s11633-014-0814-5.pdf

Kumar, P. (2017). Design of low cross-polarized patch antenna for ultra-wideband applications. International Journal on Antenna Communications and Propagation, Vol. 7, No.4, pp. 265-270. https://doi.org/10.15866/irecap.v7i4.10435

Garg, R., Bhartia, P., Bahl, I. y Ittipiboon, A. (2000). Microstrip Antenna Design Handbook. Artech House Publishers. https://books.google.fr/books?id=_er1LO5pEnUC

Varma, R., Ghosh, J. y Bhattacharya, R. (2017). A compact dual frequency double U‐slot rectangular microstrip patch antenna for WiFi/WiMAX. Microwave and Optical Technology Letters, Vol. 59, pp. 2174-2179. https://doi.org/10.1002/mop.30705

Singh, A., Aneesh, M., Ansari, J. (2015) Slots and notches loaded microstrip patch antenna for wireless communication. TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol. 13, No. 3, pp. 584-594. https://doi.org/10.11591/telkomnika.v13i3.7282

Steven (Shichang) Gao, Q. L., Fuguo Zhu. (2014). Circularly Polarized Antennas. John Wiley & Sons. https://ieeexplore.ieee.org/book/6670809

Toh, B., Cahill, R. y Fusco V.(2003). Understanding and measuring circular polarization, IEEE Transactions on Education, Vol. 46, No. 3 pp. 313–318. https://doi.org/10.1109/TE.2003.813519