MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01D8920D.255C3660" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01D8920D.255C3660 Content-Location: file:///C:/D23738F9/886-GALLEY.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252" 886

 

 

 

 

https://doi.org/10.37815/rte.v34n2.886

Artículos originales

 

Índice de carga puntual y su relación con dimensio= nes en bloque regular de roca

Point loa= d test Index and its relation with dimensions in regula= r rock block

 

Ernesto Feijoo Calle1 https://orcid.org/0000-0= 001-6901-7933,

Emmanuel Choco Salinas1  https://orcid.org/0000-0= 001-8991-1254, Gerardo Pelaez Becerra1 https://orcid.org/0000-0= 003-0721-950X, Bernardo Feijoo Gue= vara1 https://orcid.org/0000-0002-1089-1332=

 =

1Universidad del Azuay, Cuenca, Ecuador

pfeijoo@uazuay.edu.ec, emma@es.uazuay.edu.ec, gerard1708@es.uazuay.edu.ec, bernardofeijoo@uazuay.edu.ec 

 

Enviado:         2021/11/28

Aceptado:       2022/02/04

Publicado:      2022/06/30

                         

Resumen

Este trabajo tuvo por objetivo evaluar el índic= e de carga puntual, conocido como Is (50), de un material rocoso o simplemente r= oca, en función de las dimensiones de las probetas que fueron elaboradas y somet= idas al ensayo. Se inició con la toma de muestras de un mismo material, el cual = es proveniente de un solo afloramiento y que está compuesto por una andesita anfibólica. El afloramiento está ubicado en el sector denominado Cojitambo, en la provincia del Cañar en Ecuador. En s= egunda instancia se elaboraron una serie de probetas hasta obtener noventa, que estuvieron en condiciones idóneas para el ensayo, las mismas que quedaron divididas en tres grupos de treinta, el grupo uno denominado P5, el grupo d= os P7 y el grupo tres P9 y las dimensiones de las probetas fueron aproximadame= nte, 10x10x5 cm, 10x10x7 cm y 10x10x9 cm, respectivamente. Como tercera etapa se tomaron las dimensiones precisas de las probetas y se las valoró al ser sometidas al ensayo de carga puntual. Los resultados son interesantes ya que muestran un comportamiento diferente para cada grupo de probetas, lo que ge= nera algunas interrogantes y se puede valorar el índice de carga puntual de la r= oca objetivamente además se obtuvieron conclusiones que deben ser tomadas en consideración.

 

= Pa= labras clave: = andesit= a, material rocoso, resistencia, compresión, minería.

Sumario: Introducción, Materiales y Métodos, Resultados y Discusión y Conclusiones.

 <= /o:p>

Como citar: Feijoo, E., Choco, E., = Pelaez, G. & Feijoo, B. (2022). Índice de ca= rga puntual y su relación con dimensiones en bloque regular de roca. Re= vista Tecnológica - Espol, 34(2), 29-40. http://www.rte.espol.e= du.ec/index.php/tecnologica/article/view/886


Abstract

The objective of this work was to evaluate the point load test index, known as Is (50), of rock material or simply rock, dependi= ng on the dimensions of the specimens that were developed and subjected to the test. It began with the taking of samples of the same material, which comes from a single outcrop and is composed of amphibole andesite. The outcrop is= in a sector called Cojitambo, in the province of Cañar in Ecuador. In a second instance, test tubes were elaborated until obtaining ninety, which were in ideal conditions for the test, and divided into three groups of thirty, cal= led P5, P7, and P9. The dimensions of the specimens were approximately 10x10x5 = cm, 10x10x7 cm, and 10x10x9 cm, respectively. As a third stage, the precise dimensions of the specimens were taken and evaluated, as they were subjecte= d to the point load test. The results are interesting since they show different behavior for each group of test tubes, raising some questions while the poi= nt load test index of the rock can be objectively assessed. The obtained conclusions should be taken into consideration.

 

Keywords: Andesite, rock material, resistance, compression, mining.=

 

Introducción

En el desarrollo de actividades mineras, específicamente en la extracción de minerales o materiales a cielo abierto o subterráneo, éstas demandan la permanente caracterización de dichos minerales o materiales, y = es de vital importancia conocer un parámetro fundamental, para desarrollar estudios de estabilidad de los sistemas estructurales que conforman los emplazamientos mineros (estructuras mineras), el cual se conoce como Resistencia a la Compresión Simple o Uniaxial (RCS) del material rocoso. Por esto es importante determinar la resistencia a la compresión de las rocas p= ara desarrollar clasificaciones de los macizos rocosos, como la del Rock Mass Rating (RMR) o Índice Q, con las cuales se determina la estabili= dad de las estructuras mineras. Así también la RCS es importante para el cálculo y diseño de voladuras, específicamente a cielo abierto, ya que se considera un parámetro inmodificable. Según (Murcia, 2016). Los parámetros inmodificables son los que condicionan el diseño de la voladura = y no pueden variarse, por tanto condicionan los resultados, definen los parámetr= os para el diseño de una malla; se dividen en dos grupos y son descritos a continuación: Parámetros del macizo rocoso que son las propiedades del maci= zo rocoso que se derivan de las estructuras geológicas, la geología regional y geología local, tales como la densidad, dureza, tenacidad, resistencia entre otras, las cuales condicionan el diseño y exigen un aprovechamiento de estas para lograr buenos resultados tanto para producción minera como para el análisis de estabilidad de los bancos.

 

El diseño de las obras fundamentales en minería constituye un aspecto organizativo y económico esencial debido a que las “fallas”, que ést= as puedan tener, influyen en los resultados finales que atentan contra la eficiencia de las empresas disminuyendo la rentabilidad y por consiguiente = las finanzas para trabajar en la sostenibilidad de la región minera (Martínez, 2016).

 

En este punto es importante describir macizo roc= oso y material rocoso o roca intacta o simplemente roca.=

 

El fin de describir el macizo rocoso, según este contexto, será por consiguiente determinar las propiedades del mismo, que influyen en los fenómenos mecánicos que se desean estudiar con fines de aplicación a los problemas de ingeniería, por ejemplo: caracterización del macizo rocoso, flujo de fluidos dentro del macizo rocoso, soporte y deforma= ción del macizo rocoso y disipación de energía en el mismo (Suárez, 2015). En consecuencia, el macizo rocoso está formado por el material rocoso y su estructura general, es decir discontinuidades, planos de estratificación, juntas, etc.

 

El material rocoso o simplemente roca es parte del macizo rocoso. Las rocas son agregados naturales de uno o más minerales con proporciones diver= sas, cuyas masas sólidas resultantes constituyen una unidad de la corteza terres= tre (Rivera, 2005). Las rocas se clasifican en rocas ígneas, sedimentarias y metamórficas. Las rocas ígneas comprenden a aquellas consolidadas en profundidad en el interior de la corteza, denominadas ígneas plutónicas o <= span class=3DSpellE>plutonitas y a las producidas por magma que llega a superficie, llamadas ígneas volcánicas o volcanitas (Varela, 2014). Una roca bastante común en la zona interandina es la andesi= ta, la cual aflora en muchas zonas del Ecuador, debido al volcanismo presente.<= o:p>

 

Las andesitas son rocas volcánicas de grano fino, son comunes, como coladas de lava en regiones orogénicas y ocasionalmente forman pequeñas intrusiones; son compactas, algunas veces vesiculares y comúnmente de color castaño y en extensión total ocupan el segundo lugar después del basalto (B= lyth y Freitas, 2003).

 

Una de las propiedades de las rocas, que es de vital importancia par= a el desarrollo de las actividades mineras, es la resistencia a la compresión si= mple o uniaxial, pero en muchas ocasiones se vuelve tedioso el he= cho de enviar permanentemente a laboratorio muestras para obtener este parámetr= o, especialmente por factores como tiempo y costo. La RCS es el esfuerzo neces= ario para fracturar la roca, se determina mediante un ensayo establecido y equip= os adecuados. El equipo utilizado para este ensayo es una prensa Humboldt que tiene facultades para someter materiales a ensayos de tensión y compresión. La pr= esión se logra mediante placas o mandíbulas accionadas por tornillos o sistema hi= dráulico. La máquina de ensayos tiene como función comprobar la resistencia de divers= os tipos de materiales; para esto posee un sistema que aplica cargas controlad= as sobre una probeta (modelo de dimensiones preestablecidas) y mide en forma g= ráfica la deformación y la carga al momento de su ruptura (Feijoo y Brito, 2021).<= o:p>

 

Las rocas presentan relaciones lineales y/o no lineales entre las fuerzas aplicadas y las deformaciones producidas, obteniéndose diferentes modelos de curvas de tensión contra deformación para distintos tipos de roc= as (Secretaría de Comunicaciones y Transporte, 2016). Una de esas re= laciones es la que existe entre la resistencia a la compresión simple y el índice de carga puntual o Is (50), propuesta por la ISRM en 1985.

 

Pero debemos aclarar que las rocas son anisótropas. La isotropía se puede aplicar de forma simplificada como siendo la propiedad de un medio de responder de forma igual, independiente de la dirección que se aplique la fuerza. Las rocas no suelen poseer esta característica, ya que la presencia= de defectos o su composición condicionan/alteran el comportamiento de la roca matriz y del macizo rocoso (Santos, 2014).

 

Materiales y Mét= odos

Para el desarr= ollo de este trabajo se inició con la obtención de muestras de un sector denominado= Cojitambo, el cual presenta una morfología de tipo multiforme, es una formación volcánica en la provincia del Cañar (Ecuador) (Feijoo y Román, 2019).

 

Con las muestr= as de roca sana, en este caso de una andesita típica de la zona, se elaboraron alrededor de 120 probetas de dimensiones específicas, las cuáles se distrib= uyen hasta conseguir tres grupos de 30 probetas cada uno, con características aceptables para los ensayos, es decir con las dimensiones adecuadas y sin fracturas existentes. Estos tres grupos, el primero tiene como dimensiones aproximadas 10x10x5 cm, el segundo 10x10x7 cm y el tercero 10x10x9 cm, y se= los denominó P5, P7 y P9, respectivamente.

 

De hecho, las propiedades de las rocas varían en las diferentes direcciones que se apliqu= e un efecto; por eso, a este punto se propone utilizar el corte en la roca, el c= ual por razones descritas no será igual en función de la arista establecida para generar el mismo. Este corte debe ser ejecutado sobre muestras o probetas preparadas, para tratar de mitigar los efectos de la anisotropía, lo cual es muy difícil conseguir. Así pues, en el proceso de corte de rocas intervienen conjuntamente el equipo o sierra de corte, el útil diamantado y el material= a cortar. Además, no se deben olvidar los parámetros o condiciones del corte = ni quizás el factor más importante: el humano (Suarez et al., 1998), por lo que se debe trabajar con experticia.

 

El equipo util= izado para la elaboración de las probetas es una cortadora Covington que está diseñada para el corte de rocas y es un modelo de piso (Figura 1= ). Ésta posee una sierra de estilo inmers= ión, lo que significa que el fluido de corte se asienta dentro del tanque y la cuchilla giratoria elevará el fluido de corte y alrededor de la probeta.

 

Las sierras de= disco, para probetas de rocas de Covington, varían en tamaño desde 18 a 36 pulgada= s. Esta unidad posee una sierra de disco de 30”. Se debe mantener las normas de seguridad durante la ejecución de los cortes y siempre mantener cerrada la = compuerta de la cortadora, con la finalidad de evitar cualquier tipo de incidente o accidente (Feijoo e Íñiguez, 2020). Algunas probetas se las puede observar = en la Figura 2.

 

C= omo segunda etapa se procedió a la ejecución del ensayo de carga puntual. El ín= dice de carga puntual es un ensayo alternativo al de resistencia a la compresión= . El ensayo de carga puntual = consiste en romper un pedazo de roca entre dos puntas cónicas de acero endurecido, s= egún la norma propuesta por la ISRM en 1985. Las muestras que posteriormente van= a ser colocadas entre dichas puntas pueden ser de cualquier forma, pero lo recomendable es que su diámetro no sea inferior a 50 mm, ya que, el volumen= de dicha probeta influye en su resistencia (Feijoo y Ureña, 2021).<= /span>

 

Figura = 1=

Cortadora de rocas Covington

 

 

 

Figura = 2=

Probetas de roca listas para el e= nsayo de carga puntual

<= o:p> 

El índice de carga puntual se calcula mediante la relación, sin corrección:

 

 

Dónde:

 

P =3D Carga aplicada en kN. <= /span>

De =3D Diámetro del núcleo equivalente e= n mm.

 

Se toman las distancias de los fragmentos los cuales deben cumplir con las disposiciones que se indican en la norma. = La razón 0.3W < D < W es preferente que se mantenga cercana a 1. La distancia L> 0.5W (L distancia del extremo de la roca a las puntas cónic= as y W distancia perpendicular a L medida sobre la roca).

 

En la ecuación 2 se determina el diámetro equivalente De, en función de las dimensiones de los fragmentos irregulares= :

 

 

Donde A está definido por la ecuación 3:=

 

 

Siendo A el área transversal mínima para= lela a la dirección de la carga en mm². El índice de resistencia a la carga punt= ual corregido Is (50), de una muestra de roca, se define como el valor de Is qu= e se ha medido por una prueba diametral con D =3D 50 mm. Cuando una clasificación de roca es fundamental, el método más fiable para conseguir Is (50) es llevar a cabo las pruebas con diámetros de D =3D 50 mm= o muy cercanos a dicho valor.

 

Esto se debe a la relativa sencillez del ensayo, la facilidad de preparación de las muestras y su aplicabilidad en el campo (Burbano y García, 2016). Con la ecuación 4 se obtiene la corrección = de tamaño:

=  

= El equipo utilizado para este ensayo es de características básicas y su fabricación es factible en un proyecto minero (Figura 3= ).

=  

El índice de c= arga puntual proporciona una valoración útil de resistencia mecánica, en particu= lar de la compresión uniaxial de rocas sanas sin daños, la cual se deberá corre= gir en función de las dimensiones reales que tengan los especímenes a analizar. Algunos autores han propuesto métodos de correlación entre el índice de car= ga puntual (Is) y la resistencia mecánica a compresión de las rocas (RCS) (Broch y Franklin, 1972, Akram M. y Bakar 2007, Singh et al. 2012). La relación entre RCS e Is para núcleos d= e 50 mm de diámetro es de 24, que es una constante definida como K entre ambos parámetros, con lo que se llega a la siguiente expresión (Broch y Franklin, 1972): RCS =3D K Is. El valor de K fue posteriormente corroborado por Bieniawski (= 1975), utilizando núcleos con diámetro de 54 mm NX (diámetro de broca) en muestras= de arenisca, cuarcita y norita (Navarrete et al., 2013).

 

Figura = 3=

Ensayo para índice de carga puntu= al

 

Ejecutados los= ensayos se deben correlacionar los valores entre el Is (50) y la resistencia a la compresión simple y, para ello, existen varias propuestas; sin embargo, exi= sten correlaciones en la literatura que ya han sido establecidas en años pasados= y las mismas proponen algunas ecuaciones. Ahora, al conocer las correlaciones propuestas en la teoría, las más relevantes y usadas se detallan a continuación. En 1972, Franklin, J. A. y Bosh, E., proponen un factor de correlación de 24.  Chau, K. T., y = Wong, R. H. C., en 1996 un factor de 12.5. Rusnak, J., y= Mark, C., en 2000, un factor de 21. Thuro y Plinninger, R. J., en 2001 un factor de 18.7. Mark, C= ., en 2002, un factor de 21. Akram, M., y Bakar, M. Z= . A., en 2007 un factor de 13.295. Cobanoglu, I., y <= span class=3DSpellE>Celik, S. B., en 2008, una relación RCS=3D8.66 Is 50 + 10.85 (Galvá= n, 2015).

 

Cabe indicar q= ue, de los tres grupos de probetas elaboradas, las cuales cuentan con un establecimiento de medidas predeterminadas, se decidió realizarlas, debido a que la teoría propone que la relación entre D sobre W debe ser mayor a 0.3 y menor a 1, por lo que se buscó mantener al primer grupo (P5) de probetas ce= rca del valor de 0.5, al segundo grupo (P7) cerca al valor de 0.7 y el tercer g= rupo (P9) cerca al valor de 0.9

 

Resultados y Dis= cusión

Realizados todos los ensayos, en los tres gr= upos de probetas se determinaron los valores de Is (50), los cuales podemos obse= rvar en las Tablas 1, 2 y 3.

 

En la Tabla 1<= /span> se ejecutó el ensayo de carga puntual sobre las probetas de relación D sobre W aproximada de 0.3. En la Tabla 2<= /span> se observa los resultados sobre las probetas con relación D sobre W de aproximadamente 0.5 y en la Tabla 3<= /span> se presentan los resultados del ensayo efectuado sobre las probetas de relació= n D sobre W de aproximadamente 0.9.

 

Tabla 1=

Dimensiones y valores de Is (50) del grupo de probetas P5

Probeta<= /span>

W

L

D

D/W<= /p>

Fuerza (P)=

WD

De2<= /b>

Is

F

Is (50)

(cm)=

(cm)=

(cm)=

 

(kN)<= o:p>

 (mm2)=

(mm2)

(MPa)

 

(MPa)

1P5

9.90

10.22

5.05

0.51

17.45

4999.50<= /p>

6365.56<= /p>

2.74

1.23

3.38

2P5

9.97

9.88

5.11

0.51

19.43

5094.67<= /p>

6486.74<= /p>

3.00

1.24

3.71

3P5

9.99

9.88

4.94

0.49

21.91

4935.06<= /p>

6283.51<= /p>

3.49

1.23

4.29

5P5

9.96

9.89

4.94

0.50

22.23

4920.24<= /p>

6264.64<= /p>

3.55

1.23

4.36

6P5

9.86

9.89

5.08

0.52

18.21

5008.88<= /p>

6377.50<= /p>

2.86

1.23

3.53

7P5

9.86

9.97

4.86

0.49

15.97

4791.96<= /p>

6101.31<= /p>

2.62

1.22

3.20

8P5

9.85

9.91

4.84

0.49

16.89

4767.40<= /p>

6070.04<= /p>

2.78

1.22

3.40

10P5

9.94

10.05

5.16

0.52

9.67

5129.04<= /p>

6530.50<= /p>

1.48

1.24

1.84

13P5

9.93

9.88

4.94

0.50

21.69

4905.42<= /p>

6245.77<= /p>

3.47

1.23

4.27

14P5

10.02

10.14

5.21

0.52

17.84

5220.42<= /p>

6646.85<= /p>

2.68

1.25

3.35

15P5

10.05

9.84

5.16

0.51

17.00

5185.80<= /p>

6602.77<= /p>

2.58

1.24

3.20

16P5

9.99

10.01

5.19

0.52

18.38

5184.81<= /p>

6601.51<= /p>

2.78

1.24

3.46

17P5

9.87

9.91

5.22

0.53

16.82

5152.14<= /p>

6559.91<= /p>

2.56

1.24

3.19

18P5

9.99

9.88

5.13

0.51

15.58

5124.87<= /p>

6525.19<= /p>

2.39

1.24

2.96

19P5

10.15

9.90

5.09

0.50

11.51

5166.35<= /p>

6578.00<= /p>

1.75

1.24

2.17

20P5

10.08

10.02

5.15

0.51

19.38

5191.20<= /p>

6609.64<= /p>

2.93

1.24

3.65

22P5

9.99

9.88

4.94

0.49

22.41

4935.06<= /p>

6283.51<= /p>

3.57

1.23

4.39

23P5

9.90

10.00

5.24

0.53

18.09

5187.60<= /p>

6605.06<= /p>

2.74

1.24

3.41

25P5

10.09

10.22

5.19

0.51

18.42

5236.71<= /p>

6667.59<= /p>

2.76

1.25

3.44

26P5

9.92

10.14

5.09

0.51

11.50

5049.28<= /p>

6428.94<= /p>

1.79

1.24

2.21

27P5

10.02

10.21

5.18

0.52

22.15

5190.36<= /p>

6608.57<= /p>

3.35

1.24

4.17

28P5

9.88

9.92

4.94

0.50

12.52

4880.72<= /p>

6214.33<= /p>

2.01

1.23

2.47

30P5

10.05

9.93

5.06

0.50

17.59

5085.30<= /p>

6474.81<= /p>

2.72

1.24

3.37

32P5

9.90

10.19

5.21

0.53

11.09

5157.90<= /p>

6567.24<= /p>

1.69

1.24

2.10

34P5

9.98

9.94

4.84

0.48

13.85

4830.32<= /p>

6150.15<= /p>

2.25

1.22

2.76

36P5

9.89

9.75

4.90

0.50

20.76

4846.10<= /p>

6170.25<= /p>

3.37

1.23

4.12

37P5

10.08

10.12

5.17

0.51

19.46

5211.36<= /p>

6635.31<= /p>

2.93

1.25

3.65

38P5

9.96

10.19

5.16

0.52

20.05

5139.36<= /p>

6543.64<= /p>

3.06

1.24

3.80

39P5

9.83

10.01

5.21

0.53

17.63

5121.43<= /p>

6520.81<= /p>

2.70

1.24

3.35

40P5

10.08

9.78

5.27

0.52

19.09

5312.16<= /p>

6763.65<= /p>

2.82

1.25

3.53

 

 

Tabla 2=

Dimensiones y valores de Is (50) del grupo de probetas P7

Probeta<= /span>

W

L

D

D/W<= /p>

Fuerza (P)=

WD

De2<= /b>

Is

F

Is (50)

(cm)=

(cm)=

(cm)=

 

(kN)<= o:p>

 (mm2)=

(mm2)

(MPa)

 

(MPa)

1P7

10.19

9.95

6.83

0.67

28.87

6959.77<= /p>

8861.45<= /p>

3.26

1.33

4.33

2P7

9.97

9.99

6.89

0.69

24.85

6869.33<= /p>

8746.30<= /p>

2.84

1.33

3.77

3P7

10.03

9.92

6.88

0.69

28.07

6900.64<= /p>

8786.17<= /p>

3.19

1.33

4.24

4P7

10.06

10.13

6.83

0.68

25.30

6870.98<= /p>

8748.40<= /p>

2.89

1.33

3.83

5P7

9.82

10.27

7.06

0.72

18.37

6932.92<= /p>

8827.27<= /p>

2.08

1.33

2.76

6P7

9.93

9.79

6.96

0.70

25.35

6911.28<= /p>

8799.72<= /p>

2.88

1.33

3.82

7P7

9.90

9.87

7.05

0.71

19.98

6979.50<= /p>

8886.58<= /p>

2.25

1.33

2.99

8P7

10.15

10.16

6.83

0.67

28.02

6932.45<= /p>

8826.67<= /p>

3.17

1.33

4.22

9P7

9.92

10.27

6.82

0.69

17.31

6765.44<= /p>

8614.03<= /p>

2.01

1.32

2.65

10P7

10.17

10.11

6.82

0.67

27.59

6935.94<= /p>

8831.11<= /p>

3.12

1.33

4.15

11P7

10.18

10.22

6.83

0.67

18.50

6952.94<= /p>

8852.76<= /p>

2.09

1.33

2.78

12P7

9.93

10.04

6.83

0.69

16.78

6782.19<= /p>

8635.35<= /p>

1.94

1.32

2.57

14P7

9.95

10.16

6.83

0.69

23.87

6795.85<= /p>

8652.74<= /p>

2.76

1.32

3.65

15P7

9.94

10.22

6.81

0.69

31.43

6769.14<= /p>

8618.74<= /p>

3.65

1.32

4.82

17P7

9.99

9.89

6.79

0.68

23.10

6783.21<= /p>

8636.65<= /p>

2.67

1.32

3.53

21P7

10.13

9.92

6.98

0.69

33.22

7070.74<= /p>

9002.75<= /p>

3.69

1.33

4.92

22P7

9.93

10.09

6.79

0.68

30.73

6742.47<= /p>

8584.78<= /p>

3.58

1.32

4.72

23P7

10.05

10.12

6.83

0.68

27.15

6864.15<= /p>

8739.71<= /p>

3.11

1.33

4.12

24P7

10.18

10.17

6.82

0.67

26.53

6942.76<= /p>

8839.80<= /p>

3.00

1.33

3.99

26P7

10.06

10.01

6.81

0.68

29.34

6850.86<= /p>

8722.79<= /p>

3.36

1.32

4.46

28P7

10.22

10.11

6.86

0.67

27.50

7010.92<= /p>

8926.58<= /p>

3.08

1.33

4.10

29P7

9.88

10.14

6.88

0.70

26.29

6797.44<= /p>

8654.77<= /p>

3.04

1.32

4.02

30P7

10.14

9.90

6.92

0.68

22.06

7016.88<= /p>

8934.17<= /p>

2.47

1.33

3.29

31P7

9.96

10.13

7.14

0.72

25.90

7111.44<= /p>

9054.57<= /p>

2.86

1.34

3.82

32P7

10.08

10.09

6.87

0.68

28.36

6924.96<= /p>

8817.13<= /p>

3.22

1.33

4.27

33P7

9.88

10.01

6.78

0.69

26.39

6698.64<= /p>

8528.97<= /p>

3.09

1.32

4.08

34P7

9.94

9.91

6.75

0.68

20.44

6709.50<= /p>

8542.80<= /p>

2.39

1.32

3.15

35P7

9.98

10.14

6.84

0.69

27.64

6826.32<= /p>

8691.54<= /p>

3.18

1.32

4.21

37P7

10.07

9.89

6.75

0.67

16.83

6797.25<= /p>

8654.53<= /p>

1.94

1.32

2.57

39P7

9.98

9.86

7.03

0.70

18.58

7015.94<= /p>

8932.97<= /p>

2.08

1.33

2.77

 

Tabla 3=

Dimensiones y valores de Is (50) del grupo de probetas P9

Probeta=

W

L

D

D/W=

Fuerza<= /span> (P)

WD<= /p>

De2=

Is<= /p>

F

Is (50)

(cm)

(cm)

(cm)

 

(kN)=

 (mm2)

(mm2)

(MPa)

 

(MPa)

1P9

9.96

10.08

8.83

0.89

28.55

8794.68<= /p>

11197.73=

2.55

1.40

3.57

2P9

10.11

9.90

8.82

0.87

28.16

8917.02<= /p>

11353.50=

2.48

1.41

3.49

4P9

9.97

9.98

8.86

0.89

26.66

8833.42<= /p>

11247.06=

2.37

1.40

3.32

5P9

9.92

9.94

8.78

0.89

31.19

8709.76<= /p>

11089.61=

2.81

1.40

3.93

6P9

9.74

10.14

8.94

0.92

33.30

8707.56<= /p>

11086.81=

3.00

1.40

4.20

7P9

9.86

9.93

8.88

0.90

31.36

8755.68<= /p>

11148.08=

2.81

1.40

3.94

8P9

9.88

9.91

8.94

0.90

38.75

8832.72<= /p>

11246.17=

3.45

1.40

4.83

10P9

9.91

9.91

8.87

0.90

30.88

8790.17<= /p>

11191.99=

2.76

1.40

3.87

11P9

9.91

10.00

9.00

0.91

26.01

8919.00<= /p>

11356.02=

2.29

1.41

3.22

12P9

9.91

9.91

8.97

0.91

40.22

8889.27<= /p>

11318.17=

3.55

1.40

4.99

14P9

9.87

10.14

8.83

0.89

33.23

8715.21<= /p>

11096.55=

2.99

1.40

4.19

15P9

10.14

9.61

9.18

0.91

28.52

9308.52<= /p>

11851.98=

2.41

1.42

3.42

16P9

9.88

9.95

8.85

0.90

37.66

8743.80<= /p>

11132.95=

3.38

1.40

4.73

17P9

9.90

9.94

8.71

0.88

34.46

8622.90<= /p>

10979.02=

3.14

1.40

4.38

18P9

10.07

10.09

9.04

0.90

32.63

9103.28<= /p>

11590.66=

2.82

1.41

3.98

19P9

10.08

9.81

8.90

0.88

30.15

8971.20<= /p>

11422.49=

2.64

1.41

3.71

20P9

9.94

9.91

9.16

0.92

28.85

9105.04<= /p>

11592.90=

2.49

1.41

3.51

22P9

10.08

9.89

9.01

0.89

35.14

9082.08<= /p>

11563.66=

3.04

1.41

4.29

24P9

9.98

9.92

8.81

0.88

36.16

8792.38<= /p>

11194.81=

3.23

1.40

4.53

25P9

10.08

9.09

8.91

0.88

32.32

8981.28<= /p>

11435.32=

2.83

1.41

3.98

26P9

10.08

9.94

8.89

0.88

34.96

8961.12<= /p>

11409.65=

3.06

1.41

4.31

27P9

10.04

10.17

8.97

0.89

32.53

9005.88<= /p>

11466.64=

2.84

1.41

4.00

29P9

10.01

9.89

8.88

0.89

32.48

8888.88<= /p>

11317.67=

2.87

1.40

4.03

31P9

10.22

9.94

8.81

0.86

25.96

9003.82<= /p>

11464.02=

2.26

1.41

3.19

32P9

9.86

9.95

8.83

0.90

37.74

8706.38<= /p>

11085.31=

3.40

1.40

4.76

33P9

9.99

9.83

8.74

0.87

24.14

8731.26<= /p>

11116.99=

2.17

1.40

3.04

35P9

10.25

9.99

8.84

0.86

28.28

9061.00<= /p>

11536.82=

2.45

1.41

3.46

37P9

9.84

9.93

8.89

0.90

39.44

8747.76<= /p>

11137.99=

3.54

1.40

4.96

38P9

9.97

10.22

8.88

0.89

32.98

8853.36<= /p>

11272.45=

2.93

1.40

4.11

39P9

9.93

9.89

8.82

0.89

31.18

8758.26<= /p>

11151.36=

2.80

1.40

3.91

 

A continuación, se procede a graficar la rel= ación D sobre W e Is (50) con la finalidad de obs= ervar alguna tendencia y obtener medias y medianas de los resultados; esto se lo puede observar en las Figuras 4, 5, 6 y en la Figura 7= un consolidado.

 

Figura 4=

Dispersión de los resultados del grupo de probetas P5

<= span lang=3DES-MX style=3D'mso-ansi-language:ES-MX'>

Figura 5=

Dispersión de los resultados del grupo de probetas P7

=

 

Figura 6=

Dispersión de los resultados del grupo de probetas P9

<= span lang=3DPT-BR style=3D'mso-ansi-language:PT-BR'>

 

Figura 7=

Dispersión consolidada de los resultados de los tres grupos de probetas<= /p>

=

 

 

Al observar las figuras se puede establec= er que mientras más cercana es la relación D sobre W a 1, el rango de dispersión de los valores es menor, como se puede observar a través de la desviación estándar; además, se establecen las medias y medianas de los resultados de = Is (50) y se puede ver que su comparación es casi invariable con las muestras = del grupo P9 (Tabla 4<= /span>).

 

Tabla 4=

Medias, medianas y desviación estándar de los valores de Is (5= 0) de los tres grupos de probetas

 

 

Is (50) (MPa)

 

Media

Mediana

Desviación Estándar

Grupo P5

3.36

3.40

0.6842

Grupo P7

3.75

3.91

0.6940

Grupo P9

3.99

3.98

0.5406

 

Conclusiones

= La elaboración de probetas de un mismo material o roca es factible con las dimensiones descritas en este trabajo, así también la determinación del Is (50), ya que la mayor parte de empresas mineras cuentan con los equipos apropiados para dichos ensayos.

 

= Se encontró que existe una correspondencia entre la relación D sobre W de las probetas con el Is (50) de la roca analizada, la cual proporciona una vía rápida, directa y económica para determinar un valor aproximado a la propie= dad (RCS).

 

= Los resultados de Is (50), comparados con sus respecti= vas relaciones D/W, para el caso del estudio presentado, oscilan entre 3.36 MPa hasta 3.99 MPa, lo que proporciona valores de RCS aproximadamente entre 50 = MPa y 60 MPa.

 

= Las relaciones analizadas, de la conclusión anterior, hacen prever que mientras= la relación D sobre W sea cercana a 1, los resultados de Is (50) se mantienen = en un rango más corto y su media y mediana no tienen variación.

=  

= Se debe realizar un análisis previo de los datos con límites de confianza y así acl= arar posibles incertidumbres en las mediciones de las pruebas realizadas sobre e= ste material.

 

= Esta propuesta debe ser complementada con la ejecución de probetas que presenten relaciones de D sobre W de 0.4, 0.6 y 0.8; así también, se debería variar el tipo de roca, para de esta forma poder generalizarla.

 

Referencias

Blyth, F., Freit= as, M. (2003).  Geología para Ingenieros (1ra ed.). México.

Burbano D.,= García T. (2016). Estimación empírica de la resistencia a compresión simple a part= ir del ensayo de carga puntual en rocas anisótropas (esquistos y pizarras). Fi. vol. 1. 2. pp. 13-16. https://doi.org/10.29166/revfig.v1i2.862

Feijoo, P., Brito, E. (2= 021). Rock Characterization Through Physi= cal Properties and Their Relationship to Simple Compressive Strength. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 1(2), 931–941. DOI 10.18502/espoch.v1i2.9507

Feijoo, P.,= e Iñiguez, C. (2020). Corte en Rocas y su relación con la resistencia a la compresión simple. RISTI, n.º E 30,= p. 59-67. http://www.risti.xyz/issues/ristie30.pdf

Feijoo<= /span>, P., Ureña, C. (2021). Characterization of the compressive strength in rocks by granulomet= ric classification: a field test. INGENIERÍA Y COMPETITIVI= DAD, In press 2021; e20310832. https://doi.org/10.25100/iyc.v24i1.10832=

Feijoo, P.,= Román, M. (2019). Correlación entre la deformación y la resistencia a la compresió= n en rocas: un diagnóstico de campo. Universidad Ciencia y Tecnología, Volumen 23, Número 91, pp. 14. <= span lang=3DES-MX style=3D'font-size:10.0pt;color:windowtext;mso-ansi-language:E= S-MX; text-decoration:none;text-underline:none'>https://uctunexpo.autanabooks.com= /index.php/uct/article/view/112

Galván, M. (2015).  Mecánica de Rocas. Correla= ción entre la Resistencia a Carga Puntual y la Resistencia a Compresión Simple. Universidad del Valle. Colombia.

Martínez, R. (2016).  La Estabilidad del Macizo Geológico (1ra ed.). Universidad= del Pinar del Rio. ISBN--978-959-16-2624-0

Murcia, L. = (2016). Procedimient= o para el diseño de mallas de voladura en explotación de canteras a cielo abierto = con base en la estabilidad temporal y final de los bancos de producción. [Tesis de Magister, Pont= ifica Universidad Javeriana].

Navarrete, M., Martínez,= W., Alonso-Guzmán, E., Lara, C., Bedolla, J., Chávez, H., Delgado, D., Arteaga,= J. Caracterización de propiedades físico-mecánicas de rocas ígneas utilizadas = en obras de infraestructura. ALCONPAT. 2013; vol. 3 (n.º 2): 133-143. doi https://doi.org/10.21041/ra.v3i2.49.

Rivera, H. = (2005).  Geología General (2da ed.). Universidad Nacional Mayor de San Marcos. = https://www.geogpsperu.com/2011/0= 5/libro-de-geologia-general.html

Santos, A. = (2014). Resistencia Anisótropa de las Rocas. Universidad Politécnica de Madrid, Tesis de Maestría.

Secretaria = de Comunicaciones y Transporte. (2016). Manual de Diseño y Construcción de Túneles de Carreteras. México D. F., México= .

Suárez, L. = (2015).  Descripción del macizo rocoso. Introducción a la ingeniería de rocas de superficie y subterránea. (2da ed.). Medellín. Colombia. https://www.researchgate.net/publication/330834433

Suarez, L., Rodríguez, A., Calleja, L., Ruiz, G. (1998). E1 corte de rocas ornamentales= con discos diamantados: influencia de los factores propios del sistema de corte. Revista Materiales de Construcción Vol. 48, España. https:/= /doi.org/10.3989/mc.1998.v48.i250.478

Varela, R. = (2014).  Manual de Geología (1ra ed.). Universidad Nacional de La Plata.

 =

------=_NextPart_01D8920D.255C3660 Content-Location: file:///C:/D23738F9/886-GALLEY_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Kai18BookSection{5CD1B299-06DF-4897-8745-69F3ACB57BBD}A comp= arative study of LPWAN technologies for large-scale IoT20= 18Kais MekkiEddyBajic, Frederic Chaxel, Fernand Meyer= ICT E= xpress1V= SA05ConferenceProceedings{288B= 78EF-20EC-4E30-B7E4-73E578BCFBB2}<= b:Person>V.S. AbhayawardhanaI.J.Wassell, D. Crosby, M.P. Sellars, M.G. BrownComparison of empirical propagation p= ath loss models for fixed wireless access systems20052005 IEEE 61st Vehicular Technology ConferenceStockholm, Sweden2Hen18ConferenceProceedings<= /b:SourceType>{97B7976C-B377-4B37-9F43-728CD81C5CF8}Hendrik Linka= MichaelRademacher, Karl Jonas and Osianoh Glenn AliuPath Loss Mo= dels for Low-Power Wide-Area Networks: Experimental Results using LoRa2018VDE ITG-Fachbericht Mobilkommun= ikationOsnabrück3Aya19ConferenceProcee= dings{950C19BA-A90C-4298-B65A-8C69984C6D0A}= ZigBee and LoRa based Wireless Sensors for Smart Environment and I= oT Applications2019CappadociaAyanle I. AliSibelZorlu Partal, Salih Kepke, Hakan P. PartalGlob= al Power, Energy and Communication Conference4Usm17Journ= alArticle{6C06B79D-957C-4ACA-98AD-89887E3104CE}Low Power Wide Area Networks: An Overview201= 7Usman RazaParagKulkarni, and Mahesh SooriyabandaraIEEE = Communications Surveys & Tutorials5Mas20JournalArticle<= /b:SourceType>{9A22F277-A607-46ED-BE8E-8AECA7CE59A9}NB-IoT vs. LoRaWAN: An Experimental Evaluation for Industrial Applicatio= ns2020= Massimo BalleriniStudent,Tomm= aso Polonelli, Davide Brunelli, Michele Magno and Luca BeniniIEEE Transactions= on Industrial Informatics6Ora17ConferenceProceedings{579AFCEB-662C-4E97-83AB-738CE7AE1EBA}<= b:Author>Oratile KhutsoaneB= asseyIsong, Adnan M. Abu-Mahfouz<= /b:NameList>IoT Devices and Applications bas= ed on LoRa/LoRaWAN20177= Elm19JournalArticle{6841221D-8591-404E-BA79-8C0610820D15}In= ternet of things in Smart Environment: Concept, Applications, Challenges, a= nd Future Directions2019Elmustafa Sayed Ali AhmedMujtab= aElbagir YousefWorld Scientific News8Gut19= ConferenceProceedings{300FC34F-0DEF-455A-B043-FE33A3= 5431F3}Gutierrez= S.,Martinez, I., Varona, J., Cardona,= M., & Espinosa, R.Smart Mobile LoRa Agriculture System based on Internet of Thi= ngs2019IEEE 39th Central Ameri= ca and Panama Convention9Lui19ConferenceProceedings{2D4EE58F-F061-45C1-BB64-6AA0B2BA97E3}L= oRa Communication as a Solution for Real-Time Monitoring of IoT Devices at = UNICAMP2019International Confe= rence on Smart Energy Systems and Technologies (SEST)Luis F. UgarteMaiqueC. Garcia, Enrico O. Rocheti, Eduardo Lacusta= Jr., Leandro S. Pereira and Madson C. de Almeida10Juh15ConferenceProceedings<= b:Guid>{E8442A92-3CE1-4961-A47A-3A7165DA4A92}<= b:NameList>Juha PetäjäjärviKonstanti= nMikhaylov, Antti, Marko PettissaloOn the Coverage of LPWANs: Ra= nge Evaluation and Channel Attenuation Model for LoRa Technology<= b:Year>201514th International Conference on ITS = Telecommunications (ITST)Copenhagen, Denmark11Dir99Report{DFFBFDCE-0724-4D32-8BA8-F03F1EF9D= 87E}Digital mobile radio towards future generation system= s: Final Report1999Commission)Directorate-Generalfor the Information Society and Media (EuropeanEUR12MHa801BookSection{D43727F4-C924-49A4-A44C-8B3F570807= DE}Empirical formula for propagation loss in land mobile = radio services1980HataM.IEEE Transactions on Vehicular Techno= logy 317-325IEEE13Har031Book{CE17E6C0-241A-46CC-B371-EBCB474EC430}<= /b:Guid>Fixed Broadband Wireless System Design20= 03Wiley= AndersonHarryR.14Con18JournalArticle<= /b:SourceType>{B852F681-AA68-499B-8A7B-B0CC890BE61F}A Survey on Security and Privacy Issues of Bitcoin2018= ContiMauroKumarS= andeepLalChhaganRujSushmitaIEEE Communic= ations Surveys & Tutorials39d= oi 10.1109/COMST.2018.2842460,1= Cac171JournalArticle<= b:Guid>{6C76A7E2-8461-4774-B413-2309320F3BBE}<= b:NameList>CachinChristianVukolićMarkoBlockchain Consensus Protoco= ls in the WildIBM Research - Zurich201724Julio1= 7arXiv:1707.01873v22Pap15JournalArticle{418C5A27-CBDB-4366-8E49-CED387529F44}Blockchai= n and Digital Payments:An Institutionalist Analysis ofCryptocurrenciesHandbook of Digital Currency201= 5153-172PapadopoulosGeorgiosElsevier Inc.doi.org/10.1016/B978-0-12-802117-0.00007-24Swa18JournalArticle{B1A78EF2-2F82-48C5-ADCE-E422DA9174E7}SwanMelanieBlockchain for= Business: Next-Generation Enterprise Artificial Intelligence SystemsAdvances in Computers201842Elsevier Inc.doi.o= rg/10.1016/bs.adcom.2018.03.0135Zha19JournalArticle<= b:Guid>{EED3C977-29A0-4E86-9A57-2630FDBBD739}<= b:NameList>ZhangShijieLeeJong-Hyouk<= /b:NameList>Analysis of the main consensus p= rotocols of blockchainThe Korean Institute of Comm= unications and Information Sciences2019Elsevier Inc.doi.org/10.1016/j.icte.2019.08.= 0018Vir18JournalArticle{2727D7EC-DE0D-4E29-9= 125-0325F1F548CE}ViriyasitavatWattanaHoonsoponDanupolBlockchain characteristics and consensus in mode= rn business processesJournal of Industrial Informa= tion Integration201832-39Julio29Elsevier Inc.https://doi.org/10.1016/j.jii.2018.07.0041= 310Sal191JournalArticle{AD3DF810-7FC1-46D= E-926B-D4ACEC398BEE}SalimitariMehrdadChatterjeeMainakA Survey on Consensus Protocols in Blockchain fo= r IoT Networks201915= Junio19arXiv:1809.05613v411Fai17Jou= rnalArticle{724728FC-B49E-4A62-A04F-4F1E5F6DD973}FairleyPeterFeeding the Blockchain Beast - If Bitcoin ever does go mainstream, the ele= ctricity needed to sustain it will be enormousBloc= kchain World201736, 37, 58, 59Octubrehttp://spectrum.ieee.org/beast1017<= /b:URL>13Gra17= JournalArticle{F1E1FBFC-6F38-4637-9DA2= -398940BF41B9}Gr= amoliVincent= From blockchain consensus back to Byzantine consensusFuture Generation Computer Systems201710Elsevier Inc.doi.org/10.1016/j.future.2017.09.02314Naw19JournalArtic= le{4273D245-8347-4012-855D-8C958EB77805}NawariNawa= riO.RavindranShriraamBlockchain and the built environment: Potentials and limitati= onsJournal of Building Engineering= 201916Junio04= Elsevier Inc.25doi.org/10.1016/j.jobe.2019.10083215Fru19InternetSite{10710359-6CC4-4196-A1EE-619CFAFF30BE}Invest = in Blockchain2019FrumkinDanielabril08https://www.investinblockchain.com/transactions-per-second-and-consensu= s-mechanisms-of-the-top-50-cryptocurrencies/2020emero2417Por19InternetSite{3D4A003F-D3A2-465F-9= 85C-0D3249403D05}The Cryptonomist2019PortaMicheleagosto17https://en.cryptonomist.ch/2019/0= 8/17/proof-of-capacity-poc-consensus-algorithm/2020= enero11<= /b:DayAccessed>Proof of Capacity (PoC)18Deb17J= ournalArticle{535C3331-56CF-424C-8C5B-A488308D3A51}<= /b:Guid>DebusJulianConsensus methods in blockchain systemsFrankfurt= School of Finance & Management2017Tech. Rep19pee20InternetSite= {8D7D662B-6619-4CBA-9FA0-781EC4EC6EF5}peercoinDocshttps://docs.peercoin.net/2020enero2420Lar14JournalArticle{8CD1D565-5983-4416-80A4-F9= CF6AEA03A1}Larim= erDanielDelegated proof-of-stake (dpos)Bit= share whitepaper201421Coi18InternetSite{0A1FAB5C-6E2C-4CB1-B60E-A261DEED9006}CoinsTelegram2018octubre30https://coinstelegram.com/2018/10/30/what-is-leased-pro= of-of-stake-lpos/CoinsTelegram2020enero1122Wav20I= nternetSite{34EF99A2-57A8-47AF-9770-27970179F4D5}https://docs.wavesplatform.com/en/blockchain/leasing.html2020enero11Leasing Proof of Stake<= /b:ShortTitle>WavesDocs23Opt= 20InternetSite{DC241844-E7AA-4= EC9-B811-2DFDC6E0D6E7}Option Fina= ncehttps://option.finance/proof-= importance-algorithm2020enero11= 24Nem20Inter= netSite{388CF69C-1D99-4C27-81B4-100EA3632683}Nem<= b:URL>https://nem.io/technology/2020enero11= 25Set18InternetSite{7B679471-EC3B-40E5-A3CC-E0B48786= ACFC}SethShobhit<= b:Title>Golden2018abril04https://golden.com/wiki/Proof-of-activity_(PoA)2020enero= 1127Pra19InternetSite= {281E23AF-7E8F-4D62-9AD9-15EA299FD5D6}Prasanna<= /b:Author>Cryptoticker2019sept= iembre25https://cryptoticker.io/en/proof-of= -burn/2020enero1128Bla19InternetSite{BAD37DA4-9E75-4944-96D3-55FBDF968585}BlagojevicDobricaCaptainaltco= in.co2019marzo21https://captainaltcoin.com/what-is-practical-byzantine-fault-toler= ance-pbft/2020ene= ro2429Com19InternetSite{AE7C458D-D07A-4CE1-803B-047521A5D5B2}CombenChristina= Coin Rivet= 2019marzo14https://coinrivet.com/es/delegated-byzantine-fault-tolerance-dbft-expla= ined/2020enero1130= Kol17InternetSite{6D9602C1-13A2-4D61-8400-0E7C771141F6}KollerMichaelItNext<= b:Year>2017octubre25https= ://itnext.io/the-stellar-consensus-protocol-decentralization-explained-338b= 374d0d722020enero= 1231Blo19InternetSite{35B456B1-316F-45A0-B780-1E6BE0145503}= Blockchain Support2019noviembre30= https://support.blockchain.com/hc/en-us/articles/360019105391-Stellar-conse= nsus2020enero1233<= /b:Source>Que20InternetSite{219AD164-DD26-46AE-8C79-AC86E152965B}Quest= ionProhttps://www.questionpro.com/blog/es/investigacion-ex= ploratoria/2020en= ero282020= 34McL19InternetSite{EFCBF3D2-97C7-4087-B938-155E1BDC= 86CD}McLeodSaulSymplyPsychology2019https://www.si= mplypsychology.org/likert-scale.html2020enero2835Cri19InternetSite{09215B29-688E-4A4C-8E3D-862A= 5DA1392D}Criptonario2019febrerohttps://criptotario.com/que-es-la-capitalizacion-de-mercados-en-criptomon= edas2020febrero2537HMoJournalArticle{76DD565A-881C-4359-ACD7-EB71E1AD8042}MoraHMorales M.MarioR.Pujol López= FranciscoA.Moll= á SirventRafaelSocial cryptocurrencies as model for enhancing sust= ainable developmentKybernates34Emerald Publishing Limited10.1108/K-05-2020-025940Zhe18JournalArticle= {9F5F166B-B367-4D4A-B6A6-DBF3622B4674}Blockchain challeng= es and opportunities: a survey2018Octub= reInternational Journal of Web and Grid Services352-375ZhengZibin<= b:Last>XieShaoanDa= iHong-NingChenXiangpingWang= Huaimin144DOI: 10.1504/IJWGS.2018.1001= 684826Gro19JournalArticle{1850D6BD-3143-4328= -AB04-7493560ECD5D}GrobysKlausAhme= dShakerSapkotaNiranjanTechnical trading rules in the cryptocurrency market<= b:JournalName>Finance Research Letters2019= 20Diciembre05Elsevier Inc.doi.org/10.1016/j.frl.2019.1013963Isl19JournalArticle{608B4894-669E-4C2F-9042-E67= 881A698D9}Islam<= /b:Last>NajmulMäntymäkib<= /b:Last>MattiTurunencMarjaWhy do blockchains split? An actor-network perspective on Bitcoin sp= litsTechnological Forecasting & Social Change<= /b:JournalName>201910Elsev= ier Inc.148doi.org/10.1016/j.tech= fore.2019.1197436Mor19JournalArticle{D4ECDB8= 4-D68A-4A11-8DCE-A97B0CBACD82}Virtual Currencies in Moder= n Societies: Challenges and Opportunities2019MoraHigini= oPujol LópezFranc= iscoA.Mendoza T= elloJulioCésar= MoralesMarioR.Politics= and Technology in the Post-Truth Era171-185doi:10.1108/978-1-78756-983-6201910127Ruo19JournalArticl= e{7133703A-698D-4E64-BA75-23B2EB9D53CD}RuozhouLiu<= /b:First>ShanfengWanZilibZhangXuejunZhaoIs the introduction of futures res= ponsible for the crash of Bitcoin?Finance Research= Letters20197Elsevier Inc.doi.org/10.1016/j.frl.2019.08.0079Duc18JournalArticle{D8C4AD1E-00DD-4174-AD12-A7E5= EEA7A216}Duchenn= eJamesBlockchain and Smart Contracts: Complementing Climate Finance= , Legislative Frameworks, and Renewable Energy ProjectsTransforming Climate Finance and Green Investment with Blockchains2018303-317Els= evier Inc.https://doi.org/10.1016/B978-0-12-814447-3.0= 0022-741Tah18<= /b:Tag>JournalArticle{3626D445-20F2-4F= 35-BEEC-B80D29A3B047}Tahar HammiMohamedHammiBadisBel= lotPatrickSerhrouc= hniAhmedBubbles of Trust: A descentralized blockchain-based authent= ication system for IoTComputers & Security2018126-142Esl= evier Inc.78doi.org/10.1016/j.cos= e.2018.06.00412You19JournalArticle{1F0820C8-= DFC1-40A5-B454-C588C1DDB847}Young LeeJeiA decentralized token economy: How blockcha= in and cryptocurrency can revolutionize businessKe= lley School of Business, Indiana University2019773-784Elsevier Inc.62doi.org/10.1016/j.bushor.2019.08.00316Che17JournalArticle{9969D752-C425-4279-A234-F602F63434F= C}On Security Analysis of Proof-of-Elapsed-Time (PoET)2017282-297<= b:NameList>ChenLin= XuLeiShahNolanGao<= /b:Last>ZhiminLuYangShiWeid= ong10.1007/9= 78-3-319-69084-1_1943= Dis20InternetSite{251DF= 0DA-4770-4DD0-BA17-6EB1830F9E3F}DistrictOx Education Port= alhttps://education.district0x.io/general-topics/ethereum-= scaling/what-is-casper/DistrictOx = Education Portal2020enero1144But19JournalArticle{E15C7771-D498-4A90= -A732-5C47E4987A9F}ButerinVitalikG= riffithVirgilCasper the Friendly Finality Gadget2= 019arXiv:1710.09437v445Din18JournalArticle{744F9D50-6CAF-44A7-97F1-2DB5DFBFCC09}Untan= gling Blockchain: A Data Processing View of Blockchain Systems2018julio01DinhTienTuan AnhLiuR= uiZhangMeihuiChenGangChinBengIEEE Transactions on Knowledg= e and Data Engineering1366-1385307doi: 10.1109/TKDE.2017.278122732Gil17JournalArticle{3B9471CB-074C-448D-A287-6E= E6D2DA8E21}Algorand: Scaling byzantine agreements for cry= ptocurrencies.2017GiladYossiHemoRotemMicaliSilvioVla= chosGeorgiosZeldov= ichNickolai<= /b:Author>In Proceedings of the 26th Symposium on Operating = Systems52-68ACMdoi.org/10.1145/3132747.313275746= Alg19InternetSite{219F6B12-84E7-4D62-B3B0-D594D2B24FBE}Algo= rand2019Algoran= dhttps://www.algorand.com/what-w= e-do/technology/algorand-protocol2020enero1247Han18JournalArticle{2B1AAB3D-42D4-4EC8-924B-167E5= C5A668A}Dfinity technology overview series, consensus sys= tem2018arXiv:1805.04548v1 HankeTimoMovahediMahnushWilliamDominic48Dan16JournalArticle{5D9F8FF9-546A-4B66-838D-1E2AEA955BD1}DanezisGeorgeMeiklejohnSarahCentrally Banked Crypt= ocurrencies2016dx.doi.org/10.14722/ndss.2= 016.2318749Luu= 16JournalArticle{C6662B04-D002= -4B97-B745-9552B7430001}= LuuLoiNara= yananVisweshZheng<= /b:Last>ChaodongBawejaKunalGilbertSethSaxenaP= rateekA se= cure sharding protocol for open blockchainsIn Proc= eedings of the 2016 ACM SIGSAC Conference on Computer and Communications Se= curity201617-30ACMdx.doi.org/10.1145/2976749.297838950Zam18JournalArticle{5C16A509-11FE-42EF-AC64-72C01E4850= 8F}ZamaniMahdiMovahediMahnushRaykovaMarianaR= apidChain: Scaling Blockchain via Full ShardingIn = Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communication= s Security2018931-948ACM51Kok18JournalArticle{49= 56718A-2A42-45F6-A117-94577DEC51DA}Kokoris-KogiasEleftheriosJovanovicPhilippGasserLinus<= b:Person>GaillyNicolasSytaEwaFordBryanOmniLedger: A Secure, Scale-Out, Decentralized Ledger via= ShardingIn 2018 IEEE Symposium on= 2018583-598IEEE10.1109/SP.2018.000-552Ong14JournalArticle= {E0F452F5-F6CD-4B72-933D-27D1ABE6B929}= OngaroDiegoOusterhoutJohnIn Search of an Understandable= Consensus AlgorithmIn 2014 USENIX Annual Technica= l Conference (USENIXATC 14)201430= 5-31953Dib18= JournalArticle{67611671-CC3E-4= FD0-83E9-38BAF7A6B86A}Consortium Blockchains: Overview, A= pplications and Challenges2018DibOmarBrousmicheKei-LéoDurandAntoineTheaEricHamidaElyesInternational Journal On Advances in Telecom= munications51-6411<= b:Issue>1 &254<= b:Tag>Cur18InternetSite{336784= E8-A0F2-4662-9CF3-80C0850910FD}2018CurranBrian= julio24https://blockonomi.com/iota-tangle/2020enero1355Fad17JournalArticle{52F38539= -783D-48D5-BA95-DCCC90AF6B43}Proximity Awareness Approach= to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network= 2017junioFadhilMuntadher<= b:Person>OwenGarethAddaMo2017 IEEE 37th International Conference on Dis= tributed Computing Systems (ICDCS)2411–241610.1109/ICDCS.2017.5356Mit17InternetSite= {438767B9-8A5F-42F9-A627-9683E816B108}Mitar's Poi= nt2017marzo21<= b:URL>https://mitar.tnode.com/post/proof-of-luck-consensus-protocol-and-luc= kychain/Mitar's Point2020enero1357MilJournalArtic= le{502DC832-7455-4A8C-8610-448282203E85}Proof of Luck: an Efficient Blockchain Consensus ProtocolMilutinovicMitarHeWarrenWuHowardKanwalMaxinderProceedings of the 1s= t Workshop on System Software for Trusted Execution (SysTEX ’16)1–6ACMdoi.org= /10.1145/3007788.300779058PalJournalArticle{= C47F1BDA-A2EB-4806-A97D-72764C0E7818}Estrategias de Ponde= ración de la respuesta en encuentas de satisfacción de usuarios de servic= ioPalacios Góm= ezJoséLuisMetodología de Encuestas175-19342200236<= b:Tag>Mor21JournalArticle{BB09= D4B7-F03D-420E-BC1E-60B37E132ED5}<= b:Person>MoraH.Pujol LópezF.A.MoralesM.R.Mollá SirventR.Disruptive Te= chnologies for Enabling Smart Government in Reserach and Innovation Forum 2= 020Disruptive Technologies in Times of Change202157-69Spring= er International Publishing38Cam20JournalArticle{D5D0FD1A-6023-4471-949B-1A065C887C4A}Métodos = de consenso sobre plataformas blockchain: Un enfoque comparativo<= b:Year>2020http://www.dspace.uce.edu.ec/handle/25000/21832<= /b:URL>Campaña IzaXimenaM.Zumba SampedroWashingtonX.Repositori= o Digital UCE8039Car20JournalArticle{348E36A5-E639-7D4E-B722-573B2249733D}T= ecnología blockchain en la optimización de una cadena de sumistro2020Mo= rales C.Santiago.L.Morales M.Mario= R.Trujillato C.V.= WPaucarJ.Revista Arbitrada Interdisciplinada Koinonia161-1805(2)42MarcadorDePosición1JournalAr= ticle{4237E4E3-6484-450A-BF58-09F9361855E5}= Tecnología blockchain en la optimización de una cadena de sumist= ro2020= Cardoso M.Santiago.L.Morales M.Mario= R.Trujillato C.<= b:First>V.WPauc= arJ.Revista Arbitrada Interdisciplinada Koinonia161-1805(2)14Alv10JournalArticle= {9FEFDAA0-6DB4-47AB-A6C3-2AAF7EB610D7}OrtizAlvaro<= /b:First>DiazTeoría de las emocionesINNOVACIÓN = Y EXPERIENCIAS EDUCATIVAS2010293Vin10= JournalArticle{B8124DAB-D208-4670-83A5= -878DB9A00C7A}Ansiedad, estrés, emociones negativas y sa= lud. Atrapados por el estrés.2010VindelA.C.Crítica12-169684Fon17Misc{CE1E2E59-3626-4F6B-9800-ED89E6628D51}El desarrollo emocional en el desempeño conductual de los Ã= ¡rbitros profesionales de fútbol del cantón Ambato 2017= AmbatoUniversidad Técnica de Ambato= . Facultad de Ciencias Humanas y de la Educación. Maestría en Cultura Fí= sica y Entrenamiento DeportivoFonseca MoraL.E.5Med19InternetSite{FA927F48-70CF-48F9-94C6-68FC4B6A785E}https://medlineplus.gov/spanish/Biblioteca= Nacional de Medicina de EE. UU.2019= 7MedlinePluses-EC7 ------=_NextPart_01D8920D.255C3660 Content-Location: file:///C:/D23738F9/886-GALLEY_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D8920D.255C3660 Content-Location: file:///C:/D23738F9/886-GALLEY_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQCD OzDMkQYAAFAbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZzW8cNRS/I/E/WHNvs5v9SBN1 UyX70UCbNspui3r0znhn3HjGI9ubdG+oPSIhIQriQCVuHBBQqZW4lL8mUARF6r/Asz0zO87OtgmN oIJupOyO/fP7fs/PnstX7sUMHRIhKU86Xv1izUMk8XlAk7Dj3RoNLlzykFQ4CTDjCel4MyK9K5vv v3cZb6iIxATB+kRu4I4XKZVurKxIH4axvMhTksDchIsYK3gU4Uog8BHQjdnKaq3WXokxTTyU4BjI 3pxMqE/QSJP0NnPifQaPiZJ6wGdiqEkTZ4XBBgd1jZAz2WUCHWLW8YBPwI9G5J7yEMNSwUTHq5mP t7J5eQVvZIuYWrK2tG5gPtm6bEFwsGp4inBcMG02W832VkHfAJhaxPXX+u1+u6BnANj3QVMri0tz bbXbzLAlkP1ZQbu31mvUHXyJfmNB5q2W/nPwBmTpNxfwg0EXrOjgDcjiWwv41vb6ds+lb0AW317A r9W2es01h74BRYwmBwvoWqvd6ObaFpAJZzuV8PVWc7C2mhGfoyAaiujSLCY8UctiLcZ3uRgAQAMZ VjRBapaSCfYhirs4HguKNQO8QXBpxg75cmFI80LSFzRVHe/DFENGzOm9fPb9y2dP0PH9p8f3fzp+ 8OD4/o+WkLNqBydhedWLbz/789HH6I8n37x4+EU1Xpbxv/7wyS8/f14NhPSZi/P8y8e/PX38/KtP f//uYQV8S+BxGT6iMZHoBjlC+zwGxYxVXMnJWJxtxSjCtLxiKwklTrDmUkG/ryIHfWOGWeYdR45t 4lrwtoDyUQW8Or3rCDyMxFTRCs7XotgB7nLOtrmotMI1zatk5tE0CauZi2kZt4/xYRXvLk4c//an KdTNPCwdxbsRccTcYzhROCQJUUjP8QNCKrS7Q6lj113qCy75RKE7FG1jWmmSER070TRftENj8Mus Smfwt2Ob3dtom7MqrXvk0EVCVmBWIfyIMMeMV/FU4biK5AjHrGzw61hFVUIOZ8Iv4/pSgadDwjjq B0TKqjU3Behbcvo1DBWr0u27bBa7SKHoQRXN65jzMrLHD7oRjtMq7JAmURn7gTyAEMVoj6sq+C53 M0Q/gx9wstTdtylx3P36anCLho5I8wDRM1OhfQml2qnAMU1eVY4ZhXpsY+D8yjEUwOdfP6qIrLe1 EG/BnlSVCTsnyu8y3Mmi2+UioG9/ze3habJHIMwXN553JfddyfX+8yV3WT6fttDOayuUXd032KbY tMjx0g55Qhkbqhkj16VpkiXsE8EABvU6czokxYkpjeBnVtcdXCiwWYMEVx9RFQ0jnEKDXfc0kVBm pEOJUi7hYGeGK2lrPDTpyh4LW/oEaOuBxGqXB3a4UT4YFmTMbhOaw2fOqKEJnJZZY+3NmNWtVEvN 5qpWN6KZUueoVqgMPlxUDQYLa0IDgqBtASu34XyuZYeDCWYk0Ha3e2/uFuOF83SRjHBAMh9pvRd9 VDdOymPF3ARA7FT46JIR/ZVWK3Fb12TfgNtpnFRm11zCLvfem3gpP5bPvaTz9kQ6sqScnCxBRx1v vbXa8pCP0443gTMt/IxT8LrUPR9mIVwM+UrYsH9tMhvDz725nisG0VfKuHotH19Q2KkDqZCqh2Vk Q8NMZSHAEs3Jyr/aArOelwI20v+GFI1LEAz/mhRgR9e1ZDIhvio7uzSibWcfs1LKp4qIYRQcoTGb in0M7tehCvoEVMLVhKkI+gHu0bS1zZRbnLPCWL69Mjg7jlka4azc6hTNM9nCTR4XMpinknigW6Xs Rrmzq2JS/pxUKYfx/0wVvZ/ATUEj0B7w4RpXYKTzteNxoSIOVSiNqD8Q0DiY2gHRAnexMA1BBZfJ 5luQQ/1tc87SMGkNBz61T0MkKOxHKhKE7EFZMtH3GmL1bO+yJFlGyERUSVyZWrHH5JCwka6Bbb23 eyiCUDfVJCsDBncy/tznLIPGoW5yyvnm1JBi77U58E93PjaZQSm3DpuGJrd/IWLFrmrXm+X53ltW RE/M26xmnhXArLQVrGdp/zdFOONWayvWgsarrVw48OKixjBYNEQp3Pcg/Q/2Pyp8Zt9M6A11xPeh tiJ40aCJQdhAVF+wjQfSBdIOjqFxsoM2mDQpa9qsddJWyzfrc+50C74njK0lO42/z2jsojlz2Tm5 eJ7Gzizs2NqOLTU1ePZkisLQJD/IGMeYV1rlt058fBcc3YP7/SlT0gQTvFMSGFrPockDSH7L0Szd /AsAAP//AwBQSwMEFAAGAAgAAAAhAA3RkJ+2AAAAGwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90 aGVtZU1hbmFnZXIueG1sLnJlbHOEj00KwjAUhPeCdwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2u LAguh2G+mWm7l53JE2My3jFoqhoIOumVcZrBbbjsjkBSFk6J2TtksGCCjm837RVnkUsoTSYkUigu MZhyDidKk5zQilT5gK44o49W5CKjpkHIu9BI93V9oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8W Xf5RQXPZhQUoosbM4CObqkwEylu6usTfAAAA//8DAFBLAQItABQABgAIAAAAIQDp3g+//wAAABwC AAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXW p+fAAAAANgEAAAsAAAAAAAAAAAAAAAAAMAEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5 lhaDAAAAigAAABwAAAAAAAAAAAAAAAAAGQIAAHRoZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQ SwECLQAUAAYACAAAACEAgzswzJEGAABQGwAAFgAAAAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUv dGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAAAAAAAAAAAAAAJsJAAB0 aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAlgoA AAAA ------=_NextPart_01D8920D.255C3660 Content-Location: file:///C:/D23738F9/886-GALLEY_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D8920D.255C3660 Content-Location: file:///C:/D23738F9/886-GALLEY_archivos/image001.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAQwAABtbnRyUkdC IFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAA AADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk ZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAA AChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAA AAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAA AAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3Bh cmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADT LW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAw ADEANv/bAEMAAwICAgICAwICAgMDAwMEBgQEBAQECAYGBQYJCAoKCQgJCQoMDwwKCw4LCQkNEQ0O DxAQERAKDBITEhATDxAQEP/bAEMBAwMDBAMECAQECBALCQsQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEP/AABEIAWkB4gMBIgACEQEDEQH/xAAdAAABBQAD AQAAAAAAAAAAAAAFAwQGBwgAAQIJ/8QAWBAAAQMDAwEFBQMIBQgJAQUJAQIDBAAFEQYSITEHE0FR YQgUInGBMpGhFSNCUnKxwdEzYoLh8AkWJEOSorLCJTQ1NlNzdLPxYzd1g5PSRFRkdoSjtMPy/8QA GwEAAgMBAQEAAAAAAAAAAAAAAgMAAQQFBgf/xAA3EQACAgEDAwIEBAUDBAMAAAAAAQIRAwQhMQUS QSJREzJhcQYUkaEjM4Gx8AdC0RXB4fEkUmL/2gAMAwEAAhEDEQA/ALF7SUBvUxdP+tYQfuyKjbKC o5xkVKu0tHeSocgcYSttX3gj99RqKjoM0l7MaOGm/h4xxRO27UOJVTNAH91PIuArA61I82QI6oZa lWEd59lLyc/JQIP4UPDrinVJkbS4FFKiONx8/r1otcWlPafmpSAcM78K6fCoEn7s1GLM5KlIQ5LC NylLJKTnncR5DyrUnsKkGUMp2naMAHOM0g8k5I6iiSEJ2g5HkPWm0lGM+tWACXk8Hj5U0WevGKIP Dw+6mbqOuahBm4o88/Smjp5yT16U9WjJPjTOQ2oeFRqy0NnGmHv6ZpCzjGSMn7+tY17Xe2vtU7Ou 1zUdlsmpUG2x5SVRoMlhDrTbSkJUEDPxAc+BrYpbdLgAwEnqfKs/9seldH3PXMr8u2q3SJUlhlYc fbCS2jbgqKx8R+zxz4UuSS3CTIbof2z+0X3+PAe05HeffcS2lVvluRlKUeBgcpzVu2L2/osCWu36 jVeID7Ki243OhokBKh1ypBCqol7QOibFJiX3T7brMhiUyqMhEhRC8OJyo7ieBz0qsO2l4Qe1PUbK G090qX3iBjwUkH+dCqb2Cto+k2ifbM7PNTyo0NN4s7z77iEJSiSWHMkgfYcHP0qdT7hPsGrrs5Bc 2j31zc0eULTnIyPr1618c7fdI7U+LIUzt7iQ27kHptUDn8K+x+pVJnXp+e2AETGo8pOPEOMoUP30 2CBJjZNT228M5DiWH043suKAIPofEfKjrR8RVJyGh+mkHFG+zW4SBqOTDdkrLKWCUIKyRng9Omet EWW5HOcZFGobYIGB9KAR5CMjnxqS2wBYB4NHCNspsJsxcpzj8KV91AHSnTLeEinAZyK0dpVgtUYd Amht7j/9GvnBzsqRrZ56c0PvLGbc/wAfoGl0WVzKjYknjwH7hXAJaJLMeGGUreCiVuglICceAxnr 5ii06ODJBHIKEHP9kUkIxFwiuJSeEO+H7NHCO4MnSKz7eNWaz0Bp63XWw3dllUuZ7s8fdEHYNhUN pVnxHjzWeJOvNa6mkpTedXXCWlSv6HvSEH02JwMVeXtcy5COzOKq12967S27s0fdYhDjoTsWCraO cA4yfWs2aUc1eiQl6R2cyminCguVLYaTnrj7ZUD9KCefFhn65JHzT8Ty6hLVt4MlY6W3cl99rRqO wo1JH7PXYLbbUCzOxQ6uaDmQ45zuaQno2AACVnJ5wOeRnG4um0XpmYwkNiJKQ+ADlXwrBJyeSePG jz9z7QbmpCFsabgN9/3y5ClPypgSkEJZGClsIAJGAR4560jH0YzMdKrpdHn3XFkqQwwlpBHzJUR+ NI1HVtM4uKl+hzupavHL4McU0+1L9f3L21/cGbxpux3CIXQ3KuER1IcbU2raJLZJKVAEYKMdPH1q 5u5O9QwScnwrNTDCnBCeMANqgxhHbcdcWpS0hSFblbjgqyhPQDgUQveutUPrKH9SzTk5CW3No5+W OK5i6pjxrZNnsM34y00Mal2Nv9P7ludqbWOzy/pH2lQlBI8ScjoPGsoTbHc3UMoVAkKDqSoHeGif hODknxqWS7tLeB95lvPKHJUtZUT99DxIWDvRjJ8QOc1yNdqvzeRSSqkdfov+t2s/DWlyabQ6aL73 dybdbVwq/uAomlJzgDio8OMGULcLkh5S+7ATlRIHy55PTimsZlp9SWv84oEdCl4GGlISR6nbn648 aNalluLtyYAdJdlkbwn9FoHnx/SIA+QNRs29LSEISB8Bz581eDSRnFSkel0H+s34n1EFmyLGk+Eo vj9SbWnSWjpgDly7UrSgufD3LferXnPAwoISMn1qyYXYtpWA0FylT30KR8ReeZjI8+SN5/fWbrhD WJDAZR8Tyzux5Y5P7qsW1XKZercyZ0x95bI7pQcWVY2jA6+mK6mn0ununHcydU/1X68sby5J0v8A 8pL96v8Act96L2baVs826hqw91bW9zqn31vpbXg43KUoJHTqEjpUY7Pe2z/OKHaYEC/2Vu+Trq2y 7AtLIbShgufESnbk5QPtE+PFVvryPcJejLrAtz6W0yGkB4K6KbStKlcefH76Cez5dLfE7RdOaciN pdlyJoWt1tvAShKSSCTz4fjXRhjhjdRSRm6V+IdR+I9LLUajJJtNpptv+5vFawgFtB5ydyh4+lKR Y7St0iUShhtJJIHJOOBSLSCTlZ4zmvU6SpmC8Wztwnz4Nag17hhu5qjvIjRnG0MqibVN95hbayr7 fHmBj6UIedftyQ+8UvoaJSrA+Ip/WPmc1E2H0nVE99D7r0hhtll1tKBsQDuUkBWOeis8+HhUmhw8 toVcVJbCjlKFrGeemfWmpdoEpPJySS3otsm3OTLjCbkFbZXscVkITt6bR1JBOaqjU2oLlIeagWvs 5lEAl1tawnYQBvRlSgDyRgAjAPXAxVksynoiCWnGgrkBxf2Uj0HiaA36NqB+4NfkS5xG0iOQ4JCd xWvcn48AZHwBY6jnFLiu12w5T27YkWn3nWkJTcazWGF3a2klxb0jesOrAJBAxnByPvNSNFz1Oh9t N3uMRbKmtiI7DWFJcz5+W3H1JqOwdM6umzdl+1ihiJGBMdMVhDLj6sYUTnwyRyPSisnUNjsS1mRI ipVgNJfW+gJ3YUQkDJUTwo+ZwfKmt3wL8Ue5sJh+YibKQp14HalCB0z4fzp3qFju7XFjrQpx1sFZ 2/ZbSpXifPFJ6XutjvkhxuNfG5hDYdyyghAT+0R4njr4EeBpTUU1DqUtRZJU0lwNlG0YGOTzVMFN 1Q47KGd06+zFDrIbZB9Eoz/zVI9auAMRGycbpG4eu1B/nQzslaT+SJ0o9Xrg8fonCf4U61qpJnQE ZPwIecTxkA/Cn+NZpDFsQKN3kzte05b9m5hkqfUcdFBK1D/hFXkRjiqf0Yz772utyAPhhW53cemF EADj6mrjWB0pcHyE2QztZmm2dmuqZqFbVt2mSEH+spBA/E1DPZhsaLN2SQkY2l+U+4fphP8Ay0X9 oqZ7n2Q35IyDKDEYH9t1P8Aac9iMNVv7J9NR3FblKiF0kjBO5xSs/cRUfzERNSAD14ryQMYzxXa1 J8KQ70DIxn60RDhbST4Vyku+R+uK5VEMx9okMKtyXUj4mXgSfQ8VCYudo86svW0cu2iWFDKko34H UEEH+dVi3yklOCCPxrLN0zQgo0jPJPNPIqPi5FNGApKRuOTiiEXG7mqT3IGWGPeIb0bJw40tH+6c VH7HGC4H2khTb7iQB4JyFZPzKlGpTbQEqbUByCP31GbK2iLcLpFQg70PIUtRPXAUgfLhH41pjsqF y4CqUhKQCOnNNZBzk08VzTOQQc8UQsFvpJJxTJ0kHB6URdGc5HjTF5HPSoFQh1pFbYPWnZR8OccC klp4PFQlA15tIyQMVjn2yb7qXTOvrHLsl8mQ2pdq5bbcPdqUh1QyUn4SefKtlyE4z61lT20NNRLu /pWfIvtutqmkyo4XMLiUr+wraChKvM9cdap8FLkz3au03WjhWiTIgy0ODDhehNblf2kgHyo92y3D TkfXEiPc9MJnLeix3EzG5a2nCCgDOOUnp1IqO27SE1s74t0sk1HgI1zaUo/2SQfwo32taavNzuNh k2u3yJKEWOKh1TSN5CwCTnHPU0KSQRCXWdEyGVmNIu0F0j4UOJbfQPmobT+FfXOyXKNftIaUv0Vw uM3HTVreQsjG8e7ITnHrtr45yIEyG4tqXGfZKDhQcbKSD65r60diUtm49gPZdMZwQdKxmFc9FNLW 2R96abhW5TDkxPBpnpOcI2pn0tv7XUtjePJKknH7jRKWAQQRUbhbY2oHpYbcyW0IKx9kYK+D99Mk iJlw2md3zqULcKj6mrIsshpplCnnENpx9pSgB+NUvpyaHJCFqKtoHnjBqVXOeuWxyk7EJ2tj+PzN UpqCszarVR00LfJaMjXeiraAmbqaAkjqlLm8/cnNA7j299mttSdtzkSlJH2WY5yfT4sVnzUcU71r SggnxqHSW1AlwjPGAP55rBm6jki6ikeT1X4k1GNtQgjQdz9qSzJWpFp0pKcIOAuTISgH5hIJ/Gha +33Ul6aW0xZrbHS4Nv6ayPqSKoEtlsDOQTzmpVpp0YAzn1PjWKOuzTl6mc7H1/W55drlX2pEn1H2 j6zeSVG7CKAnaPd2UpwB05xmq4uGqdQ3FxXvt8nyAP0XJCtuflmpdfI/eMKHU5xUEkslp3uyEp55 NZtTmyN7tnI6pq9TJ+qba+4ipxKlBRTuUeqldc12CfOutuDx9DilG2io4yceJ8qwNtvc81kbk9zg JyMA56cUZskcJlIEh5DAJ5cUndt+lNI7DQUkJUpfifhp+g92kAJHXNSiYY1LufgOXdMVKmUx5q3i Ebid24elC1RiolR8fHHP40kHHdycrAHjSyULJJCuvAzzV8mjNlWWV0MXmmUEjIOODz40khrIwdiB g5WoZCRjJP3U9LKkkjJP08aH3h8R2ExwRveyVEfqA/xPH0NXjx/EmkTRaSWo1EUltYBkviTIU+gE JJxg+AHQfdTValOKwKWdPOEpGBTWV3gb2Mq2LWQlKsZwevNdVJcI+gRSS7Y8DRh0OuOT3RhpBWG1 f1ABk/eDTS7XO7t2WauxznGHmsOq24O9IySkgf1c/dT19aWu7YiAoWgd4lIGQQk8oPqefupu4tuI lEVnKSjCwFD9HPT6dKcpdvqQ2E1CSlKN/RinZDqB6+w7xDucl6WXkIUXXFbhsIKdoPnyfwqy+x/s vXpntW0veJU6ItyYl51Edpze4Gw0ohawBwORj1NCGrrEZhsLhwmmwpsEhKQlIOOQAkeeaKdlttm6 o7SZjbTyWnpdskx23lZ+AdylKRxzgZP311IdspQTfLD/AAzrc+r6lrJQx9kHG+273jS/ezWEi62y CkrmXKIwlH2i6+lO355NMrbf7Rq+xrm2Sah9h1fcEjqhe4DBHh5j0INVfB9nZSFbrlqltZxgFqKS fvWqpxorRcfQuny0ra/PluNrluJJ2khXwoHoPPx5ru6nS6DDhbw5nOe3il9TuafPrMuRfFxqMfvb JBGEdt2Tb2Ia2EMLSEykgHvlFOStPhx9kZ9aXcRJlNuxIMtaZRRhmS6gLWjB+3jx+XjQq3CVHauD 79zWWn5O+MhKOWElIwgDHmCc9cGvVxXBslr/ACrerouDHQ0XpAaQSsJWMEqPJAGevzrnJVybk6Or p/nGVsxHdUw2EEEqc7hK1AlwEAHxO3cnHhkUBf08hmUwxfNfXBbyih6KkyUNmRjaOUp6/EOnjkih UWy9kkKMzc3LlIkSGM92hyS4SjKwSVJTwFEkHHHWlrPdtB+8xZdqsM6ZIiNoixQ1AWssNgZCvi8g SM9eDQ7BJj16foKJdLa3IuqpMiG22w1sfcWvcVJKSrHBJLiOf6w9Kj0nVeiUut2+w6HkT2lD3jeu EonvCFlJ2qBJ+0fiJ/TI6kipNDuCk3lpi3aImLhqYSpx5UdtsMdAkEEcYSDnx+FI9aGRNYdoKHHX 2tGRx38dRbXNlDCduDhKU/b+JYGR5Hyq0im6Jfpq6Im6eRLY02/bTuLSW5LAbV1PxbR0HzppITKY ZaE0lLiipfdDgJABGT4kkEUR0qnUb0ETtVtMql5OxEc/AhI4CsHxPXHhQi7zFPyZbxStIZbcA3EH OD1B8en4UEpWRKkTjsqQWtGRHV8d6p53J8cuKNMtcS5CbshDSE7WoqSFE8gqWrOfolNGuzxv3fRV oQU4PubaiPUjP8aj+pXg5fppyNraWW8+R25I/Gs0+BiG/ZQyt7WF+uK8FTTKGD9Vcf8ACatJxa1A 4P8ACq17Fmy4dR3NQP5+cGkknqlOSP8AiqxnFDFBHgje5TPtT3F2L2bMxUo3KmXWOkDP6gUv/lqf 6NYVb9G2OErgs26Ok48+7Gfxqofa0nkxtHWQLA9+ubqyPMJQEj/jNXchAYYbYB4aQlv/AGQB/Cr8 lnt1xRSRuIzTQHu+AtR9SaUVx614IGelWQ8bv/qq++uV3hNcqEKd1DGLjbrW3lbakgfMVTMVIOW8 EbFbcfKr2vjeBuxnHNUpMYVFvExspxtfWMfM5rNNeR6Y7ayegp7H4UOKaR0nFPWU4IJqi7D9vJKf 3UDdbLOsJw6e8sqWlAPU7kKz9AT99GYBPHPSh93SWtU259LQw+2W1q/VSW1Z/FCB9afDgCQttI+0 KZvp6+GOaJPIAGKYupHPj86MCgetJznHWmy0+gp86nxHBpo4MetQjYgpKcUi4kY/CnBHpSKknkVC rGEpHH0rL3txW1T2gbFcUslXu132KV+qFtK/eUitUvtEp5B6VRXtZuRIfZFLnzLLGubcafFWqO+t aU8qKd2UEHjPn41b4IuTBdqiNuOJLic88cVPe1dbzWntFT47riSbe4y4pCyk7krGBx6YoBE1Ro1b oU5oJ1pR6e7XZxKQfRKkq/fU21onTU7s40nPnPToMb3mUhJabS84hW7gKGUgjCfCgCKtY1Vfo4Da blJUhJ4Q44Vj7lZFfT/2W7wq++zJ2fznVAvMouMJwgADciWtXQeixXzPctOkZC98bWRaB/8A3q3u JP8AuFVfRT2Mlw0+zVaYca4sTvcNR3RkPMhQG1xLTmCFAEedMxupFPgtqXwk8VEUhX5YelB4hLTK 07fBRUpOD9AD99Sq5uFDSlA1DWwuReAy2QN7bhPOAMDj8adN0gJTUE5S4RYGjmnJrneHIYb5UcdT 4Cpsva43hA4PHSoxpx9mHb0RWQCE8k/rHzqQsPFaMIwfHmsTl3HktRrfzeRyXHgj1/tiXknIwcVB Z9vWlzZ+jzkYqz7mQGifE5qB3RY7xwqBxyMVh1EEee10VZEZUYqcxzgDyovZcMIyevgPKk+6Lijs T4ZwTTmKEpBSeTnrWFrtdnNxLtl3D+S8p9BJzgc/OovcoyS8V8ZPQDpUrwCAMcAYodMiBZK0pGAP EUGROW5NUu9bkWLQSdoHTwFe0DGcoPHGaJvsttp+wM+eOtNUIClH4AAOeKztHDyRSYtHSENpG0bl c0sFEDogeuM02C8HqfLFet6v1j0qgPoLFbnXAOfGlm48ojerPOADu/hTVLxUdhOcc/KnTXfSHA0y kbU8qPQD1J8KiVhLb7jthESOpSipWwfEsheMAdSeD05qHXGaifPdksoWhpSsNIWclKBwkE+JxRu/ yfcYQhoWkmTlKik/6sHn6E4HyBqN7EpUCAcVvww7Ynq+k4fhYviSW7/seVjnp1pNSc+FOFAHwNeF IA5xTrOt3AQLcelOPJc3Mo/ONlKc9OCnPTwB4pgtZcVvQA6JOVtZPIB+2M+Q4p7dXHIq+6aK9z+S 3gcJUn4gj+18X3UNKg4pSWIzTjSMltBVktrwSRgHJPBFM54GOVhGdeJ0C2IXAbadS2rCi5khIPGR g+ePvq2/ZbW5N1yZkjaHEWp5ZxwAVKSP3CqhWlpaDEcyWCja4lX2gFdMevJ+orSPYroS1aY1e29Z bk/LYm2Lvit0JAALiQnGPPnNaNPPulGL8HpPw6tPDHnyKNTaSv6X/wCC9A5k4TSE90xmm3d+zc6A TjwwfDxp0hkI+dMrtOhwO4kznAhltZUSfMJOBXWjydCxmbVBtMVhqKZT5eeUt1C3VDvCvkpHPHJ+ 4UparKp5lCrklLwSlSVMlW5vgnAJPXg48sCh8HU1qdhusylyZq1uKKlJZWVK+LjaAOgGOaY3mfOu Ed+3WqPcmIstpTby+4U04jKSMtqVjCuc59KawG96R7vSpqLzAjWTTUJu2sBSpEpa0o2klIwlPiAn ceOpCQKZw73rc2KVGcatkW4qfbaRIwpY2Z+MqT0BIzgeWDQpy1vIdQ/Ov9zUw26hww5c2Ow0spPQ gKPBHBHjgdK8WfR1omi4SIsxEpDstMyUHLwXUpUnkZKUnbnCSSOuwetCqXLDqXsSBFv1qI6bZc+0 aJGclAuf6JFQj4cAc7jnr48dcU1s9x03o65PSNSayblvlLLRdfdQUMAJ2lTW3OAtXJ9eKjjCtEd/ 75EFrk4SG0iNBlTUnbwOQBnFP3ZdrcShuPYphelL7lCmtM/E6skq2p709clRwPU0PxYraw3jk/BY lwuECYlLEaYlLRSEl1K8lX9VPr61FbmoCLcUtj83HjFCeeTgKP8AKm0K3anDC2bZo/VR7pWxaSI0 Ug46EL6dRxQ/3y8NJvNgu2nH7XIZjMvAPTESFrDyygZKOAeOgpXcidkkXxYGhGsMCMlOA3GaTjyw gVAb/ISbrdJCFBSfeF844ylISfxSasiKyEMNITlO1ITj5VTU96Q9a7pJMYtrkSJTwCnAchTiufTP XHhmk5HtZaJz2MpB0nIkgEmTPeVz4gBI/nU2c4AGOM1F+yphbGg7YXWwku966AfJTiiPwxUodOU5 yeKqPyonkz129JRde2Ds8tDg3NtkuFGM8rfSn9wP3Vdq30qUr4v0jmqK1ruu/tX6eit4cbttvYLi T+gSHXP4pNXgvqcjPNRBHvJHTODXSia8kjoDn610rI6//NWUeSrn7Yrlc3jxT+FcqEK6vbZLRIHS qc1U0GL+8c47wJX8zjH8Ku26tksqPpVP9oEYNzYskDhSFIJ+Sh/OlT4GoYR1cU9aODmhsU54oig9 KWWGICsgDjpTDVig0u1zlE7WJCDxxkhxJx/vU5hHGPlTfWTa3tPL7lSQ42VKQT+iooOD9CAfpTI+ xTCEpKgojyOKHrPOTTwvtvx2n2ld4h1tLiVDopKhkH7jTN3n4c00FiDoA4NNHE5Jp45k9abuJ5qA jZSMjNeMEcUqrPJ5xXg+JzUKG8nhJPjiqX9pSzS9QdkGpLbBiuSZKmW3GmW0FS1rQ6k4SByT1q6p GNvnVc9rMSTcNA6iiQHXGpC7ZJ7pbSilaVhBIKSOQcjqKLlEPm7G0zqGE8r3zT9zY7s4X3kNxOz5 5TxU41LED3Yoy4CpTjF8LhHXa2ppKR8vi3VC2tRa8Km3n9S3se85WFLnOnfzyeVc8+dWLCvN7PZL qOT+VpTtyhzIkhD6lZWhrlKufIk0sJsph5lDahg4yAeTX0G/yfM0PdhOp4Sndxg6tbcCf1UuxAPx KD91YggdpGrba+qUHIEtx1G0mbb2JPw/20HBraPsF60l6p0j2jwp8e2R3oci0S0Ihw0R9ySX0KUo IABwSgfWjx/MRmibw6A0fioVaIzQdMlxILq+EAj7Kf5n91PLksO/BuAz50g26lnKEN5z0PhWbXZ0 qxo8n+I+o/CitLB7vn7exKrfJKsISnAHgBUiivKSkEA+nOcVELXNQFbVY9STUxgJbcSkbgOPLOaT hlZwNG+5bMSuDm5pXeYA8Mdah88sqdKVN5wckkVLrkhJ+FKh1+JXlUUuMKP3qkqcUpQ5KN4BA8yM 8D1NTKnLgDVxnJ1FWDJLkdDZ7tKSehPmaaRlBZ+FWSv6Um+7GkbxCksvIGB+ZcSvn1wa7iJKCElR Cxxk1zslp7nLdqdNUGG1ISBgZPQc8U2lkBJPORxxTyPHy1uUoY6jNN5PdJJAGMeJoXstw8q9O4Ck JQQolJ3HIFIEJQgJSMkDn509fWytRAXz4fzps6EAlRWfXFZZcnGy1ewghpSjkH5k0oUgKwE58BXp qUhAIwRnpST87J2pABzk8UDaRmnOK3PYG3GQAT609Yj4SVLWlKB9tWeOmfrjr9KFBxSlDcojPUmn F1nuRbN7i2oZmZJIPPdjr+PH30eJd0qG6HF+azKIInzE3GUqSR8B+FtJ8EDgfXxPqTTcoPgK8BpS gUKOMj4TS6UlIG45PjXR42PcRSikkJbT614c48PCnBGPCkXAD481C7A9zStxlSU4Cxyk+G4dKER2 SJIcXDCCnLilt9CsHOD9D8/pR6S3uynx4oQ/GCXSyhDgTKV+cWlX9GU/ZI9ScfdRRb4BU96PTyB7 uEd6rcrL+08Hr0z6HmtG+zFPfnOTEy3kEwLciMynPxd2XlLP0BOKzpJl4hvPKABWVJSgjlK0n4hn 7iPrVkdjWqBp6+W+5Be1hz/R5HPCml4yfocH6U7BLtyps6PTtQ8Oou9mqZrtyUlJwkZoNqS4PQ7D c57atrkeI64hXkoJJB++neSfl5ig+tQf80bsk8d5FU1/t4T/ABrtnrY7tB2w9kdjmWuE/d7xqGc+ /Gacd726OJTvUkFWAjbgZJrKOt+0SNJ1NeJWk4TEW0WWQtmJFllUpdxDagHFqU6okAZBIGPhIwc1 uFq5WyDFjtO3OI38DbSd7yRuVgAAc9enHrWTrr7Numl6rmKj9qdjj6fnSXXSA4VTG2nVgOMJwdhy obQrqOeM9PRdC/IwnOWtV7KtrX1/qcbq2bUtRjp5ed6df4jQ3ZzZ9Dam0VYtVsaGtEU3aCzLU17s lYSpSRkDdnjOcVDNUKgwbt2grt8OPFahwmYobZaShG4Rir7KQBn84Knlq1v2a2KxMwrXqW3Jt9rY 7htDTm8obaCU4AAycbkdB+kPOqn1XOTeNPdot4tTyXPylOWzFcSeFnumm0EehOK4eqilJuMaVujr 6PI5qnK3SvcH+0d7SUX2dOxaxWKxqKdY32yNNWoBOG4IDSEuTHT5IUrCU9VLwB0NZN7Ge37tb1Dr yz6+1zZ9Vam0XpazyoaGIkRx9DjwYyp1R6d64sAqXn4cjoM1q3tV9l/sk7WdanWXbD2iXiaq3R24 EW0wiiLHhNNZGzISpa1Z3Eq45JxipZbNC6J03cbC5pm2QWGNIwVwrOlyLKcMdpS1Bxe3ASpagcFa hnBPJBFCopEnkSX1M/8AYn7ZNkkdpto0tYra5IseqrtJRLdnvqRcYD0l4qbDjZylxCVFKQtKj8J5 xjFaBur4ndpGqI5A2iXaIWScDhIUr5YoBN9l32V3tSRNRQezm7QbvJe/KDM2FKlxw06HeFkhYSlW 4Zx5eGKPadjLe7Rb4uSyoh7VW5PeAguJajoweeoyDz0PNLzPhMPEkk6LrefS3EXISobUtlzd1BAG eDVJ3GYsabU+WxtejBQGcnKsHB++rc1NIRF0xc3UJCe7hPbR4DCDiqe1JgWdEdK8ZLaED+X3Vkyu kMiXTpSMY2k7RD3n83CZGR+yD/Gn769gPFdsN+6xmmEj4WmkIHhwEgfwpBakrWEq8SMZo6pFeTPl kdXdfal1LNQ2Si2sBlZz+rHQgfiqroDqy4dyenPWqU7HFPXPth7RbypQKDLfQBnw70IH/tGrrSF5 5wKBJ8ligcV4N14ekugEBocedKIChwRXboSU5UBnwq6ID/epB6t1yvZxnx+6uVXb9SEZmgLZUTzg VVvaFFSqG25xlt3H+0CP4VbcxAKTnGDmq81vFDtpmJCeWwHBj0NVJbBortjdlOOuKJM8gZodGUCA QrPgaIseApKQVhGGecZpW8IQ7aXkOcjaD+IH7iabMK/ODmn77fewX2uu9lYH+zRRKYDsb7hsVvSt rYpDCWtg/RCPhA+5IpZbhzyOhoVpyUFQJDBcUoszHgSfJRDgH0CwPpT9xWRk/MU1MFnorzSTh461 xKiTg9K8OkgcdKIE8OEHjNIqIHjXHCoDw9KTUSQahBKQRjmo7d44lxnoxAIebW2fkoEfxo+6RtIo RK+3nPQirRD5+6vh2ZVoMhUhhmTb3ChCO9SXXdxxt7scgcdTil9KphT9Dawt7rrjRct7alL7sq2t oWVFQHGcHAxT6+diUmBqnUV2vN7t0KEi4ynGW0OhbhQXFFG4/ZRnIHJyPIV32fMMvP3e15bdE61v xDtIUkHKVEkjwwk0sNlXL0zp9cYLb1WvY2ncVqtjoTj5gmtSf5P+NAtuo+0GDGvrEwytMtyAlDK0 EBmW2on4h5E/fVcROw9RiGwtaliTIzUltqQ9GUlThSdpUjBIwASQVHwq7+yns+0h2ZXS66o05qRK ZEqEbbJh+/tuIYYKkKUVEfENxSOFdMHzpcsyxpyQnWTlpsEsqV14LtfmJecU4VHB+yKUZdUtQQ0T nHSoqzqy0kbF3m0kDnmWjOfvp41rKC2v8xcrUVD/APiUH+NchylOXdI+V58Wr1OV5ckXb+hN7ewU lO9WSSDnFTS1SQhtKeFeGc4qn2u0JCF5Ey0kjI+KSnJ/GnzXak60R3JtDifP3ocf71aMWaMOR2mj lwv5H+jLSvCJxgTVW9TZkpjuuNFZCUhwIJSSTwBnFZW7DdOX3tbgXW/XjW12sk9Lq/eYPdIc3/Go bviX8SQUkZI/AirH1br65X6CmAbhCiMg5Whh5tfeKGCknfnBHUY8flUNmTbdH91kaYQzZZMRvuSu LLGXB4qOTyT4+fOa0vWQgk4bvyduOtnpMN4YPvb3tPj6BBfYpqHRc7/OTs91dbn7glBK2LraQhh5 PPGEEhOfPGfHihVv7U7k6JenpNk/JGpo0tLK0vnvG8bSVFscpWCrASrPQ9MiikXV+u7hHW2NYoUB lOFhtSumfPPQdTTOJZrei5s3q4XSC9JG1zvllG5Rx0Kt32fTzoXrMc/njZMfUPi+rV4m6W23+bFr WGbJNqZReHkLmlALm1O0Z9BXV4cTt65yM4qMIv7CSFKvFqSegKnk/wD6qWVfItwDaV320gfZA71A /wCeubNyn4PM6iOfNdQqzwpZWSBjOOuK75QnaoE8dcUui2d6tQZvltOCM7X28/8AHXRt8FI3vatt jaD0/wBIaKvu35pH5fI/BzX0jWv/AGMZrcIOAM4pJSzuUCkZV4UaZ01b5GO71hbcbecSWCcjrj4+ lFIfZsmVukDV1u7tHiH45zx595VflM0nwK/6D1DI6WMirTbq1oDawVlWMK6D1NDJE0XCc4+kYb4S 2OmEDp9/J+tGNX2+Xp1v3UPlx1x8xnXBsKQjbuUAUkjyTn1NRyPw4k8geNPx4ni+bk7Gg6Zm6d68 yqT/ALBXaMDHP0r0Wxj5122jx60qU1oOxY2Ujmklo45p0oAUktBPGahXcCpAwQo+BpjJZS/uaJO1 aSlWDjiiryQonpgih+PzhSMetQTJ7gm7vNMs4UdpSUx2g4CRvx9ofNJwTUr022kRm2AnaEN8DPJB 6/cf31C9ViWmQx3LgLbY3LQR68fX++pfovvfyel14ALcJOPFPmM+PNHB2zXp5d0zXHZJfG9UaPju PyEe928+5yN2SSUj4VH5px9xo5q6zRZ1lVAducdn3yTHYClBQGS6k4Jx6Vn/ALJXIMjW8SwXW4TY sS65Y3RpbjGHsfm92xQyCcp5z9qtFv8AYpo64M+73T32c0CPgkzXXRnwyFKNdjBlco37HsdHnWTE m1uiC3vs+0FAv8th2I1c47KVR/eZE5xXeI7vONqQEZzgBQ6AHnNN7rZ+yS3XSQmE1H7kSSpC1y0F DjO/vVJH51OzLpUQD6VYEXsG7LopHd6Wh+uUZok12SdnrOEp0vAOPNlJ/hXQ/PZlX/LBej075j+x WFhY7H1XZpzUjWm4kNtBSp0zS68sAAJSkodUUJJJyPAIT9G9yvGif8030RJkdpufefeW2kyAO7bD 4UklKRlKcNp4xwDVyx+zrRTGCzp2CjHHDSR/CiCNKafZSe6tEZJPkgUjNnyZvmZowQx4PkRkSbF1 PNajImdsUuY5ARNEZ1oyVuKVKYUFKcUhsFZbdVhB8Epz1PDtm0303x65WbtO1QgzJEqYpl2DcX0M SFIfYZLW7gISy8hRRwnvGkkeda6bsVmaG5FuYB/ZFLNMRWgCzHQjPQpApfdP3Gen2MSX7sF1K9p2 36etl+1NdLXbZkmTF32p0SG0PFhRwHnyhSgppwgryQXDgjGDc/YdaNUR1xmdTQJ7bzE6Y8wmW0Ap mMQoNpUpJIKznccE8qNX18RTgHjypGUHkx3XIjbSpIbUWQ7kIK8HaFEcgZxnFU7lyRV4Ib2uao03 pPRkuRqS5NwmJYDCAAFOukkZDaOqyB4D64qgrl2mWi9aXb1LY4F0nOsTS1HhNJQA64MbAt4/m05y M4yB4k0NuHs/9ot91kO0Dt/vsK/y5kh9MWzRXlmNEjJ5bRwEjABGUgYJ5OaI9sTrWn9ERG7fFaiM sOJaZZZQEJb3LbAwBx41gzTk72NMYxWxqbT7l8dsMFzU0eOxdlR0GY1Hd7xtDuPiSF4G7HmAATnH FKuuJSSskAJ5NLkhSQcnoD+FBdTShB07drgV7Pd4El0KPTKWlEfiK2eBC5KK9mAGYNX35xQ7yZcS Vc5xuW4vH3k1dm3coZwR8qpv2To5T2WquK1fnJsoKUSOeGkq5/2zVypOVcAihL8iyE7fhBOK46fg zXSTz1rp/cGzsGVEjqcVCxtsz51yvIVJx9lv/aP8q5VUS0BpCTt5qH6kjh1qQyUja42oY+lTV9GU nxxUYvbR3ZPFRrYMpNgKCsHp/GijB5HpTOU2GLjJj5wG3VJA+tOmSCBSCDxs4WMedFmCdoBwUk4P y6Gg6Mggg0SYWVN/CeRirXJCGWhTrM64xXFJCUuIW2gDlPwlKifmpP4UVCvPrQmUFRdUTNqRteQd yj5pXlIH/wCYs/SkFXDUA1EzEat7H5HLRU9KWv49+DhKRuBzkD9E/aH0ZEph3d514UM00bu0ByUq A1NZXIQNymkrG4Dzx9D8qVLwBwaOgTiwAelJLCRnnGK7dkJH8aZvSgDnIOash27jnjJoXMbKllWc DGacuTE4yVYx1NMZktGMlWKtEZgHt71lrTTXbDquy269OMRPfe8ba7pspKFpSoZyk56+NeOybV2q Llq2NGus8yROZfhpSGGk43tq5ylIPhSvtZQ/d+2+4yVIwiZDiPpOOFfmwkn70mgfZZNYj6otzgc2 v+8IQyAVD4lHaP0SMfEfEUvyF4IqrWer7b38KJf5LKI7ymglJA4BIx0q5PYyvtw1N7Qlh05qWR+U bfd41wjvxpCUqbdJiOqRuGOcLSk8+IqvtcaS01Z7jJkzbxOQ3JlvYSxCSsNqCjlJJUOf4VOfZNia ftvtE9n1ytN1uSl/lppk97GQhOxxKkKBO4nkKIqV7l2y1+1j2dm4LjupOzuBuYUS5JtKRko81Men 9T7vKqYjNNH/AFaQpJIIKeQR1BFb/s9huup7/wDkCyx++lKcWk5OEtpScFaz4AUP7bPYgXe7OdU6 KurTup2klUxlLXdMzB6eO4Yxu6nxBpeRRixkIuStIw4mMjO4Np556UslG39FNPbharnp+5v2W/W5 6FOiq2usPJwpJ8/UHwI4pFTWRlNCR7CW8gYBwKQcWtXQkfWnXdmk1MHrxVUByMCFrWMqVx60v7ot aSpJP30p3AKv5U/jtEJ5SSKuiUiPy4KiDnkHrmg0uGoHGOnSp89BDiTgUFn237Xw9KtRSIlEgz7S s4IFE7a6282ELSnenjp4edep0FSCTih6AuO4FoOCKjQRJGQnHAGR0xTxhYHT4VDkEUMivpdSFoIw eo8vSn6FDg55oGq4DVFxdkGu20S27TdiXJbIUIxdWSmU2R8TK8n7XiD148xV0rbhqaROt7inIjxI TuB3NKHVtXqPPxHNY8adcbUl5pxSHG1BSVJOCCOhHqKvfs77RJN+tr0IvpTcmglchg8Ik7OjqR4H BwrHn5UjLjVWjmdU6etdi9K9S4Lahq3thHink04UD1Pjx8qEWi4tTY6JsdWxB4UlZwUHxSfXPH3U cGFt7k4II+6snB4WWOWN9s1TGy0efOBSThShIPQq4Ap0pIPQeppksYUfuq7FtjZ1IHgKY/ClalE9 OBx4+FPXyR8JobJPdsFxSjnnFSwG9wJddklwocKfzg2nd09Km+nG0+5NkK3YHXz86rwSHHZB2o7w BQITgnODn6f3VZFic3xEq+EfCM7DkDPlTca2s1aTe5Dx6Q9EkNyYrhaeZWlxtYPKVpOQfoQK29oH VDOsdI2zUbRTumMgvAADa6OHBx/WB+lYanKznxq+PZW1kEuXHQ85/AX/AKdDyedw4cT9RtP0NbNN PtlT8nd6fm7MnY/Jo3x612D1JP4V4CknkLzXErA6nr510DuC6SCkHGa9BWOB4fupNK/M12FZ6jBq EPQ+WSK5wcjAyea6QEIHw4SK4kncSR8s1AztStvhXRVnpXSlgHBGa8FYGM4oWQrntCuzQ1TDtQSs uNQ1P7gMjBXjB8vs/jWfvaXllnTdthlPdpfmtknkdFhX70ir81UpmTf7i8tpJUkBgKIByEpHA+tZ c9rSf7qNNW5lO1RKnFo6g7c4IHn0rHm9x+Nb7G7WFhUVpWftNpV+AqCdts0QOyPWMnvi2RaJCAtP UFado/fUws0tD9gtsgf62Ewvj1bSf41WPtKzg12M6gjtqyuYY8YAeO59GR9QDWp8C0MPZ4tjNo7J 7dHacUrvJMlzJPON+0fTCRVkJx0FRHsqCYnZppyMoJQsQgsgH9ZSjn7iKlYX4gjHnmhIOGx1xxXl 1fGM8VxvJJwoUk/tSrIUAc+dWWzvI8jXKT7xVcqigc43wT51H761+aUakquhGDQW8NZaWMeFQOyk 9TR+4vj5HRza4PqP7qbNHB60Y1w0W58d7HC2yk/MH++grWOgPNIfIQ+T1FEIysAEUNB+Ecc08jKJ SB0qEIrqkqj6liupKlB/82ltKcla1IOPu7tRoErQemFXCNd3bW8mRCfU+0e+dShDqlblK252kkjx +lSbVU+XY7tab9DDfew3kPZcztASsbunP2FKHHnTzUHaVM1HbjbnrXAipW+l9S2UnepQz1JP9Y0y L9ymQmJoy22+7LvLEt4OOL7wownA6YAPUHAAyOSM5o09M2nqM0PdnYH2qHSLiAT8dGCF3Z4VlOaZ PzgM89PWgb922jIUBTB67FX6WM81CBh+5Y3JB5PrTNycpxBz5dM0GcnhR5V+NcEvc0pQ5CE5VjwH TJ+pFEkU2lyZq9rKzTJuvLPcmozzyHrSGh3Tal4KHVk5wP64qudH2S/RLg1cI9kmKMJ5p9RWwpIS AoYJzjx/hV59vjl0b1J2duRLtMjwLjJVHkpjOKSHUAtrIOCCTgkdelEuxf2ee2XVWv8AUttXEuk3 TMhJjxptwfUlsoUoKStCSeQnj4uE5TgHNIyZYxZnlqk324l3Or2+9P8AQibekdJ3XUcuNq+XHftz rzoU18SVsrOMEqPBzk4weKsrsY9kLXcbWti1Rotl9yzW65szlPy2di3EtrCkpbVnGCBjccdT1rXH Zt7IHY52d3VGq77b/wDOTU7gQVzZuVoaUkDPdNfZQMjrjcfOryTKZQ1taLMZlrhCTgcD+qOlIlkb dxZ14QVLuQA0boGNpWPJERplE64urlTnVFSyVKUSGwrj4E5wBj18aPuWxLu5MmatIOCQhxQSSPrg CvCbm66tWxkLSOmTjP0r05KVJUAtlKRjcQ0cA/f0FLu+RlJcFV9s/sy6N7arW4HUCDfY6T7tcm0g Hd4BR8QfHP8AfXzy7SuyzWvZBqJzTmtLWphe49xISCWZKfBSFfLw/fX15hpDTYwxsBGcDnNRjtH7 OdK9q1hc03q+0tzIziSELUn840rwUhXUGji2gZQUj5BqaCyFJFeC36Vdfb17M2r+w64KnJafuWmn 1EsT0IJLQ8Eu46H1+/zqn9iVfGBnNNMzi4umM0s85Iogw1wBXgN/Fkj5cU8YQMH0q/AIs1HHhzSE 63BxBUEUQZA44NO0oQpOFAc0a3BK6utrIz8HFRiVFKHCFJq1rnbEqCsJ48Khl4tYClYGDUaCsi8Z 4xncK+wrg+nrRhl7HXkGhT7GDtV1ruFIKFBlw8/on+FA4hJh9DmMHOKe265S7TOYuNveUy+woLbW nwP8R6UIS7lPH76cNObht8ulDRZobRmr417YN7hKIdSlIuMHOQk+DiPTy+6rTgS2lsNvNOpcaeSF JUk5GKx3p7UM7Tl0autudw43wtCvsuJPVKh5H8K0do3XFretCJ0FBTCmktu55MVwkbgry5A58Qc1 iz43F2uDi9Y6d+bh8bGvUufqv+Swlk4ynpjPWmL2fHHrXhqaSNqwcDpmkJUgdc1ns8LOVciMlwgj 1oLenwhogcYHnxT5yQDnGfOo9e5Hw9c89KqUqVGeeTY96eaS86Tj7SufOrDt6Uts8BI6/ZGBUC0y lIJUBjPNTdp0JawSafiexv0bqB3Jd2uAjwolo/UErTOpId/gkhcN9LuB+knPxJPzGR9aBSHsk817 tjgLxGeaapNOzdjydsk0b+t8yFdYMa5wl748tpL7SgeqFDIpZICXRtP0zVQezrqw3TTEjTElz8/Z nNzIJ5VHWSQP7Ksj6irZCiVc4NdeEu+KkerxZFlgpIfBxSiNp4pbKvFX4UzbWfXg8UqlzJwDRDBf OR9rrXQLmOVCvGT/AINdgpyefQ1AkdFKicl0/IV0UbiAScZ865uHPNNLpJEa3SpK+jLK15z0wk1T LRWkp9Eh1+Ypatzzzrid3XaVcZ+mB9KyZ7W9w361sVvIyqNbVPDB6Bazjp+zWp0go2ocwshPxHHO cc59OM1kf2mZDMrtWkttjIhW2MyOM4ykqx/vVh1D9NmrD8xv/SDyHdF2B3putMNX3sIqsPadmIa7 PIsZZx7zd4w9CEBaz+6p9oWUh7s90w9x+cs8M58D+ZTVSe1DcEmBpm0FO4ypchwAeBDQQOP/AMWt L+UT5LN000YWmbREUAkswWEEeobGaJpcyceXTimmUstMsE/E22hBHlgAV5S+Mn7QqFBRDhSMjHnS a1knJ8aHCYz33dd78WPs45PrS5cUT0ynrmr8EHPeJ9a5SHep/W/GuVRD2pOQccULuSMoUk9eaIhv IJUeenPQCmk1slJIwB8utQIqHtBi5iMyM47p4j/aH91RGMsEDmrD13E32iXkklOHOmOhquWNp4HW lT5DCKCCkEGnsdQPJ+dDms7B6Cl4zwCwCaEgB7UiRp0PjP5taxgdVDZux96AKharkVJyepGVYPjU +7REB7SchxPVlxpzPkN23/mFU5DmNCAx3UhTyUtpR3i+qykbVKPzUDTI7oFhqRcjn7WM+JoTJuSg D8RpnKn89aCy5pGcE0aKCUi4qAPxfLFMzLddKUpJwpYbB8Ao/Kgzs5R8cePNS3SVmnXq0FtLTTaJ UjZGefCkpU6ACCnj4sc9KDNljhj3Sexn1GSeOKcI27S/U8w4C1C5RZBIkMpT3CgDg/F9oeh4/GnO nbRfDGmy5dvdbgPt9wp91vgq3dEJ6q58RwMcmrK0p2Zu3+bLjMWlUicyjuETXXCGm0HO1Qxxnd0H J8KvrSvZbZtONsSdSzG51wbSk4UT3bZA6bT1/tenFc16yebbEtvd8f09w8XTsmXG/wA06cktl4a/ 9WU5oD2b2L0q3XbVUFj8n25Iet0mUgKlFxSdqltI6N/DwFHPmK0Rp6y2OxwW7TZmRGitABQCipxa vNajypXXk9PCvErUVpD/AHXfpdQBk4B4NeF6ngBYG1ROMJJwlP8Ajwq4pR3btnRw6fHgXoj7/vuE XYbTbyyxGLgSdxUpwqOPoaZue5qe2i2ofcTjKilW1Bz555pVm6uSEqYKQQU42A+Hy8afRUNPISS4 EEDb8Rxj05o9nwP8DVDz7J2ssxm88DY0BgfXNErahxbilBmMTnwYAz612IzKjhICgOM5FPY7CWcJ SSrI8vGiSIEGkktBTyW+BzhIOTXvumzhbjaAkckkYNJNOpBwonCOvrSUyRvxuWAT0GaYQbX6Larr a37LdrazNgyEFL0d1O5Kkn5+PrWAfaE9kyTpeRK1Z2XR3ZdqyXH7b1cj+JLfmn0rekqRhklawcHr 4VDr1NBcUAsBIyNvAB86ndW5HBSVM+U3ByCkhSSUkEYII6gjwNekq2mtfdtns72nWzz2pNGtsW2+ EFbjQ+FmVjwUB9lXqKyXc7bcrFcn7NeoD0OdHUUusupwUnz9QfAjimRakZZ45Q5O218ZHNPWlgjH jQpLmDxTht4g9aYhTVD2XhTfqKi12ZBJOKkTz+Wqj9wcBzmi2KIZc45SrcOmaEOp8AefCpJcUhQP ODQF1G081TCFI0vcNi/tDr6+tPm3gDkKoA4tTSgtB5H407jzA6nIPoR61TWxaYbDwChu8ak+i9YS NKXMSNqn4T2Eyo+7G9PmPJQ8D9KhKH8jmnTb5AAyOaXKKlswrNY6avcSRbGFMThIgyDmE+eoH6i/ AEHI/CirylEKSTyPWszaG14vS0lUKdues8xX+ktDqyr/AMVHqPEeI9a0PYpn5Qg/HIRICUJWxJQr h1tX2VH91cvUYZYntweS670bvb1OBfde31/qKPK2ggeHlUbujoW7tCvGj8oqS2VZ4AOajqIkme9u aGUhXWsUpNniZ2n2h6w4bVgdOPGpN3wCBjPSo/bbbJjt7loIVnJossqCRng+IrXjlSo36duEdzw8 +d3yp9Z+XNxoS7uK+mc0csrZ7sqJ8OKdF+TZguUyw+yrVI0jrCDdnVkRXF+7Sh/9JfBP0OD9K10C oKyjBB+uR6VhuOCGlKUOCK1T2M6wGqdDxDId3Tbd/oUnPU7R8Cj804+oNdPSTVdp6bp86XYyftkk H4s8+dLoJPHQD1pmh7kJBP3U6acQcc8/OtjR0hVJJOCc45rtQxyD93P4V0kpPHP310oAcAn6UJaP G7Bx09KC6zkpY0/JSXNpeKGAc+Kljj6jI+tG1AdST5cVDe0qWGoVuiBwBUiUVBJ/SCEEn8Smgk6V sNK2RUrbCi4teBnHPI/x/Osbdt8lUzth1E79ra400AfDDKB/OtdOZS4kgKUSdvGTnnH7/IVjXtNk pf7UdTut5O24ut5TyMpITx91c7US9KNmBepm9ezKX33ZbpF84ANmjZI/YA/hVT9vYVdu0PQun1I/ NuErKh1SXJDac/8A9urA7GXt/Y9ox4OqybMxuB+tVz2gvib7QOm7dknuGYznHTOXnMf7grZJ3Ff0 M1VJlyypG9Syc5WTjPSukrOxCVEDPkTg0LYk948Mr3hJyCcdKektjaFIzjkE+BoykKsOO97uW4pK V+BxjP76Uckud4lCE7gVYUScADHh50m0hASVgefOc+v76areW28EqHwq8SangILB3IyP3VymIdRg fnj99cqED2PPwptLSNhwfwp2tsk8n0xTaS2rBwnpVEIHqqMX48ljGe8aWn8DVRRyOFk8nBwfOrtv 7KysYJ8DxVMS45iTZEfwbdWkD5E0vIGhdJGw4ryFYOR1rps/CPlXYIKhSyDbVDXvOl7kgJUpSoiy jA5CgNw/ECqGRLQhltpJSEpSDgHJAJVgH7j99aKcZTIhOxieHm1tk/tAj+NZ00/YNSaplSItqtnE MpaW8pJbRjkjK1HHHOcAkZFEskcabm6RFFydRQ1lyQhJWo7QPOu7BpXUutHSbLAUIoVhcx892wn+ 0ftH0Tk1bGl+yTTcPbM1I6q7zE8iPghhJHkjqv5q49KuKz9n93vaGXFRRFiJSA23/RoSnwHAz9AP rXMy9V+I3DSx7vr4Rvx6DtXdndfTyUzpHscsdsfZMhhWo7kSPhU3+ZSfNLXj81k/IVfdj7JW5AYl 6mwpbW1bcZn4QggcAqH3YGB4VM9O6Stunmk9ztLpGN5SEn+ynr/Gi7lzgsJKW3ElR8T/AApEcMpy U9TLuft4/Q0SyQjHswxpfuNotrTFipjxm0RwBsSW8J7oenkT50g7Dt8cJaXH71XXJc3Ffnn1pJ+4 xVcOyVYSeieQPuGK405HfJLQcSkjBUogdPCtdpbIz15PLkO2OEf9DJJz8PxHJ+6u1G1Q/gFij955 LBwnzyc172rbSpptbKCQSFd9ikG4MV//AK3LQQnphe5J+gqk/YIfMSWghKmYMBHIBSEkjH30VZdf wCYrIyeMI3YHyJoRFRGbe2sJSED9MoIJ+lHEzIbbqGFzWg8QPgByrJ6ZHhS8urw6ZxjlkouTpfVj IYZ5bcFdD9l1taQox2wQemMY+6vbjzCFBr3Vo8cnwpAKKsAKBJ8duK8OPMRgpUl5CN3QnxratxQ5 95eAO6KxgDqlWcihsm4RHQUKZcznACDjmlX3gPiSoYAznNAbjNS2sJRyo/Ec+FRyoJI7lXCEFOIV Gkktk7lqUnA9M5oG/IsrqiSgknzA6V6nSNzB+Llxfh4mhAaDyzuKEobyVKWeBjxOenFA5BUe7mLH GivTpqxGjx2lOuPOFKENNgZUtRPQAZOa+aHtI+0naO0PtGCdJ2ZhenLShUSPJKNsqad2VP7j0Tx8 KTxt5PJ4mHtk+1Y5r2VI7LOzu5EaZiL7u5T2VkflRxP6CT/4KSP7ZGegFZH4KuowDzTccH8zAyO1 2lwWy9QbrHEqDIDiM4PgUnyUPA0SbeHiao6PcJtolJm2x4tr/SB+yseSh41YWmtZRLwkMOkMywPi aJ6+qT4itKoxThTJi88QjAVQac8OTTt6R+a6igsyQM43daugEhjKVkmhEhGTkU/kLJOM0xdP41YQ OktjBGaaREqEpLYWQlZwaevnOR5UzZGJ7HoqoV5JAzAUpOUvD6il/wAnPcHemu4x+HrxRBBBApfk LwDvcnxlIAyfWrC7K9czNNSkWa8ZNuUo9y6Tn3ZauoP9RXj5daiQT48V6HGceIockFONMirhmmGp AlRnVnGUAd6gcgZ6H1B8DQO1vram5TlI3EgDpj5VDezPXS2Ft6fuzqVAp7qM64eqT/qVH1/RPhVj ux4zcovx0E5558/HFcXLgeOVo+ffiHpD0mRajCvQ/wBmHPys+GgSQSPEig8rUMjvSlxI56YFevyr CW1tQ4ndjpQWW29IcHu7ZXzxjxqm9jgvLLZJjpd0mSpLTLS9gUsA48qfT+0aNp6SiIWFPKQACnOM /WmdutclpapT42BA3YJ54qC6hhvSLuqTu3blZ45q03FGzBkyY1fllz23XAucISGohaSU9Cc1Z3s4 9o6LXr1NimK2Q76n3cgngPj+iV9TlOf61UPZnmWLYgA4+EeHpTq23JDFyjPwnltyW3EKSc4KVg5S QfDnFbsMnGSZ6LS5GnGXk+lKVAHw44pZHdkfYTn060MhvuuRo63/AOlcZbWs+aikFX45p2laSMnH yrtHoh0stobUtS9gQNxJPQDrXS1SkI3iO44D0KSKGag2iyTVrWUlLKtuPHIx/GoFLuzNqZLr8hxl CRyv4tqQPMjgUub8IKPJOJ+q41rcDMuLKLxBIaRyrHnjwHzqBau1OxqK7Q2UwlMmA0taUOrC1ZcU AFccDISrj0qru0bVl3bvzkdm9vNoDLeAHM5BTnx+dFuy73m4WSRdbgtch559SUOq5+FGAAPTOT9a yz763Y5USl9D5kJSkfCrAH31iXU05mTrG9vFWFrucgk9R/SHmtyO7kErOMIHjxn+VfPGZdEP3a4u fa3zXz5kkuq8aw6mVUjZp1abPoX2JSjJ7GtKKbUhaWoBZB89i1D+FVzJcXN9pGS4tIV7jFQE+JBT Gz+901KvZsfKuwvTZSoA7ZQwev8A1hygGl2Fze1jVF0KApTUiU0F+ie5bH4ZroXcYoy1uycvOKae 7xChhZ5BPQ07aeC8BQKyvjmhrzLxfAKyc9B5UVitd4tKnE/P09adQvgMR2/zQCVEp54phOCkZyVE HwxkZp/HWFMb07h8RHxDFN5chshaSpOQOKqggP8AlBxPw7XRjjhP99cr2ZUTJyhWc/q/31yhohYg c25JTk/Omkh2Qo4SEIB6nOT91BP8+dPlBKrkw2tPVCl5UPoOtA7p2pWphJERlySo8cJ2jP1rNk1u nxK5zQenxy1SvDuFL8jKSrdgiqa1OwtGoJDbTa1Kd2ubUpz1AzgCpY/rHUl/e7mBAShGfBBUSPU0 4iaRv8897NkNxysYP6SgPpx+NYJ9Wjk2wQb/AGN8enuP82SX9yEMW6cQFONBkHxcOPw604Zt7JcK VPrcIVj4E4B/jVkQ9BWeIndLcelK/rK2p/2R0/Gi8aHaLaMR4TDRH6qAD99IeTWZeWo/bdjY4tNj 8ORXMbSt9mNpNrgfCoZDqjgAee5XJ+go5auyuY4kJut0Q2n9WKjJx4jcrgfQVKZ1yT3YZCd+SPgA OOPEkeHjTpp1ZT3xecXu4H5zAHPXNK/LRlK8rcvv/wADXn7YpYlRyyaQ09p8D3SI3vxlTznxuKPm VHmlL/LKpVsYhreCm5iH5CW1LSVMBKgQdv2uSk7TxxQy4OXFe4RnJCQD1LmOPSmUOLPlbw5PcKFE cKcUSPXmr1GFZcfwY+ledluvYXjydsu+W7/zcz52n23tCV25wu0+zdmerrndLa+YMdEaU8mOYSW9 ofcVtU0Qvcr4E4WCgbutXrpO83+9xJP+cOn/AMlyESnG2e9cSS4yMYc2qKVDPPBAIA6DpR4W2Q0p OyeshPis5OT45NOjGYUsB53vMckADd9TWCfQ9Lnz4tRl7nLH8vqe36c/158jVrckYyjGqlzsLRLZ HWj8/cI4I8EgdPoafN2+2oSALikBasA56k0nGahobw02gcZxkZHzp0hQA7poJyeOD0Fd5JMyWdI0 /Z3FlZlI39CdwJzTtnT9sbPDqyPLdwaSTGabKnCTuHGRgHpXpEOOsIdWhainkfGcijUEibj1q12+ OrcCoK9ec1Q3tKan01Z3Y9qu9vujK1D8oW+RFfcZanS9qkJjPOJ+wj9LrjjJA61e/dLU0Vd4enwg 8/KhsxSi3tU228lJyApO4Z88UvNpsWftckrjunXD+nsNx5JY7S8kR7Au2Jvtl0ki9u6dl2afGW7F lRZDSkpS82kZUgn7SDn4VeNPu0C4vPR3D3i9gJyU5CgnwxjwowbzPjJ2IYbGE/ZQSABTCZNgraV7 9Y2ndw+IKWSCDTd1GkwHVkL0NrCdNdXp1DgcMYd42lWVK2H9H0wfPzqUXXUlitD7MW+XBiNMlNrd YjuuJC3EIGVkAnkDxPhT+JdIlvaS1DsUWGhxWEoZSEgn5AVH9Zac0xrVyNI1Np5MpcAK7haZK2lI ChhQyggkHJGD5nzrJrMWozYOzTZeyXvSf7M1aeeKE08sbX3oFaf7R7JrmUbVBT7otJX7qgyWX1v7 BlwlLRIbwCkgKO456cVkD2zPaoYaEzsX7LrqXSrcxqG6sq4xnBiNK/8AcUP2R4069pztN0D2CN3X Q/Ytb1QNYX9Snb5cUTXHVxErGMncSn3hSTgHqlOPHGMJqccU8SclRJJJOSSevNP0WDJDGlmn3tea qytVlxzn3Yo9qfjkVdTklIAA8KaZSDg05cSppOcnKvOmu0r6edb07MrOEBxXPSm60KbdC2lFC0HK VJOCD6Gl1rCByORSfLitysDNEhUlZKLBrRzAt94eG4jDbx6E/wBbyPrTm66gitvCO029329IK1AF HJ4A+mTn7qhbqEYx1z1pePdHGorcSUC4y3KQ6knlQCUkbc+I+KjTEzXaTYqCxwfCmz6cUgxPZfSF snIUOMdKcIQ7JBLDZWE9VDgD5npVi7Bb5wTnrTVhW+Y3gfZO6n06M8MqCUkeigaRhQ3e6deIKFqS QnzGBxUZEg3DeQtOE8444I4p+0+2DgqI+YoR2cxo829MW+ShLiXHFJSlXQr2kpz58ii93/NXKUnI H5w/dS1uxkoqKQoqUyOjorpuUF8JIPrQZTpcURjNO2GyBnbRNbUDdBVKlEZKT8x4VbXZ/rsXVlFm vMnZMbA7l09XAOh/aHiPEVS+1Q+yVD5GuIlTY60ux5LjbjZBQoHlJ86z5MamqBnCGaDx5FaZoDUJ FveE2MsEOklwJ4CV+PyB8PnTBrVjsZpKWjykAdOR/Oo9o/WadRM+73ZYCmk7ZeMDg8JeHHIBwFDw zS12tr9rlLac2rSDlCgchSTyCDXEz4545HzTrHSsnS89x3g+H/nkLPa9uB3ICRhQwaEHUrXvCe+a Ksn7Q8DQt5XBI++mDpKVBWBnOeaXCTMuKTfJY1v1pZnW/di+EODghQxRy3NjNlve5sxrlcFRWSHB lSm1I3fD1x8XWqJkukL3JOMc1JOx9T977UtM2NT6iHrg0G2yokFRWOAPWuhgk3Kjv6NuckmfXvvV NAI2qIRhPHjjinkd0LbBTuoZ3yy4rLSU4JKVdcU7hrd2HhKielehPVVQnqISpNmkMxWFvuKCcIbx lQ3DI5IHTNQeVNVCStVwgz4oSPjLkZe0D1Kcj8asISCPgWNijUM7TdXsaE0bedaSGVyUWyKqQlhC 9hcIwAkKI4ySBznrS8m24cVbMm9p0m9aw1eYmitaxLMpyVIUtb9u9596U0gbYyN5SkAlKwog5GBi rz7MGRC0Taw8nBkspkLSE4CVLO7H0yBWedbe15Zu0yxp0qdK3S0yHH0riSGe5fU3IB/NrHKf0sZw DkEjxq2+yDX3+cNmTYbw2mLfLaFRp0JROWXkHlOfEYKVJI4KFJPnWW3Lge4uK3LKu21UWQ+FAqba cWMjOMJPhXzLh3dKorkt1XK1FfHJOTmvo7q+a03o6/yyogRrXLdO3jG1pR/hWAezzsN1RrG3tSZ+ oIVgQ+2lbDT7RedcScclAICRyOM556Vj1Cuu41aZ7M3T7KUxiT2B6ekKcThDkzcVHAAEhZJJPTih /Y64ZepdVSXclLsx5xl1QIDqVyXD8J6KG0JwR1yKE6Itl97JPZ6laWiyWr/cbezKkIMZraX0uL3F pLas5JSVDk4yagmg/aBuNpuEiy3TQCbebbFSVPvvJKAknakIIVjfkeCeAOaqWopw7d0uSLFtJvzw afciBTgWAePrSzTKiQhBIweSnGfxqqbf2maXuDwj3vVEu1yFjcGpRACh/VKTyPoKPNTLFMH/AEbc 0zhn7aZrY3fQ8/fW2OoT4RkeNrYsZ4tMMhSnCMJyVHwHrTVbTEhG4YUlXOR0P1qKsWiY6gLYjuKR jHwSkKx9wptIt16aDifyatSRwAp0ZUPu6Vfx0RRYdVDjbjjcOa5UVTHuW0f9ELHHTvU/yrlD8dF9 rGUjsf1e4HJNou9val7gppl5K+7BJ+IqWBngeA68c1MNKdnUiywC1qi6s3uatXeKd93DTTfkhCB4 DzOTVg5SQUk48OmKZTmZW3MNTO7IyXScAeYx1rhPTY8MbjG/8+pvwaeHx3OD7XLnwvu0vIzdiIjx VIiKZZUBgHuwQn1A6Uydv0KKyFS5APO0FOEhZ8+eAKVvSXEwyS5tIwrCeisfo/j41F32E3JvunWR sHQFIODTWlF9y5HOblHtfCFpuvopUUQG0LJO3IOU/f4n8KGP6hny1FsuhKSecDw+dErfoCNgOuBY ByQFHn54ooqwwLa0XSkJCcchvcc+mTQ1OXIHpXAys7KXpRSuQsJA+LA5PHQ56UXc7tna224pOPso Q2Sf5Ch0F+BsS3a4cmUHipZkLUlIKzxzuPn5DFEETIbICJOG1gjcFOeP4US2LZ5XLeeWQA6cDAJ/ vrjUaQlfeFLicjnOcn6jpT9EyGpBWC0UjjqSDXgXKAhJU5HaHqU4/fR7vcEbg3JboDLa0JSftKIG fSnjcCS4wUbnEKHRSfA/Om7eoUvvBLC0oSkZ+GKV/wAKJtTriFBw7nGhjcjuwFffn8KOO5VnG4RG NzKivj4tp/hTxuIqOdylt9B1yST6Umm5ycDLRbJPUjiiDD6nQDhCtp5UPA0yNIlnktuOJy38Rz4e FOG0qSEhSST4nwrikqzlCwSfXFdd48PgWncMfLFHdlnTz/w7D1/xzTJLiH9xScIQPlS6o3eBWXVF auCTxk14NvdbZIQUjI4Tuzz++r3otNA8tthaktK+EfEv/wCaHzitSSlpPCucggZNEhAmBYWttOSS pXXAGOKYSLdKccyUhIHAPlQblqgNOiB59hpa0BKPtFS1Hj5VQ/tP+0nZuxSxK0zpZ5mTrG5slTCQ ci3MngPOD9Y/oJ+p46nfab9oGy9hemyY7rM3VVybKLZbzzs8DIdA6Np8B+keB418w7/fr1qi8zNR 6guL065XF1T8mQ8rKnFnx9B4AdAABRQx97th7IYXS6zrzcZNwuMl2TIkuKdeeeUVLcWo5UpRPUk5 pmAAocZ+lKuISn4lK6+VeFlHGzJ+da+FSB5OpA7xIJ4xTXejdjoR406WHlIIJIz4UxdZCTjknrUX sVIRUdyiUgnnqa8E/F05rtalZxjAHhXQPOTijQhnFBA4IpN0t7W28KCyVK9MdP4UopYJNSnROlY9 1novNyKHIEJCAWMnMh8klLfyAwpXpjzo1sKkzrS2lZCWUXm5laI73LEboXR+urxSny8T8up+SytR AXtCeiU7cBKfQDgVIZoVJWVqIWtXJIGB93kOgFMH4yUpyeceJqwK9iMSGUKy2pasAjHFNC69A/ON kLb/AEkqOcj+dGpLSVBXA+YoTKa2gn9FXUVCHnQMpELVVvWVYAlNKz6E4/jUr1FFK5zqwnlw/jVd QpBt18aWCR3TqFpPpuH8eaueTb/e722y2nclRJJ88E0KW7Ck7SZFoljUQFFJzRJqxubRhCqntv08 hZCVAAePFGBpxI+y3x50QuyrHLM7n7Bpq9aVpH2cYq2HNOjOCmhsvT6cHCKW0WirmEzLXNbnQ3C2 8yrKVeHyPmD4irMsFyiakgoYR/o7wG3u+SlDnUJ8wlXgfPAoRK0+kZIRz16U0YgybY+JUZZQpPUD jI8jWTJjWVUxeq0uLW4nhzK0/wBn7j+a0ttxSSkgg/ED4UxKt2VY6Cj4lO6hYbj90TLaSrBSP6VA 5JP9cfiB55oE8xtbfW6oo2J4GOpPSuU8Txyo+e6rQT0Gd4Z7+z9wHPAAUpIIyOnkauf2GNGf5zdu SNRSWe8iaWhOTVknA79f5tkfeVH+zVLTeUEeJ4reXsN6FRpbshXqmUylMvVkxczJHPuzeW2h8iQt X9quhoo3k+x1+kw78n2NNtTmyMqK0q8QqisGW2UcOCo43zg7PuovFawgckYHHGRXZ7z07iF1uIUn IKTj7xVGe2DcxA7A9U7VKS5JbjxUEHnct9B/ck1cTiFYy1kqwfhJxn/HzrN3t33ByN2LIhjH+mXi Igq3cgIC1/wxQTdoLHH1IxZ2NW38vdqmlrU4SUOXJpZB8Ut/Gfp8Na/7RNL3i33pvX+jIi3rxb1A yobPCrjETk4T4d82Cooz9oFSPEYpX2S9HRVari6gmRm3ZgYektLP+paxsTtHgVEkn6VrC5NLSha8 fG38TfkD0HNZLcXaH5ZKTorbVHa3YdV9hOt79ZJiFOtaem980lJ7xBLSkH4TyOp4PKSCDzWIezOJ cJVttchFzuGHmEKBMlXAI4IGcCtG+0PoC4W6DP7Yuz582i+x9n5UiK2mLc0KUEq7xCiE7zxkn7Y4 PODWdrLbTertHu+jJV1tbU8qW/aUNrKbXIBwttokEKaJ+JPkDg9KDK73RIKkXHarZqWOhWzU90Wh aSlTantyCCP1cdarvXVojQ5Edqc2lRfK3HnSlCHClJSBlzHwgkjJ8hU3h2rtUt6NidQqdQkZHvUR CifQnYKg2utGay1tqCIzdGEIjQ2N7qm0FCXNxPkSPDzpFJbyoZFvhFYydaX6TICW7lIMeE4oxm1r LiGgT0AVnjpUpsvbXrC3FsuKYdbTgEpCm1HHqk4/Cohqy32qxXRy3WtBR3QKHfzxWlSgeo3cj1GT 6UNiKDkFKwcYUTmtEYxkrSIy/rR7UH5BR72+/c4KE4C1tvFwKz14zk1LYPti2OZCXIi6ulthj7W/ ehScdCQEE/ETiqR7CtKI1z2hwLa8wl+OwsyFtrAKVbQSAQQeMgU67f7TDidosnT0MCO2n3dLy21f C3uXuWkKP6OeBQvHG6BbfguVv2vdzaVK1m8CQCQW3D/CuVk+a3FbmyG2e9W2l1YQoOKwRk4PWuUH w0S2fdN1TjSSEoznzFCnnFJUSMpBPgKjeh+0q36vt7brDqFKKEqyFY4PjipYp1RG0AHdWbk1U4vc aOxES2lJccI3Aj4j0oHYI4MxxC1E92ogBQ8vGj6dwUUkK2jOMckfzrqMwlL6ngjKFFSiQeSry9KB /ULngdqGcJ/wKjWori33/cNOkobTjg8b6kRPfN7zDJQ5wQXMgH1+6o1qO1PhapEFrepKd5bAztGO R+HQUUuNgFsyKtXG3RZSoU1C88OJCHDznxoq0pmegLjHIxgjkj61EblD97nsSWwVEpIPx4IGaNW6 Hc2ihMaU+gEYILuU/gaQm+BjSJFGhyEpClK2AY4QkdKJIS0japLCnFJIPIpGDa5S44LkkKUrqPiw fXk0Ti2uS6tDDSxhXUHp9aYl7ADuO/lGUADI8OBn6UqxKUPhWg+Wemf8edcatsVsqQp9wbM5KUAB X86EPBh2V3Tkl0qKsI35Cc/TjNMWxEwzInJbWASc4xz0zTmFKWvgpx4eVR026UpwYK8cYJVkZz5U TR3zCgvvFJKRggpxn1Bq0yw07ISEHaUnwztoa9NMdSltKO9I/R6Z/lSClyFbloWOeMeVc7kFB7xZ +E7ckZJq7LVeTyLxdz8acpT4FSAR91Krvj4QkLdKCepSnJz68cCmrzwbSoE7UgdR5UzDpyCPiz+k 4TnFWpNEodTdUzI4U4uTG2Y+EKA++qm7aPaMi9j2lX7/AHduO5LeCmrVB7wd7Le/ZxlKB1UroOBy SKPdqvappvsg0fJ1fquYAhP5qJEYQlL0yRjKWkZ5PmT0SOTXy77Ue0jVPa3rGVq7VcxTsiQdjDAJ 7uKyD8LTY8APxOSaKClNjseNPdgPX2r9TdomqZ+stVXBcu4XBzvHFk/ClPghA/RSkcACowCCQkAm iUrKMJ6ACh+1Ksrwc5rXHgk0rGzyN5wTiuHKBlOOE9cUotsZ+I49BXjKsEAYHnV2DVDdorVuAz06 k03kJwOT60ThW24z96oUJ99trBccbbKkoB8VEcD61Juyrsuf7XtXSNJwL0xblxI65L7zzalgISsJ ISB1VlQ9PWr+ouTRXSlndx4UrAhXC7S0wLXBkzZKyEpZjNKdcJ8glIJrc+i/Yy7JLGluVqqRcNRP p+37y97tGKv2GyDj5qP1q5HmtL9kGjZMvRuk7Xbu6R3bDcWIltBWQcKdWkbigYKlEnoPM1PiJCnB 8mBLd7MHa49Cj3XU1pi6TtslaAl+9ym2HdijjvEx898sDOSEpzj60ZgWWPaIjdsguh6JDKkNvBO3 vjnCncdRvIz6DA8K9ytTSO0bVF41jdr9KlT23kw4iJDat7wdyC+VZ2pAAVtbSMJBHHGSZkxe6bMd nnYkJTg+OKbHczt2BcNoZU4sYwck+dBZz3vGPADOBmid2UQ8YqDhDA+P1V5UGeaUPjVgeZo2UMnw AMZphIbLiCBTh1zCiAsnny6UiSS4EmqIRG+oVHcbeT9tBKf5VfVvj3GVLt79ocy45FKyoNpWTltJ 6KI8fWqO1MlLQUSAQCFCtF9nDSnIdmcdSNzNsbz9UpBoXyC3sLxJWrbS0w3Ls8aQCohxQQtoJPhl Q3A5z5VII2sEqZWJmmZja2k5JjutukfJJKVfhR4NtKABT4g09YbjlPePBCkEhCwoZ3ZOB+JoGpry RSj5RHmNX6PkIT3s2RFJ+H/Soi0c/PGPxr09Iscxlxy3XOHKWgEhtuQjco+XJ4NSZen7UoL2Qmmy pO3LY2ceXFB52grFLQEqjJx1wpCVfiRn8aqpsv0gqRYSpIIb5IzgYNR26W1LYUVAISnJJPAAFSNz s9ix1qVCfdZB5V3T7jZJ8Psqxj0INBbnpPUTTa0xLy8sLwkofUh1PPhhSR4UpwcXbDtPyRxyK/Fc D8ZxSVJIWlaDyD4EUrJCLvBVI7lCJCMJkNpOMK/WCfAH8OlEXLDq9LRAkQXldEoXHUjp1yUFXX6f Ko9dI2rmW1yWrOwlxsEd4xJGFDxBSrBIxQ5cayRMWu0UNbj7JcrhjOBpW46jvdv03bmyqTdJTcRr 0K1BOfpnP0r6h6dtsDTtjt2m7c33cS1xmobKc5BQ2kJH34z9aw97KML8rdqNvuepra7b3rfEfehp fQdsiTtABSrGMhK1KxyfhNbaS+k7Tux5edHosThFt8nO6ZpJ6VSWTm6JAy/kgFXXii02E7c7TIgt SCw68ypLLwPLTuPgX/ZVg+XFReG73jraQsgk445oXrrt57M+ypTzGttRLhe7NF58phuuJaRt3JJU lOCT0AGTk4rWdQlmhNUPar083JuUUQ7zCUI11gqGHIUxAwtJ80K+0hQ4UhSSKzT/AJQmbPOh9M2y OwVRZF1eefdTzhTbOEJ+u9R/s08uHtxdi2oX0v6HelTr2GymIpp5EZ11I57t1Dg5SfBJCiD0xVaa 17QdedvL0Y3uZabMzGZVtt0OMJi21H/WqS6UhKugzgjAIxQzdKw4ckt9kaIxKRdbgnHd26BGhpV5 KUMn/hrQT0dJjqI/pUqSRn4gRkeHj86qv2cdKRdH6JmpjPvylT7ipS33W0pK1IbSk/Cngc7iB05x 4VbQQ04sBagMg/EDjHzrM5IvtaKI9rjZb+wzUKDjEl2G0o7QRkvp4OQR4YrCWko/eT23I3u4dSfh 3ENj7wtv94rcvtzyPyd7PNxXgn3m5wW1EfEBhZUT0P6tYQ0jcLtZ30PuIW0he0pUHCkK8cZS4PD0 +lC1YyOyNDWK76ht0BsJvV2Z2kkrZuMwoHHQEiS1jyBIqe3i8tWLs4lagvD78t1mCqQ446sKcUsj KRnagZ5AwEgeQqiGNSGa6y65DdQUjbvU0Mjnpv7lr/3FGpH256ilwuyp+I84llVyS03GQVgrXsKS obQcpPQnIHWhcE9mWpNGaL5OTcbguU486suOjv1FO0bzyQD48nrTq4XKC1p5tlppt2RcZAYjdSW0 J+0oAfpE8U20bBvd11baNIC9rZYvM5lL7YwoIDjnxY8uM1qm99jOlZ8N+HpvVEmKYbIQy0GGHwxt B5TlKVgn9bdyaNyUUkWrYL9iXSz8O+Xe/XBAT7swQ2AeeRjny8eDVMdqk+1ap7WtVTp8/Z3bzgYS CQSpI+EceZwK1P7PNlRoPQ+ooi3ZE99ptal3INbWlnBVz5H4unpWdNKdmerrxqS4ajXpN5yJNccc TJbkJDqtyjtASThQPlg0DltZI/MU6m2X/aOZY46ZPFcq7Xuym8uPOOHSGvUlSiSErhgDnwGeBXKr vDpGh9B69n6WlxnYri0IaUA4P1k/Kth6C7Q7Vqm0syYq2nCpPJB5B+R6VggJX3qSlXw/wqYaS13c 9GXJu4W5380SnvWs4Cx6etJlB8o6c4LJ9zepKlqyEgtkYA8vM5pQRknLqFEJzyB41A+zztHtesLc 080+33yhgpztOceVWGyl/aFHp1welL2ZjacXTE0NHCtqjtV4YxzXoR0K6tBKvBWORTrbvUV/CFY6 460puTnuwkhQHQ9Pvq6Ksru/6Zh22Y9d4cYNhxeH0JOQDjhSfJJ8h0NPbNEYc2uKAUTjgeAqVS4a ZRU0+klC0lC/lihGnbQ7HlOxVgq7o8ZHJFCo07I3sPggpG1poZ6Vxm4i2rJlI7reoALXwnHz6UcE RKQSttP1pFyMhfASD8+n3UTTKsDu6ktStzvvkRwqc2FKXBgqHy5oNNnu3BsotrDziATt7hshJI6j cRgHPmRUsMNAOUtI48k0mtpZ6pUrnHNVT8l2B7bHugQldwdRvKcEJGcehNEwgAbFAKHiDQ7Ueq9K aNjLnas1JbLQ2hO4mZKQ0SPRJOT91Unq324OxHTq3Y1mlXDUchAP/Uo5QyT/AOY5gfcPvokm+A4x lLhGgWYrPVDaefi+NXj+6kHIcncUpYXgfEpSFJ2p9CSRWENcf5Q/tBm7omidKWmytqHD8ndLeT9D tRny4NUbrX2h+1rXf5vUesrpKYcH9AHS0z/+WjCSPmDR/CkxscL/ANzPpDq3tZ7MNCNur1Lrq2Rn QCoMtue8PHzG1sqNUPrf25tJWhl86Q0pPu4QcIky1pis7vkNy1H0wPmKw27Iul15ekqCU4VnPH8q RTGk3CUnvXFbGckAnhPmo+ANHHDXzMasceOSYdq/axqrtl1IdSaoUhIbHdwYTaldxDaP6CAT1J5K jyTUFdZb3lRJyPACn0d22OXWNaGpjLkqTIbjobSSv4lqCRu25AGVDJPhQTU93VZdXyNLPQiHYc5U KSvfwSlzYopGOnGQT6U2MH4Qcs2LEvUzp6OXFYyBnzr1E0/cJ7yW4sVbmT4p2j7zUjmwIUBpwsMh ChwVk5VjNFbfIKZhGfh3kpPpRGSWpi+ENbP2RSLgpK7jc2oqCeUtJ3r/ABwP31ZumOxrQFt2yJFr Xc3grG6a5uT4H7AwnH0NJWZ5KgnHU+NTe2uJDWc4I5yal7CpTcuR1rSNFidmd9iwobEVlEBau7Zb ShIxz0SAKzb7NmpDpbtM1DeBs/M2yWo7klSdofbzkJOTwfDmtB6zvtvkaWuVhYdK3p8Zcfekfm2y rjJJ6/IZqqNOdkkqy2W+azs9reciRm1R59xfcCdqnvstJTn9I4OMHgZpkFcWmInKpJoum5dr2m9b 2GVpq47YxmJSEux3gVpcSQQe6d2Ej+qlSj6iovarVqG3vK/Ifae2GJSe6bbmvOwShYz0Dm5onPgl RqC6dagquCmnzGiq/IkpDzjhwjJZPxqJ6HnrTCw2m+21+7Tfe5LUGHanJrbsKUFsPLTt2pOMpUDu 6EeFRwjC7YSnOaRYlzldqVuRKk6n0TFv0JQDyJRtbMxtxwDAPesjcpWCf0uKizeutCypC/yxoUQ3 kk7lwbg6yd3Q5Q4FjP8AVAFR+z9pOpGWXrzGV3SUlxCHWVGO4pwJCjktKSTjI+0Cn0qH697SL/e5 VuuOpLk9OfLISlxZ5QABnoPXNOUO3kS5ewfvKdPu3Vz/ADddnuRgjvFGaUd4VnnA2DGBQlEOTMUS 00t084CU54HU/L1oeLolSoUiOogyGylQJ6kpGKnkXRWpnrNMhtlmGZraGj3hVvLW4FaMpBCdwGM8 1GvYpOyt7glsFTyCng4O05z8qGuSkocAJ9Kl177PdWWlEuY9aswWculbbqVBDYGckEhWBxyBj5VA H1rcf7pAUtf6qQSTUIMNTuh5JCDnICfrWqOzy1z3osaWY5SymG0wFBPBUAnOPlisy/5uy5jqXLir 3doEKCE8rOPwFWfYoVynaRekaaud0tcyK+ovT1SlNxkoPip1Z2jHIKU888A1Nluydrexf6obrfJS FY8jXh5zuGEIcSR3jzaRnzCwf+Ws+NdruvbM/EtNm1fE1a6V7HnXovcscDhLajhagMHKikZ/GrBt Gp9X6snwV3m2NW2NCBdcbYd3CQ9nalWeu0DJA9cnwqOUXwB2tFxMOJcb3EjOK8rBxmg0GW6EgbXA nHUjPP8AKijbjikjOMeoxVVXBYg8ojNDZKS4OMklYzx5UYcY7zdjPw8nzFdsW5TryGGmlOOLUEpb SklSifAChkiWgMYLi1heMAc02u8aNZY4kTj38pwbmogVhWP13D+in06n0HNSm6XKHpVKmY6mpl3B weQtiGfLycc/3U+p6Qu5FcmE9LdUp158qcccUrKlqJySTWXLqP8AbA4ur6ot8WB7+4Q7BZkiX2rw 5L4ATHiSi222kJQ3lOBhI4AyetayjzlbQFKBP9U9PSsmezttOvri+eA1bVgHHQqdQP3A1pB2cuNE EpxKyzu2fCnO7+10GPWj0rfZuO6YpPBb3bJ1a7g2mQkuuJQE4UdygAB5knp9arr2kdeWLUfZdq3Q kiW1Dtku3qYnz3UglKDyCyD1O5IwfHoPOhl51A0zGXJvE9mNDTgqU4sIaGPM+J/HyqBzrWe0lYue rGZTGnmXA5brYpGC8R0kvp658UIPThRGej5Sa4OvHDtbPnXqnRWqtHT4ovFtlssSUJkQZa2VNh5v qlYzylWMEp6irS7CdZaof1iLy9IU1CTDeiSX1jcl4qxsSkE8nIBzz0rYl10Yzd4nurL8S8QwPjiz kJUsD+ruGD/aGfWvGjOyPT0O4qTbLNFt5Q0p4N+5IIUcj4SApJAOccKFJc7VMLsrdlx9kjP5I7Mr Vc1lTwdirlrQk5dJUtRJKT6DP0p1aNbi9XRFuagvxluJLrIdx+dSBz06EccUetrummba1bo10cjI bYwG3oSSlJOfgCkH7I5wPLHOaH6V03pGHdJLmm77Z5U5o7nWjJLLiVK5wlDg4+eRWWStlxqir/bE gzrl2QM2xq2rmqm3VkrZQQFBIQsk/EfUcVj7SFnYt9yj2m82qe2t15tYalxlKbCUc/bSCPAdTmvo /qvQ911wiHbJMYMsx3i+46Xm3G0ApwMbScnr6UvbOxbS1obQI8RtagdxUoAlavM+dBLM4uojI41J bnz5n9kMvT2nJ2rV35mPNaDj8lMK4BoFraV7vjxxk7QnbmqPf1h2iXWNItVxTLTHmp2OlwYLre4K wrxPKUn6CvsTK7OdPz20Mz7BCkNNqC0IcYSUhQOc7cYz86ZXXsa0XeE/6dpW3uEDr3KR/Cq/Mvyi 1hXuYT9n6x6b1FMtNmNkjOLitOOBx2KjvdyUEqWHMbgcnz46Vadu7G7N2fIuUm1zpjqJCCVIlLyl ok5KknHX06cetXUOxnT+mp9wn2OOqDOEUsQ3JcVSoiVLx8W5sA+GMDnrTK79lOqJ1gfY/KMGVcnG iH+5fIbAznhK/iAIHjzVwyKSKlFp7FQwUXezdmWpoRQtqG8QY6tmAtbmB8JPJwkY8uaSuVg1Da9C oY0pb03CY0y33TJGzeABkZ86tDtE7PtWytK2u1WuzPvobcYSSjGO7GCo9eeeeKUejTLKyzAmMl2U G+8LLKwSB05x058DTYuNUxW/JRDD3aylltJ7OYqCEgFJUnI46dK5VvOXRgOKC4ckKBOQUZINcoO+ Jfq9jPFyuds05rK46Dul5j/li1yCwttzLRdHgpG7gg9eDRtTSNqkLRnI5GKq3/KC6ZVZ+3p+6Ia2 ousRD4UOhV1OPqTRr2Hoqu1O76l7PNUX2fviWtufapBWFmOUuhDicK+2CFoOCeNvGK0vHtaHx1W/ qLP0rqy+aNnJm2acpolOxSVAKQtIPAIP7+taG0R7UUFIZha0gLjt8J95j/EkeuOo/Gqh1z2Map0v FMzuU3BlhB3SoiSUkD9dv7SDjx5HrVetyi41wfs4z/j0rNOFG+Hw88T6N6e1PprVEJE6w3aPLaWO ChYyKMNoQnC0KUSPIV85dO6jvdhkCfYbq/CfbO4FpeAceaehq9tAe1fLjKag63hqfRnHvcccj9pv +R+lA00JlppLeJq/YCsNqAKiAT48f/Ne0tJad94CQo4x16jyrP2r/ba7HdHNKYhG5X24BO4xITBC UEgEBS14A6jpk81Q+uP8oB2l3ZtcbRel7dpxKx8Dr496eA8+cIH3GrW4MdLlm+KN7SAW0F+QW2m0 8qWtQSkD1J4qtdZ+0T2L6FK2L5r62uy2h8USCv3l0fRGQPqRXzL15209qGunHFa017eLm3ztYLqm 2R6d2jCfvzVdfllbUgBhkgEc5P2vpRqDaGflIw+d/ob87QP8odY7WpcPQGg37g6rhuTcnw0189iM qP3iqRv3tfduetVutSNUJs0RaSkx7Q0GOvhvOV/jWfmnH3G0OunnwJT0+7rReIXAjf3G0qOCojGT 4Gj+Eq3HQjji7oI3+4Sr1LM65TpM+Sonc/IdU4s+fxKJJoG/FaYSsB5KU5B29TTsJKchaiRjAArw VlGQhtsZ5ztBOfrTIqkVk1OOIJchpfUC23uABOSOOOlNLtKjWWEu5zGHX1FSW0Mx0jJUenpj8aOK 3E5USai3aIh8aTmLjuKQpsoVuScEDcM0xK+TDPVP/agXJ1tcUpQA3Cs7I6B5XevK4wSE+flkUK1X qCLGatyu5fmiREQsJLxbZKhwSpI6nNQeFElyHwGmlurUegGSamV4t8R212UXGS3CMdl5twuHGSF5 wPEnmnKKRllmnPlgm36svrU+G7GdRDZjyWnQzGbDaTtWDyep6eJqadt+2P23amKQEpN3LuB05KVE /iah6b5p+1pKbZb1znQOHXvgbB/Z6n8KmPtAgO9qMqTFQtxy4Q4EvakZUpbsVpZAA68mrAJVeVqc jO7TypJI5r1AfUZac53KKeBzknHFTOydkOpdQRWZN1H5GhOISrfJQe/UMfotcHP7WKs7TfZxp/TC A7BgkyMfFNlgLdOPIdEfTH1pMYt7BOSRDbDbLiGkvPNGO3gHLgIURjwFSBTLziSkOKS2npnx9dv8 6lSNOXW6PYtVtkSFHJ75Ywn7zx91FIfZu6wC7fpSlE89zFPA/aWf4USUYcgubk9ir0qQmaGUIW8+ eAAkrUfQAfwFTmY29YewHWUW9NOW9+dcIEmO06PicQk4PHgasHTWlmlLMTTNiAI+242nKvmpw/zo 9qHsptU/TE5rX90Zi2xxo9+O+SgNeO8uq4BHUfxqnmiWotmMbE3Lj3eTF3IUq6WeUEIynCypolvO enxBPBx91LWue7aNP6yk6t0o9bHo8VDcpLYVHVIUpwJUgJIKAQOcgdD05qU3G02TS1/gN9mUy66g iT5nuRu7trDfdDYre3GkKwlatuVFSU8BJ5HjX/aPeH5NiVZ3dQqur93vwXJfScYaSAG0c9SEpwfU GhzfxHS80PxPsVvxZBYD6u5ntpUe7AcCST14IFRzV6ypi1rPTYpIH0TmplDgw4kJbLqXhIDjpXuG Ed1tykgdc5z9MV4g9m9x7QLamRbLlEhrtzaOJQO14rT0BT0+yfA9a1zkkjJFeAE48v8AJ1qfbVyg cY8xj+VWPd+1++tIZs1hiIQ400htySsd6pSto+wjoPrmneneyq3wIMQ6qU3Jfj7gGGXVFknPicBS vlwK8WjS0fS1zVqXU98jxI6FKLURGFuFsk448PLJ++lqVhqI0sdv1bcmrlKvpfUbpG91ddlHLgaK gpW0H7B4AHGMZ4p1G0DGYjLdjIiW+Ik5dmzHg00PPK1cqP8AVGT6UpfO2aOWfddM2BsubsJkyCVD HmEcZP8AjmoJdbheL88Zd8nuPKAzhXRI8kpHCfpUc14CUWuR7ddXdn2mbg1BtFuXqy4rc7vvpaFM wGyem1rIW7j+uUj+rQS7XvUeqrkhzUt0ckMx0BDERICGGR5IbThKQOOgqCXqZ7veUvxGxuiL3HPQ r684+lT/ALPLbI1NfY0Zak71p79zd0x1NDLcq7JZarLEdcYiyYTS0x42FbkA4Uvn6VM7JapMYA2y 4PR0oIHdlW9B+is16tNqDb0t9xAy67lGP1BwPpUhiRw0kEAZJpbd8FUFLPO1BHGx6PGlJA42ktqJ zz5jGKPrvrKGCH4smIoJJK3G9yUfVOeaj6bxFtgJcO9YGdiSOPmegFALfdtU9rFwctulA23aoznd y7s6lXuUc/qoHBku+SQQnxJxU+JW7AyThii5zdIlcC/TZDzNlsTYu09ZLz8h0hlhpGfiUVcgJSPH p8ycUWvWr0Q1uWfTjqC5sLMm5NFWXs/aSznlDZ6Z+0rxwOKXTpy3aT0+5bbZ3y+8O+Q+8oKelOfr OEcceCAAlI6DqTBWC2Jh3OjcDkAZ8+ma5+fVTm+1bI8X1Xq+TO/hYdo/uwhM3IYTg8ZAO3pRCPHE i05wDwofjQyS4Xgk7FYJB9K9i8iNAVGjjbknKj+OKXjViun43OQS7Eli3ai1C6VFIDLDeQM/pqOP Tpmty9lTTh0TAUwx3C57BelK2gB0blJBUMEKO3Az16CsIdnSFNpusskn3iUjKvPag/8A6q2f2N9o sa+2JrTjFskx3rNDZDq8pWhwfZynxG4g8fjXT09Q2Z63BjePCoom07QukL02UTtMWxw7wnBip4IP /wBPb88kGoxeexewSnFGIHY6DwVNSd7bSvDKXRuJI8NwAqatagtDqNxkFDgBJbcJCjgeZ6dPOiKZ TbjTmw723E7ilPKFeHhnPGK1VGXA9TnEzZrvR9m0Le49oGo4i505rvozM5pLJ2ZIzjJC1ZHAHHHI NR+LD1BBlIuECalSEoXuDTqFoUCUk7grOOg6Y8ajntcXRUztXYjLJAh2SMG0K/rrcVj8BVMw5UyM suRpymFBQwW1FPP0rJkkoyao6WKHxMabNKualvcYo761shBKlq+BbZ58uSB88YpW0auiS0OuXuxq ZWVFW9kpeSRgADnCug8sVQ9v7TNc2kFEbUD7qAT+akbXkKPmdwJ/HFSWF203BW1q86cs9xyQFktF lav7SDx91CpRZHgrwXzYblp9c5N2guiNKbUC2vYppaMcABXQ+gB6VKGtS3tQLX5ZEkpRgBaUqcT/ AFsjCs+prPkXtT0JIITKsF3tbh6rjSEvoB6cBWCBR2HqrRVwwLfrxpl0HJbuMZbJz4YVgp+uaqos D4T+poBnXk6O2lL9tYdUnAUttam8+uDkZ86XV2g255aWX48qK2EArJaS6lZP6OciqRhRb4tQl2O7 iaDk7YVyDyHP7JJyfLjwry9fdUW11SZrLiDkJKpEbAznP2kYAOMjiqeGD8EUZrhl4M3SA8yfcrzb 231q+0vv2AnyG37OfqBTF1rWKkNlEiFcA46QlLaWXQT+8fvqsoGuXNjipdvQ64kZSI72Co+WF4A+ +n6tWWt4BclmbF2oSsuGMopQfILRnJofgw8At5FyS64Xe6WxTfvlpMdDxK1kofZBx4gp3D7xikO5 cu2yWhkKB4Dm1iSQf91acH+rQCNrJl1l+Nb9akoXguNImYUMnHKScp+4UWiXu7tPqkSO4mpICUpk spKW8fqkAKB4B5JpcsFrYtZWuSJyvZut06U9Nlarv63pDinXFBSkhSlHJOBwOT0Fcqw0a+uYSAqK hRwMlK1AH5Vys/5J+4z8wjGP+Uw0ylL2lNUMtHaQuK4ry68fgn76pb2EtQpsPtH2JlaiG7xFmW0j 1WyVpz9W61x/lBNPpvnYn+VA3uctUxDufJJxn91fPvsc1ENI9quj9SK3hEC9RHFhJwSguhKh9Qo1 1U/TsZPJ9iZL+3JyR9arjVvZ3pHUDy57lvRDn53iVGAbUVeah9lX1GfWpvNeVlQzk7iMigVwWlIK 1LHGRjrzSXvyOhJw3iZ71R2a6gsUl6TCW3Pi537mhhYGOco/lmog29tWtpxnavOOfCtF3panGVpS gbiMJyccmsq9s2qr3ouyC+2piO+qO62h5l9vIUjeUq5HIOSnnNK7G36Tfh1yW2Vf1EtS259l9E0x iG3G+6U6R8JcSSByOchO2olMWpCTjYXXFYJSMbfHBPQeFMp/tEaRv1ntUedYLgzcWZe1bO5Ko6UO bQtwLzngj7JFaAtHZxo61o9/ct6ri4hO4FaSoEAeDY4J9OaGMZr5kbcuuwpeh2Zzk2mXcNq3W192 tQQkgdTnz8a5C06lK0rmJO1OAEpPUfPwq/u2uJHOlLa/HQhlpiVhIQjaEoW2c8AcfZFVGEoecUWi dhOU/snpTVsjmZNXKe6VDVuMhpGxDaRjkcdK4pGfCiZjp29PCmzjYBxRWZpTlLlg5Tfhk0mprJwB T9beDjBJ9KSU0rPANEgRmpkBOPGgurWUOaauYcaLiUxlrKM43Ac4z4dKkpZVjhNMblAcl264Q0tL dW/FdaQhtJUtSyggBIHJOccCiT3I+DPJ1Fc1oLEPZCZPBTGTtKh6q+0fvqQOW6RfNLWeDCbW/LEx 4BtI3LIPkOpyat3s39lTUdwjN3fXLg05BIBDTyQqW55Du84R/bOfStQdl3YnEscVk6K0YY8hSR3l ylDc8c+ThwAP2QB6GnNpMUZW0J7KGp7mhqdraUjT0BwA7HRulLB8m/0f7RHyNacsPZvZ2Lgxc4Wn mXbozFjxEzlslySptltLaMDw+FIzgJB8avCzdiZCver1P3vH/wAM5Of2j0+mKsCzaegwY6GYCEJa J4LY+EnoTxSpT9wu1spS09m16nEOS2fdtx5ckfE4fPCfCpdbuzux29xMiQ25MeQMhT6vhB8wkcVK 3b40zZrxPkMlL9nLrbsfeErUpPTYT4kdPUUnprtO7PTa4MrUEtiLcZ7brjDMhaU98pvhbYUSG+83 eBUOtJeaUmktkxnwai2/A2VZ3pW1tuNwfsgJwPoBSV1tWltLxRctXzGIrPG0SVbAo+SUdVn0ANQz WftMuW6Tcmr+Geym1QG0lM6+Re8nzwrIxDR9hZ4zlIXjI55rOUn2krxrq+P2v2c+zS76wuuSl7VG pdziWyf08KO1tPiN6k9Ps0z4YKfsabvHalPjwnH9OWiJYrPGTuXd76RFYSnzbZyFH5qKR86zprP2 itJalv4tOjbFeO2DUyFZZbS0U2uKrwUlGNuAf0sH9qk4Psz6q19ORqD2ju0ifqWSFd4iy258swWD +qV4A+jaR+1Vw2y3aJ7N7G3aLNDt1kgpGRGjNBBdPTJA+Jw+qsn1qrjH6hpN8lXwezHtl7S7lDvf bfrGFabdCX30LTdhaQpLCiNv5x05AO0lJwV8HwzU0sPZf2RdmrYuSrVGU6hanGX7ir3lxCjnhpCg eeTyBn1rxcNf3C4vfk/TEFwLWSEL2b3V/JPIH40lB7O7/fJCnZanZ04kBcdlzvHE/tufYb+QJPpQ u8mzLXp4I92i6q0Re4b70zTtrTGbBSqdPbSkoHocjA+ZzVIwdbaXgSxadHWORJZUSXJKCG0KI/VK uVAeHAHlWq2PY/09fJbd51nLdlLa+Jq2Oq7yMjx+IfpGmcz2ONPx7w7c9OTm7bHfSG32WovebW+d /dblYQo567SBgYGaZSxxFt2zI2otdX9xxUdmMiASDnavc4kHwyDnPyx9ai/uM+4L72a+tZPRSuT6 8dBWzrn7EmjJCVL0leLlapBHPvZEpoqx1JOFD7/Oqs1l7KXbDpne5bbPH1BHRk97bXty8f8AlLwr 7s0jJllLjg0Y4RrcpRm1x4gwgZVjk9TTa4syA043EjF+QoZS2nk/3UWuFvvtom/kZ6yXA3ZZ2tw3 Iy0OA+ZSQCAPOrN0J2SzYNnNz1EtLD7mX5j760hDA8ic4AA9a5mt6lDQQ7pvd8I2YNLLUSpcGVpm mr+5HdWxBVIU46S4loFa2+P0ykYHj41Y/ZxofUlxgt3iLBktrCUtstLBbcdcAz8AJBV9M9K1XpHS emLpbvyjYJdtuUULUlc4KStncOoAzg49aiHaVduzuzqckNOIk3D4UqmKdWWmwk5HdJyBuz4gY9T0 rDpuv6jXZfy+nxO/f2+/FDcvTcOmj8TJPYCW16fa4zVouTID7LeFNOY3o8z+twaHai1lbdNoLUh9 TstSdyIrOO8Ix1J6IT6mojqrtKv1/c7xmVIYQpIbEh3+ncB4whOMIz8s89BUh0l2ZRrOj8ua2jBy YrDke0OkqUVHkOS1dfXus5P6WPsn0Mp/l8SnqGr+n/Y87rddh0ic3x492c0tonU/acWrrqp5y06a WctQo6ihc0A+BPJT5uK46hIJ5GkLRb4lss8a12mOzFjQ2w3GYZTtbaT5AevUk8k8kmoPYZ78vY7J cKlHHJGOB0A8gB0A4HhU9hLSGQMnPAxXP/MPO74R43Pr8mvn3T48IFatSVW9aiobtvhVSsqSJaln wJGatXV21cJ1KFEZSeaqZYLbx8eelBk5RytXtNBhxSlRhvcASE7seZ8KjF3u7UIKbS59knx/GiE2 SW2VOd4cJGTzVaXac69KcySUlQxWnT7na6U7TL47OUJOmxJUgbluKWSR4cVqb2XbWl2XfryVqyw0 zFS3uwlW4lRJ8/sjGfWsu9miyrSMNwDhzfz9cfwrWnsqRAq06ilKKvjlMNpIPHwoJP1+KtkHcj10 FUEXI/brdJWUyYraifTr/fVN+1FbkWXsguk2xT5lsmuSYbDL8V9Ta0KVIRnBSQemRV6e64OU9cdf KqL9rouI7Loccq/p7/ESrB/RQFuf8lFm9OKUl7GrRQ+JqIQfloxrfEX29SVXm46gl3GaMNd9cHC8 soT9lO4nOADiov7/AHmHKUqVaBJQFY/MuYGfkf51LropxBXGQ3lWd/HPHQ0OjxVd4kqTwo7iT+Fe axavLFW2fQs3TNPke0aA51BBaIakokRStIz3jRI9eRnHXrT6HPjSOIkuOrPQoWCVYHlSktlG8pUj ICepHUE02fsltkR2w5ERvwT8Iwc9PCtcNe1XcjBk6LB/IwowpaficUlaSN2BS7TRUCEYHXjqeajr unn4pact1xlxmyFJUEuEp3DwIpVh3U8MFwPxJaRye9RtJ5x4Yp8ddjktzDPo+eHy7hofmXAttakL HO5tRSr7xRuLrzWdqSEwtUXFKBgBK3u9R9y8ioh+WJzTeZtnfQQeVNKCh+Ndp1Ba3/gdllrBxseQ UY9PL8a0R1ON8SMWTRZ8fzRLGj9r2pGilu4wLTc0YIUVRu7WB6FJ6/MUTt/azp58kTtO3G3q5/OQ pPeIAHjhWDmqyaWh5sdy604k8FbagSD9K7UpZ2kg4SkpKgMD5/305ZLMsoVyi3f879G3EpU5qJSC BkJuUfGD+1jHSjNtXEahTJFrua3JStoj+4zlJbTuPxOqAVjfgYAUDyc+FUJuO3KjkhOQD1+deLut KIcBvGcJef8AhHQlQSD5/o/jRrIkA8dmjE6l1AEgKl3FRA5PetHP+5XKzOJ91AARfJ4SOgEx3AH3 1yp3IH4RsD2jLQ1qrsc1PZ3EF0qhqdCR6fu4Jr5GoW9HJUF7HWiFJV+qoHOR9RX2dvcJF0sdxt7j YWmVFda25wCSk4H34r48art67Tqq721xvZ7vNeRt/q7iR+BFMwu9jHLk+uGlL03qTR9jv6SSLjbI svk5+20lX8a9TM5yBjzqufZVv41D7Pmj5KnCtyHFct7q1HJKmHVI/dgfSrHl7cHBxSXsw0RueBu3 Eg7TnHnWYvaEtgmab1JCBHeNJecCfHjDo/4RWm73PhQxmTIba3qwApXJPy61TXatGs95tFwIac95 dTsKwfhWMbOR8lHn0FWnTTI06PntIB7sOJ+Yr6J6Pvqbppiz3PcCqXAjvHHgpTaSfxJFfPGQgoaL R/QJSfpWzuwm8Cb2V6cUonLEdUUk+Km1qT/KnZuExcSc9pgNx0TOGMlktu5J8AoZ/f8AjVIxNnfL cZaU2ypSu6QoYKUbjtGPliryvCUT7Bcoq0lQciuYA8VAZT+IFU+zFQlpKUq3KSVBRP624kj6ZArO thiQmv4sgDjzpupkkkD91EXA0yjvH3Etjw3eJ9POmy5KVEBhk+W5w7R93U0SLoQTFyOa6W02njqf LyHrVb6r7aoltlyLVZ7e7MlMLU04tz80wlQODgD4lcjxIqurtqvVuqTsuFxcDJ6R2B3bQ9MDr9c0 5QbW4Noui5doOlLTNatztyS9IdeQz3UbDiklSgOSPhHXxNaZ7Mh2d264piznlWA8hc5TRkOrV0IK x9gcccAc9KwLp7Rl1ukxpi2QHpMneC20y2VKKgcjp61saAh/hp9JQ6naHB+qvHIP1rNqMvwWnE4v VtZm0jg4cM2Bp7RXZ7GDd3tjQvbjuFNzJTgkJT6oA+FP3ZqXttJUAvbkDoOg+6sgaV1LeNMyEO2i 5vRsq3LS2rgnyI6EGrw0b2+xQUxtW2VK0HIMmGdqx6lB4P0xUhq4T2lsL0/WsGR9uX0v9i4ocdDq koUgIycDIo61p51xILaNyhzhKcCqK7ava67O+xHR8bUMHTV71fIlIK2WYMZbTDBHjJfUCGufAAk1 88e23/KB+0J2zNyLQzqBGkdPv/D+TLCVMlaP1XH89656jIHpWqMVLc7MMkZrug7Rtf2i9T9lmnu1 2xG5agi391TLwvmlLXcE9+rakBDiwlQAP2coUoAhJ3DHIiTVj0pqPSzlgctLemIKJb8u1+7rVKdY PIUFMjhSFFONqM8kVgv2fp8CL2nxrheYrczMaSUKkKXhLxQcLyFAlQ5xnIz1BrYmm9bsybZAYuOn pMy5w+8TZbnDU2dwXuCu8yoFJHQY64+tNgoR+YNucl6SNa37VdN9xD0PqGLbdQvWiO6lce+WtK3L c82Q33QKjx6FPUdfSf6M7S7PbrZHsLVij2mCkpSwbcgJjpz4lvw88gk1UN00E72xNSdQPjU35SVO caQsRBLjuODjLqW+Y5ynnBKeMinqtK3zs90kk6ghw7Y/3rjLa47veuvOBG8LWgjCBjgFWM4IxkVJ JSVIpNxLTn9pV1uEo2zTsVwFwlCHNu95XqlPIHn48eVJ6f0bedU3JTYYk3OVu/OJjrCgg+Pevn4E fIEn0FeOzTsSZujrGo7f2gi+zZMY57hSWAlLmD3aUKCkrHHQgdCcir1sV41Zo2Gxarnp+M9GZwjZ HaEV4DzCFfAr+wsnnpS/h1wH3N7jjS3Y5EgMpF5cYbCwCYNvBSlZ/wDqOn43PwHpVjwLNFgRUw7b DaitoGAhpIGP50N0vrPTupHxbWLgiBMxzGlJLLnzKVgHHqRirLiWNhtgKkKbcIAICV5GPPPjVcEt sh0a0PSj3YR9egGPHNFWbDGawp4hah9E/wB9SJxjuSCEBQAOAk8Uih+M+VbWQV9Slf2R54PSlstJ Ady3tIQT7uFI8Ph+Gk1WtpIyIyEk84V/D+VGZTzMbLKVLW8jKygZ+FPkvPTrUbv2q4lhgvzrrcI8 eOykrcdcIbZYSPErP8T9DQMNA7U1ktk5jZeLNbpjRTtHfRgtZPorwFU12h6f7K9KW9Vw1RNNmacS SiOpYeS8nHKURzyv6cfKq97ZPbWtFlD8PQqkvvqJa/K0xJ7sHHRhrq4fInj0NZFv+udRawuL981F NkuypJ5clK3PqT5HwQn+qMYrPm6fh1i/jxTQyGqng/ltkj1n2suX+4yW9IxGosJOY7ZZY92Z7oKO CpsHBV045PhxUOgWa86gujESDHfu11luBtoE/pHyycJA6knwHJqQ6M7Pr9qxXeRoaY1vjfE/IfV3 TDKB+srHHyGVHwFWNBi2nTEF616dSoe8kGXNUna7JwMBIB5bb/qg89VZJqp6jT9Px/DwpbHD6r1T 8qu7I7m+F/ngD6e0ba9FvImPvM3O/t//ALUkbmIZ8QyD9tY/8Q8D9Hzok6tTvxLVuUokknnJPjXS zk8jGfOvJx0PSuDmz5NRPumzw2bUZdTP4mR2/wDOA5p55YeQjPwp6VYcd4hsEnx4qt9PuKMpPpg1 P4y96E8+FbtPtEZpkM9SPlUQjwwareW0UuFST16fyqw79n3VxXknNVpcpW0HYo802fuK1Kue4Ouj pSytkHrjNQG7FDLqlKOCDxU2cyvcVHwqvtRP97MW2jOM8Vo0yt2dvpMe1Ghey5K29C2kq/1rSnfo pasVsL2U/ef82r2sJHdflBGD0ye7GcfhWTdGQRb9I2aEjjuoTQI9SNx/EmtoezPBZh9mDUsAhc24 SXFnz2kIH4JFbMW8j1zXbBItltxATsX8JArP/thknSmnmG3m0pF2U44gqwVgMOAEDxwVc/Or9WtA +FSQQrpms1e2Wtot6SbSPiQ5McX4kIIbT++prZVp5/Y3dGj367GvqZmS21IkuSOqUDAI9aQYaCnH lHGAf4f316MgIcDDI2NgKWT0B9MV7hJX7mXOMuKJ+eTXj3Gtz6gmnsD5sRIKlDkcJx16CkpUcthI b+1twD4A/wCOfpRRaVLkAYT1JIpq6dz6gpJWEdUjr6/49KbF8C5JIaMR1tRiwF70EpWCeScjrmu0 RithKVN5STznzJomEd2VJydqeEj06il2o493Qo45HjQydIiipA9DSUsJDqTgZz/KmSoUZ0KW5HbW M8ZANHpDW1pS9oIQgkehpkhkBISBgkUtSYUoEam6XguxzIjtFteSkd2cHP8AgUPFrusFYZi3aShP B2rO5J4z41JZrBAKAo5JSPLPnTFtpxTyU7SRyQevWtePLOKtMxZtPjm6lEGOPX5p1CVMx5G4HOMp PT0+lCrvq0R3mjcYL8UJaDQ2/nBwTyfnmpitkrfO1JBSg/efGmGorbAZ7L4d8mQ21XG6apXCYeUM rbjMR0lxA8NqnF5+6teDVZZPfwcrV6DTwSpU26It+XWTyHQc+h/lXKfohgpBDLeMccCuU789P2M/ /SMf/wBmfQhDu3G4cA/hXyp9pOw/5udtWpYoa7tLskvJB9eP4V9LnbrOkII/owawR7bdmVbu06Nd Cn4bhDCivzUMZ/HJrrYci7qR5KcWlbLh9hfWSW+ye9WEhTrtsvSlpbzyEPNJUAPLlCj9avO53q6S lENlLCCMAJGVfyrIPsH3sN6u1Xp1ZP8ApVuZmIB6Zbc2qPzw4mtjOxycqATg+dKzNqbSG4qcbIfL tyniS+hb5zv3Oq3c+fNRHXDEG06cnXG4PJjMpbCcnnK1EBCceZJA+tWm5CW5kEbjjHAqvtV6cc1R r6x6adZ3w7bHcu8hsjcFPE90yCPTK1c+QpcVbCk9j58auhCDqK6wkpADcx3AHgCokfgavP2ep93G h3Ra5HeiJPcbcjLGUgKSlQ+ROVVUfa1BdtutblGdThe5JX+0PhV+KTVzexopi4x9V2Nz4lIXFloH ichaD+4Vuy/y7M0FUi2LfquO8TEuCDBfKSnu3iAhfH6Kjx99VnqC/wBssLrqH7ht5/oI6N7oOBnJ 6J5+tXtcNAsTUFt1lMhHQgI5Hz8RUC1H2IxVlTtsCW1+KD4/ImsqkvI/tKvtmombnIPcsBtKhwtS t7hPhlR6fSiK5AS5vKsdDz5c5zUss3s/3ufJQtts25J6vKUDu+SfH61aGnPZ/wBPw1iVeu9uzx69 6Alkf2BwfqTRp2TtMR6J7Hta9pV1kXCxWJ9yLJkuL96dGxkBSiftHg/TNae7OvY307B7uVra8qnO IAK4sTKEA+RX1P4Vo5vT1vs0IOuBiHEjpA/RbbZT4eQSKrjWPtBdn2j23mbR3l8mozn3ZWxhJH67 hGCPkD86em5FKMY8lgaX0HpLSUdMTSun40FAAGW2gVKPmSeTVNaiZRH1Lcw2lIHvjgAT0A3GqR17 7Vet9aS/yDZJclS5Ci23bLC2rcs+SnBlSvpVg6Dhamt+krbG1dZ3bVdENqLsV4/GhJUSgnJJyUkH nmsmtjUE2cDr9Twxa8MlDKSlW4U/t8iSuRIZdSQ02UltWftAg5H+POh7S8I6U4jytqsHpXLkzyeS CcSRx7hMiIU0w+otucKbIylQ8iDUE1X2B9kOvpa3r5YPyPLkLKvyhZwGFoUepW1ju3B9AfWpSiUj GfEinSFhQznOOcUWPPLG7iyafVZtNK8bK/j+zRZtJQ3R2fRouopTYKVKd+GWsY/RbVwf/wAPP41W KJfaPoyOLdIbg2CzW+4/lNblxCI7zykkksNk/Gc9NqQR54rTUUoKVvuKUO7ICQP1vn4edNdVW+ya +iIia5s8a+IabLTLspJMiOk9e7eGHE/LJHpXSjrk49uVbHoNN17sr4y/qjNS/aEh9mPaS/qLRN2n RmJqG3H/AHRwjDhTtUhSOixgJPoRxWjOz72yOzjXUMQe0/Rln1VGJwtcdpLMpIzwpbSsJWQOckDk dazv2h+xyuQVSuy6/pdCVLUm2XdxKHCSfstyAAhXpvCPmaz1qfQOu+z+5/k/V2mrnY5Sc7TIaU2F jxKF9Fj1SSK2480JL0s7WHU4dUu7FKz7C6N0j7LXaVEajdkt6j6duaQFIiIdMOQlXkEKyhX9kGjF 00x2xaDbMeXEZ1Xa0jBQ4B3wT4DB4Ph0P0r5Bac7W9R6dLbYuH5QZbKSBIBS4nH6ixz9+a1x2G/5 QjVemHI1pul+VcIKcINuvi+8Tjpht/qn7/DpTVJM0puJqp299nWpkN2u9xH7FOaUMRZ6DsbV/UJw pHP6pFEIMftJ0epb+iNRi7W5Px/k+4OmSwrP6joytP8AaCvmKV0721dgXbnH/J2prS3p64rTub97 CXI7g8FJcT9n8D60z1V2P6s0YhF27JdXuyGnPzqY5eD8dQ8tycqx/tVG0EmFLh7Udk0xZJL+uNMv 2i4RkKUIynNyJGMD80tIIVycYBznwFQ3t49p6TpLR9qk6Yscq33y+W8Tkw5o2uQ2ynP54JPU9AkH nk9KxX7UGq9Taj7XbXp3VscW1ll2IiVHjAtJK3HAXHCMD4j1yR4CrA1RC1V2n68e1A9eQu3Ofm2Y Ya707tyUJCSfs4SkDcc4BVigpckk/Yu7su9r1+8aTNq1/Jjw9TMJUEPXJ73eI+vGQC6kK2j1UAfD J61k3th9oLXPaddpEaTdUSIsZ9SG0tEi3skHGW0g/njx9o/fUZ7Uno+odXSrdB7t63WnDPdoUBHU 4jO51ajgHk4GeOKCRI0bvEJbcaeWrCULcSQ2D5JQcFX1wPIHrS8k8eKPdIuEZ5NkIW60T7nOS8yy 7LkOcKmSDnHokeA9Eirc0J2YW5ltWo9SOqEOOrC3XEggr8EIT+ks+QOB1JxS3Z/peTaraL5rkKSx uzEaZb7py4A9Cnk7WxyCvjySPGi94vsy+PNrkbGmI4KI0ZpO1phH6qU/vJ5PjXB1muy5X2J1H6ef +Dn9T6rg6ZD4eL1ZX+kf/I9vOpHLm01boUcQ7ZGVliKjpn9dZH2lH7h0FCe86qPXpSQVnOPCvJzx 5elcyjwOXJPPN5MjtvyxUqyM14KlEgJBro7lE/ifM0u0GwtJV9rPHpRqNgoL6fZIWFEcZ4/jU6iE qQEjmodZ3k7wUgg9PlU1tzQISVZPHNdLDHajbp4ArUyyzbnXMEYTx61UstwlasKPxHnNW9rAIVFL S8pbAGePvqqJjKHXnCyg7ckgemaPJF2Bnx3NUCJby0R1hJ5VxUaskZh7V9qjPMoeDs5lDiFjKQkr GQfOjdyfbWzsirB+IpKwfIeH39aYaLjpXrW0hXCUytw/spKv4VqwRaW56DpWPte5olh5RG0NDjy4 AraPYQyhjsisK0Ix3rTryvHKi4oE/hWLogCgFZHIyK3d2YRGonZxpeO02UgWthYAGBlSdxP3k/fW rT8s9NmW2wedI2A9c4xxyDWUfa4uDrutLBbio93HtDrhHq4/j/8A1mtXSQlRUCeRwMEjjGR9axP7 TyWD203JTS194LRBD+VEp3BLhGP1eFDp86T1N9undHS/D0O7Xx/r/Yql2OHXEN7eV9Pu8f8AHhRF DKY7CGwOU+Pn40nBKiCkDJUlKcnwOBXuStLZdQEqX8W0eIGAP768rJ3sfSopRVjNJKVFZOeqceVI xErcdUtRAwokDHIxXscJX8eCEAj6k/ypSCkJSkbfEgD60adIW0menClj43PtAbckeWaftd24lCGi MJHiKQlJyRkAgKOcCnjDCSskJwcYPOKVJ2hkEhvKQe5cCDncUp+fP/zXgRcjJRnCcKx4U4eShCdo GSXOPHgZr2EEhw9ecHA6f44ofAT5AMxlJGVHJHTHXP8Ag0jFjbHFupUMDjr0xTya0nve7AJIOfpX UdjDJPTec48abbjEQ0m9xFuNuDrpPxLHGRximWvYqY+juzuzgn441wvDgz1U/JUlB/2GhT24vLiQ 1vYAIQVY9ccUp2pQ0RtW26yJPw2aw2yAlv8AUX3AWtP+0s1o07ahJs52rXfmxwXi3/n6kZTEwkDa eB5Vyi/u6v0V8eHTpXKDvZo+GasUgjgqKvSsne3hYC5aNPaiLW3u3VRycef/AP0mtP6j1npvSvcR pTkifcJad0a3QW+9kvDzCRwlP9ZRA9apL2lrNr3XfZRcbhfNOQLZDgkPQoTS1SJm/IIU44MJ+yD8 CQef0jivR4aU0z5vk3iZs9kS+wNOdt1qVc5jMOLcIsqG4884ENpKmypO5RwAMp8fHFbmldqPZrGU 421qFu5ONq2qbt0d2YoHyw0lX76wp2Q9kmv2tZ2HU9y0gsWWDPZkSlT0Btt1lKhvSlKxlZKc4GMV 9E7UxZ5sJEuyCMIiv6MMJxjHgfEEeXFN1CSlYOJ7UQ5/tYs8deG9FaxkIcHwuM2cgKHyWoK/AVnj te9ofUWl+0q+HRzcWKpTUSKp6W1vebQ2jcU7TwhW5agev2RWnNdalh6PjMwbXBRcdSXXLdqtqOXH 19O8X+q0nOVLPHGKjsL2fdFTNPtQ9dWKHfro+4uXPnOIKVuynDucUlQwUpzwB5AUvHKK5Qck2fPn taffus22ahkqKnrnFW46o8EuBwk59fiqy/YUmsN9rN1s8gf9fsrpQkeKm3EK/dmnHtg9n9n0Pebf bNPRPd4DYSttvepe0upJUMqJJ+JGevjUS9jq4Lt3tIaTbUtKUz1yYK9xwCFsL4+ZKUitb9WPYzr0 yPooLUgn4G1J4+0OtKMacSsqfXFKgP0tgBx8q71b2naJ0PHcTMk++y2wf9Dt4758nyODgfU1nvtE 9sOdDhFLRjadzkojIWH523w3EDCCfIDjzrPDDKQ2WVI0HdpOl9NRRLvd1YgoPIStz4lfspGVH6Cq e1/7UFh0zHcOnozaEDgS7gQEn1S3nn6n6Vni0Su3zt1mOq7PdJym4Tytrt6uKihoDzLrnB+Sdx8h VvaK9iTS8N5F87YtTzNX3QYUYbS1swkn9Uqz3jg9BsHpTu3Hj+Z7g9058FKXztl7TO2y8qs2jLRe tVS92AhtCkxWfIkJwlI9Tt+dTfSPsY6t1J3V07bNZmLHKt/5Esykk/Jbv2E/2Qs+vjWqoUPT+krY 1ZdOWeDaoDQ+CJCYS02PmE9T6nJ9aGXC8SXSQw0e7PiTgYoZZvYKOP3A2j9AdnnZhBMPRWmoVq+H C30p3yneOq3lZWrPzA9Kh+tJDcu9LlI5C20Dz6cfwqVSC6rcX3MDGQKh+o1MreaU0jZlJ5Ixkg/3 1k1Mu6BzOuQvRuvDQKBJGc/SvAWd/I6GvK1FJ6YzXtgBxeDxXNfseJu1QQZcOOB+NEIy1edNY8ZC 07hnIp60ztHkPOhUWhPbTHyFkoCeic5IHifOvYKMZIpBGTgYz/dzS+Qrmm8otnpICwfiGfPNdzkM Xa1uWS8xI1ztroIVDnMpfZOeDhKs7T6jB9a6A5GK6cXsG7uysJwSkHBIzyAfPGakW09mVGUoO4Om UbrT2RtD31xybom4O6aluk4Ye3SYRJ8B/rWh/tgeQrPXaF2GdpfZnue1DpZ9VuyQ3dIqhJhuDz7x H2fkrafSt5RJTjzCH3WC0pRJLajykZ4z64xTpmc+ytamX1oKwUrAVwtP6qknhQ9CCK2w1co7S3Ov peuZcD7M3qX7mOvZV1TBteslHW5vE7ScWOt12BGkBtpb/AbC3FAltPJJCCknAFaJle2J20J1PY4e gLT+T7IypceBaLVBbVHKMfotr+N4jklw1K1aU0ZcLdKtSLdbdOqcS481Kt1vR3QfP6TkbhDmfQpN Zl157Nfa7Ev8rVMLUrV+gxQXV3mA8sSIrafD3ZIDqTjoltJT69a3480Miuz0mDqOn1STjLf2I17Q V37Q752uPXHtNj3GFcrsWpTjkopVIW0rhCghP2AAAEo4IxTiD2rX7S+lfyZJ1K4Fuuuw3GG091MD WAcKdJIQkg87QVdehqtbpe5BuLlt06zPk3BRKH7hOKlznldCADnuh6DKvM0V052TaieuUB3UthuS Y8pxPwBolb5UcJQjHVZOODV5c8IKpM3xi3uuB7HvEq5R3pTsiOxbIq0qSIzKlNsc4yoclazn7Rye a0BpvQth03bIeoNSwW5099tMmDAlMbVNZGUuvpUNyfMN8E9TxwTWgNH2LsntD6YFlQ1fJSlOFhcj 3lu3ngAbsYW9jqBlCD0JIyEJzcyW6uRJUt1xZKlKUSSVHkknxrh6nM8jvz/nP/s4nU+vx00Xg0rt vl+32ELnc593lKlz31uLVwMn4UpHRKR0CR4AU2A5JyBivamikYWcY8z09BSSyd2MfSsDXueMcpZH 3Sds7Wo8geNcCFDGevjXAMEFR5A4r1u4qqJRzdjgV7TlI3J+tIAlauDwKdtthakNZAPn4D1NHGNh xhYYsS/9JCVKJ55J8/SrGt6NzYUPEVAbS0lLqFp6HnkYOfKpxMvFo0zZHr1fZrcKBFb7x59w4Ske XqT0A6k10sCdHT0uJvYC67kMxoTi5LqW2m0lS1KO1IHmSegrPq+0K3ayfulosLi0MRFhovEYMgY+ 0nxCcj68VIe0XWMntIbYcgpfi2YoS60weFOA8hTnr/V6Cq/hRE22YiQhASCdjmAOcnj8cVuxwSfc +T0On6Usf8XJ83j6BtmSXI6SVYKk/Z8j4/jx9KfaCSV6zgH/AMMuOH5BCgf30NJSVyEowNv51P7J /vzXnSV7j2fULc+Xu7tKHEnaM9RiiaqTD0+Os7f1NGQXCEAA444rfnZsvutAadbUsOBNrjDJ/wDL TXzf07qi2XVIbgTm3HFYCUZwrJ6DHnX0z07CRbLHbre0DsjxWm0g9QAgcH5UeBcnVzeBaQEJSotk EE5z41hb2ipy5PbLqleEn3f3WKnHTCYyDz9VVumUkZBHHPhXz+7YpXv3abrOSBx+WX2uM9EBCP8A lP3Vl6p/Jr6nZ/Dkf/luXsmALYAlJ3HwClA+YFdocDsaQtChnvVJPzAH8xTeIooiuqPOVBKc+HTN KpAEZQSBlaio48yev3V5pxR9A7rSG0hPdoWspGSUAfLFKxhvfU0FYLfOM8n/AB/Gu3kBbqUpGMc9 fxr0ymKD3LZ+NopVuPXBNH4BXIs+CtxIB5WR9fH+NP2gUg4PJI6UxcUVSEI5GDyfup8pHeRltIc2 KIVhQPI9R680uS8DIvlibiQXmwcDblR58Cf7q4lexkuoB656+HWuLSUKVk5LTYTk+JwBn8a4o7Wi BzhJPoaAK/IEYC3e+Wtz7TqsKPjzx+FP1tJaShCyOcBNN1tJbdDQx8BBI9cf317fUgLZOclSwMH1 60yQlbCMi2pvdwhWcFYM2WzEAzjJccSjP4147QZ6bh2qalnx38Yu76EKTjgNHuxj6JFHtOvQ7ZrC zX26JcMW2zmpTiUJ3EhBJAA46kCoaWi/cHX3W8OPOuPOc5O5ayo/vrRBr4WxgnCT1Pc1tX92Lma+ o7hGSQec4rlE2lMIbQnaOEgda5WbvN3Yy+NCaERpZh+4SZpnXuce+uM+QApx9w+X6iR0SkcAYp12 hRX5Ohru/HU4t+LH95bwrBC2yFceRxn76bK0DreKjuLP2sXBpgfZRKtkaQsDy3kAn614kdmOobm0 4xe+1PUUxt1BSuNGbYiNu8cJWEIyU58MivTLZ2fMa2M96B7Urb2kkNCSXriye7dYcP50EHGMDqM9 FDg+h4qyLff7lYe9VaJRiuOIKTlAWnOOFFB4Vg8/hWD9SM3TRvaNeE2iU7Dl264OhtaDtI+LIGPE YI46Vrfs6jaqvHZbaO02Stu4W2c2+biplJ7yFIbcKVDHUpPBz0Gccda6CcaSlwZN72Lp7JbPpdlM m6ouMm6aomgKuU+4KCpTvjhvHwoaB6IQAB4jPNWE+gNIVJkuJaZSPjW6sJQB8zWebbLLLrcyFMUl aTvaebVhQPzHjSHaFq3U7tveuampd8kNEf6Mk52jplKBjPyHNBLTKUrT2DWbYg3txyrFqG2QJtjk iSLe2EuuIQQgkO+BPXhysdWG6u2PUtvvMcLLkGUh9IQcKJSoHA9TWnO0Ps07aE6Bu+s+0ZmPDtci OWYdtCx3rLhG9KyhOQkEIx8SirkVlgPLiSmZrKsLZWl1B8lJOQfvApkKSpeAHvuzVWkOyL2kO25C ZDNsGhdOvYV75cEqbedR5pRjvF/QJHPWr/7NfYw7I+z8t3S/xndW3gELVJuiQplK+uUsD4ev65Ua uK2aniT7Lbrk3IMozoTEgFJyTubSc5+tKD8qXBW1OY7WOuMqNZZ5pMdGEVue5T8WDHbjstNtstpC G2m0gBIHQJSOAPQUDmi4S0rS02G21dc8k/Sj7VtgRApx5/eojAK1Zz8hTWZdWm8JiNfERjcRzWca neyInItQSkvPOFeOoUf3GhsmTGILUZrerxJGMVIJVuekpLiiWiecnx/s0PcgMNH4ApSsY3HrUTCp EWkRHn1HckJAxtJJP4VENbMGEiC4rOFOLQSTx9kYH4GrFmOsQ+ZL6Gweij/LwqG6riN6ity4cdCk htRebWOcqAI+7rQ5E3FpGHqOF59NPHHloh7ie8ZHGCfsnwPSkozim3QFDGT9K6sVyizI6IklY75K sdftDjHBr3KaTHkKRkD4j8OehBrC1tZ8/wC1xXcSG2kLRu554p7tx4UJszw4BOMnofCi6l5Sec0S 3QEl5Ot4B69aVSvgZHGKbZ5yOgpRAOBzwfWpQHIuF4UAM17yFA5pIDJHnilEk7fWrBaPCk7ePA0g 8tKNyicYHJpCXf7NFfVDdu0RuSGlulpTyQooT9rj0zz5UxDL96yZjfdQTkBo8KeSf0j4pH4n06U2 ON8y2HQ02/dl2j/nAwgaqXenpDFugLV7q4WnHSobAcZHI88g4oiIsp15ElyQpLyE4CmztxnyPWur dDRAecQiIhkOrJKEjAKscH6j91Pht70lI/DrVTST2F6vDGOVqHHgZydN2O6vflC52iO7OQgIRcEt pTKb8Qe8wd3yUFCuPqiW57NtVJXNQz3T014JC0hQGUthPCM+KgNxyRwOCVaO47M4ChkjwNDJiczn Qocbgn5/CKTOCk1NrdeTZp+oaqOJ6eOR9r8DVi3MbQpSAOKSfgNLG1CAAaJlISgc+teEpyrJ+lRR FvGvYiV1tSwoqSn6DwoG5HU3kqHNWHKbQtJ3c0GlWhtR7zaNo6etLlBMzyw9u6IiEKSApScDHOa9 BtKk5ycZ8fOjr1t+BYOAMbjnx9B99MHYm1GBtGTwBS3CilB2D1ICVA9B0NE7eytSkuKyEJOQBxn1 NeEMKD6dqEnHPxjiiseGrY445krHUJ8vQCm4oNujbp9PLJLtitx209bLYwmZNWQ0nBURyTz9lI8S apP2hNczdQ2ZUF0KZjvPtIjxkq4ThWdyvNXHPlnirA1AxdZLpdCilDacNtAcN/LPU+pqndfwbvcJ 9hgPxnpaRMQp10N8gBQznHoTXXwY1Dc9jo9BHTQuXzFnNWGO3bGWmineyy2hW08ghIFRS52VxLi0 rR9vgHHQ+fFSpC1ArcaCueSAcf8AxQ6dJmJaJ7lLgz9nyNFe9nScb2IhCW6+6lR8UqbcB45H94/G lrXafeJy9ySUhBPHzFB1XVuJrE24KKUz1B9pJ+Ha5jC0/eM/U1PLIwgTHScJCEDkDwJ/uop+5gjD szod6T00XtQWraNv+mxxnooDvE+VfX0jYS0k8pG3Py4r5v8AZLphd81NbBEQkqblsKyE5wAtJyRX 0dLgI3jOFcjzFFg4NWZ7oSdJ3IRnPxDk185NZ3BM7WF+lpd3Ik3mavcP0gX1n91fRSa73WXj/q0l R+gr5pd6JMgSF8hbrj5+RWT/ABrH1R+iK+p3/wANR/izl9P+4/BSLe3k43HJ+ldNhKWwFE/EpIxm mve4t7fqtQxjoNxrt1WQwD1U6n68GuB2nte6h2OEKUCMqzgg/wCPOk4oaDjoST8BwT5ilU7CASAE qykH1rtEQIQpTSgUuKx+FQO7FEpJdSOeD0646UTQgkq8yccdME0NYB94aJ4UM+melEH3AlpSk8bE lWM9T/jFLlyMj5Y0ckZSogk944Puzn+Vcdcycjgnan+f76SS2QpoLAwU5x6nz+mK9hhuT8ZWoEAk Y6ZzUaB3GS1FT5cIHBzgdK9x2ly7q00PshSc89CelIBt1tagsZBURmnVsybop1Kti2wFIUPA+dMS RndvgkTtlYkxC7DQSsAY+P7RAOQB6HxqKybaYrqnnFJUt74gB1SfWrBfiJhssspBSgMKWoHxChzm oC/I97kKeCVAKcCEJPUJA4+tFJRjG0VBzlKnweEjgZ29K5VGag7U77Fv1yjQ23DHZmPNtEdCgLIT +GK5RLQ5GrEPqmJOj6bIaCtoIwAeSPGnQYZ3/CcY5+lektEEAdB1xXtLaVHfghJHU13D58mfML2q 9OHTvbjqNpKNiJS0yG8DAO4c4+orT3sF6i997JLvYJLveG13lwNtrwEJbebSoj1yoL6+dVl7eenk R+0a1XpBSkTbftUCk8lJ6/v++k/Ynv8ADtd61Tp64zWm48uHHltocXgKcbWpJI8yAsffWue+KzPH 59y/9c9ir6JT2pezmOlsqCnJFqBw04epLOeh/q9PLHSq6gyUzQ4goWy+x8DrC0lK0qHUEGtK2vUM qUyYtshLeT0Ex/4Ugevifn99RjX3ZE1qjvbyiYmPfCkFMptIShWOiVgfaB6Z60GLO47BTxp7oo/V t5uM7s/n6NlO+8Q3EJU0l0kllQOPhPlhRBB48qwFNjlve0rhSCUH0INbl1Qi9QH52nr1HTBu7LCn G0rV+bfGMgoPQ5x4fKsX6siiNfrnGAwEynSB5AnI/AitUXFv0immuT6beztqC23LsQ0TdHENIeXZ 2WFgDnLWW/3IFTubencBqI0UhfRQ6+lZp9ji5qufY5AjLeJ/J06VFUfEDeFgY9AsVpi3qZbQNuDk 8KPXNYJ33NGiNUhCLAuElxKnzs3chSl5NOFs+7jonf8ArY5NOJs6LFQqS+80yB8W5fHSoNfdZqkL VHtLK1LHG/wPyFA0GnYaulxbhtKdlzwhI8xyflULuOrHZTnu1pZdJPHeKHP0FerZovUupXEyZ7yk pUfi3Z4H+PKrJ03oa12lAKGe+cAyVuJwM/Woi26K1tuirnc1+83BasnkleTxU0b7N5UOzvSYUDvH O7UWkOHAWccEjqB+NW1pbS8afHkSw0j3hhaQ0hQG05Gfoa8XO2zVSktzUyWdqt4aBKNxHiSOo9On nRuMkrFuSlsfOztYuenOyW4Ltr0ebOurDSVsOyoKkwO8BypOCoFw7SPiSQE8cZqNt6+sl8jNa405 DftjTq0t3e0urU4qE8ejrSlcrYX4eKTWlfbqs9qsvZDL10mwW+Tc7fNjtNuvtd4lIdVs344yoHGD 9+a+eWh73fZn5fuS3XZSxFSt4EZT3ac5BA4SkDPoKd8CMsVNUcbWaHT5MTiopGuNO30TUNuIdAS5 0UDxUxjP7iAs4B8j1qsOy+IbzD0/DUtxtU1xhKlfppSvaSrB64Tk/IVZvuzrus9R6QtsF4HT6I0p C3XAoyI76SUqSAOSlSVJPyFcuOKVWvB5DDoc+WEskFai6Hy0Z5GK9tbSKQadLe5qQkpWnjBFKoHO Qc0IpqnuOAAMHFcVjYBnHhx1r2gZH0ry4OBkcCoX9StGuzzVdw1Tb37/AKijyLBZ5KZkWM2yEuuO IBCAs4GcZySTzgdfCxzsScqwUjnIrypRB+E0g64QkkDqOlNnlnlachmo1OTUyTyPjYdrjMyozZ43 dyClX9YE8/hTJLBcRyR4g5PINGpUePFtlncZkNurfjKcd2nJQrdjarnqAPIcEUJWS28SOAsn78VU 3vQWqg1kf9DyyHCoc5A4zTNw5mOqPOF/ToKKxm9+U4SMZPJxmhT4LcyQCP0gf90UsViVSOOOfSkt 5I4OOa6VuOfWvI46ZqWPb3O9ilEqKsUqltLiQkjpSafiOM9aINM/CFZGemPHp1q0rYUY2DZFs7zg Dxx0obLte1r80wfh458T86lzLSVnZjnHJPSlrZZ5N4kLbYaPuzB2lzA588Z6miUO50jTi0jyvtjy yIWjSs263La21ltBy44ofCny+ZPlUtRp+OwnuUNEbBycVM4VqisRkx47OGknPTBJ8z5n1p6m3MrU FKSCenzrXDEsZ6rRaOGkj7v3K1laZZeGChJJ9M1HrroNKm9yGMgdCKuZdqh7FIQjO08ndg00dtTC sJQhakqSeU9Bij3OhaM63HS9yaBUyxgJ8B1++gzzLqQW3myVeShg5FaFuml0uhS2sqJ6pUMH8Krr UmlXtpV3K0nnGU55+dSyzM/a3CVANqvrCFI93mtndtIGCeeasnR1vnXy9e7W0q3vFtKABkqPJHyp nqrs/umqo7mn3gpYfUNmE8hXhjxHNaK9m7sX1HpeHO1FriIxFnPJQxEjpUCtltAIU4o9AV8HHUD5 4pjlcTPOH8RSLB7JNDpsF3sjReX729NZW4pKhgkEEgenHjWtypRJTu8DjGMjiqM7Poaf87LVIeSN iXz3WeCfhV8RHr4VeHdtpIII4HFMw/KDk5A2rJyYmnLrJCiFNQJC08c5DascV83oxSIrZSrbllA/ Afzr6HdpdzbsehNRXrYV+5WuS6EhWMkNnA+/FfPSOhKmzv4GAkfOud1N7RPTfhqP8yX2HHwhhtKT kbiP30lKcLbkVJzjvSo/IA12sn838zTWWvdOjgcjCjXJit7PW2EXnAls4JCSrr5eX76XiNrbQouv hYySnAx8z99MlZSO7wcOnZ8iRx+6nraAzFSXVc4yB6DgH6nNC6oOL8jm3qy8npkZBp1NKXGwhRPx kJx9f7qHwclRcQOAn659adPK3vNJBA53GkPZjU9jqbKZhx3pbgJShXdpx08s/hSdtcUYTbiuqkcn PiTXiU2mTCcZdRuS4tOM+Pj/ADrsv4SsAjHTI6Dw4o1vEC2pHguJCXFlvgZ++l7JGWtwulGSsjg+ XlTdZJCWQBzyo+maO2gBuSgnhLQKlceQzUbrYpK3Y71HcypD7YcO8Jba+mMnj6fjUSmLRDiuzVqA RHaW+pXkEpP8qMzwh+W86lfKl9T+FRTXrxZ0tdmW17XXmPdEH+s6oI/56N+uSQD/AIWNsitm7PI0 +zwZ0lTRdkxmnnCR1UpIJ/E1ypu1GEdpEdtOEtJCE/IDFcpjz5L5Ma0WOt0biLaikob+EnkkjJx8 q9JZ7vBB3K8yafrS03wlOfOk1pCASVJx613WjwFlC+037P07tqi2F203eJbpFukqTIW+lSgY6gdx SE8lQOODgV47I/Zk7P8AsvkIucWI9dbsEFszpeMJB6hDY+FI+eT61d0gd8CAcpUcim6EfEAolKU1 fc+3tvYnb5PaW2wjaE8Y6dBjyFNFlbCQkN7mgOR1Kf5iibDSXlZUkgDwwa77l9vDTTaiknxScUNp F03wQTXHZxp3tEtP5NvEXcftx30fC6wvwUhQ/EdD418se2KxP2HtCvFud5LLgSpWPtKT8BP3pr7A GA+w73kdhSm+qmycc+ac9DXzF9sXTT9i7cL2HNobkuqcYSkYw2SFjPqd5NN08k50mBki1G2Tj2Kr s+jS2prUogCJcWpLYB+Id43hRPplArRr2r5bTYREQSsA4UoY58eKyv7EjoVrDU9nKVESrU1I46At vY/HvPwrVDtkUy6XVkZ5AQk9PmarNtNl494oQYbuN5UFzn1YHX/46VONNaatrKkqLCVrIwoEZNQu KJqpCGu9wzkFQHhg+HrVg2Bzu0JLi87xgpwQcUm7GVSJZBiIWgbAAhPACccfLFO1QkLkNSCXgpok pSFkIPHUpHB+teIspPdpQlPGMgHjj506Sh13AbOcjJz4U1JCZPckmjFoAmsLQFBSm1Eg4I6ijGsV H8mR/iOA4U5PljpmqcltdsUXtg0pL0mG5GjVpLN+jlSEhGSoFw5+IkAp27cjIPnVway/7HawM4fS PwNbsW8DLk5Mme3ax717MWq8JJLTsF0Y8MSUc/jXzZ7FdZap0Zdb09pW7vW9+da3Y0hbYSd7H2lJ IUCMfCD9K+n3tdR0TvZw18w6BhFt71PzQ6givlj2fNLjXu6BtJOLTKHmfiAQPxWKKa2FtXBo1j7M 65d+nWmdNluPOsQXJ7jilZUpZSG8knxy5++rNvLibN28WG7LKGUajscm1LXk7VuMLDqOPDhVR32P tJzWdKXC4S2tuxbMJoKHICQVrT6cuJz8hU/7araiyQNManSshdo1FDUpAxuLTpLSx8sK5+lcyCq0 TpuBYcCXu2/1Y+utmbmjc+jaoA7XAOajD8Z6GolOXGwcbwODU6uMJ5C1NNrw0FE9yeUfU+fy4+dM ng24juVoSl0DltXXHofEUEsakVrek4NYrqpe6Iyw+kk5B/urt5YI+E8V6msJQ4dqMBPiPOh633Gw VuoIAOSazSxygeV1fTM+j+ZWvdHt1WMGkQoKBFdl9uQjKVj5ZpDdsX1xSrOb20ws8tSokF7ZhKG1 M5CQASFenU/jSLmxwHI5Bz0rwX1/khoYPwSlAHwGUg4/Ck0Pbk4P2qKbbdmjJK2n9ELsFJTt3DIO CaHzXFLknKt20BKT6ClwotukpIweoprJUhuQSQCVHPXoMVSKgrex6Q2sgHb18K6W0UoxwPM04ZdT txjjFeFN97059BzVpGhQTEY7eXAkpwk+NG22iAAAAMgUnDjNMj4yeBuz5fOj9m07LvAEiQktQRgg k4U78vJPr4+FMjG3Rs0umlll2xG1stDtzOSlaIoOC4ON58Up/nUxgwYzCEsxmENtoGAlPG0fKukx 0x0BhCQhCegQOAPlS7SUAAObh4bxyMfvFa8aUT02n0sdPHbk6DKlrAQTnkg+dKFC0rSrJ2gY5HBP XNKoaUCQlQOE5Ch/Cle+QUBK20kO+PTNNuzQM/cmPeUIAw2tRUTnAHGc48flSptkeOPhjtIIATvZ RtG0Hjp4c0/VEG5Ib4O3OT1xil2glaUtO8hOAOMFJHqPCgsJKwI9b0gJKtqgonBIximjuno85Xd7 RvPBGKlqIiCvKwApQ+JOPx/vqU6d0m2SmU4ypSc8ApzuqqstuiAab7JbfDlJvEhhJe4LYKOUnzNS /wBySjczjLSOFZHVXl9KnLkEBPdMJ+I8kjgpT/Omk60NOthKG9pHI45FXRV2AtJMAaugBoAlJWs5 P6IQc1aLj6MYcwMdMkYqqbPIXataRI8hTaVusvBBJwFDGOPX0qeG4hae7eTypOCkdSD14rRhvtFT 5IV7Q92ah9kGo1bu8EtpqENpPVx1KT0+tYhA3qIUcfHwPXFaw9qGXOT2bBiM42YU24xmnhuVv4UV JAGMEEpyST0TWSnHO6W2lxJO9SiPniuX1JtzS+h638OpRwzfu/8AsKhYKk56A5zTFqQHpTLrYKUl JHPhlQFPAlQIC08gEnA8etMWGyJ4Rng8fIDFc6j0Nu0go6rhaE5IJGFD9Hb0rkiU5IKCkEhYzj0x Xl7vkn4QSnaQR65H8DSKtxWAkkYGefCgSDbrgNQcdxkEkqPP0r2sH3h07TkANpPhk8fxNIwlqDDb aiMgZNdNLK1hfJCniof4+opTW9jk9khw8dgbb6DlWfLy/f8AhTQ42AY8Sf8AH307kKG8gdT8I+Q/ waZTFobZLyDnaNpAqR9iTO7crc86gnOQMfOjcdt6O4pCiU8ZJzmo9ay4l5teOoUoj0FG2XCSvk8o +vWryc0THwIqcy8pIPIUTUT1a6l+RaLaog++3dnek85ba3Oq/FCaknfEPKWB+HXmoldHC9rG1tbQ TDiSZZz13KKEA/iqrxL12K1D9Fe7JMqa0FEFwda5QUtlR3EnJ5rlXRNzdVq1AqY0mS6htIcG4ADA A+Z5NEvympxIWylByeih4efSgkKIlCAkcjzogHfdhtA69ab3Sattniu1LhDwT5WMJ2Z8Dg/yrtTl wcAIkpQCfBB6etQO6dpcuTdP83OzjT69SXfJDyw53cSOB13OfpHPgnj18Kfx7B22y2y7fte2OyBw YDMGAhwI9N7nj65NNhgnkVoB5Yw2ZKHWrgof9oqJUeAEkYH300cZfCCpU1089dtBHezDWbTYUntk vynVkEBxKSlQ/qhGDSOmL3cpkm56au0hUx+zr7ozSjYXhkj4kj9Ljr41J6d41ciQyqeyDrOXHMBa 8KJ5UR0FYH9vywuQ+0qLeRkty4jKieOVbCnj6Nj8K3whIawAg4Pj6Vkz2/7MqbpmzX5OD7k4WSMc 8rHP+8K06BqGZUJ1Sbxsyn2FaluemO0KO9bZa45mxXoywkDKsjKR96R91bk7PU36bbXFXSU5IKU7 lFY5So9E5r59aCkrga1skptCiUTWgAOp3Hb/ABr6bdmdsda0/GgSTtlkd46SnhRJzx8vLwrpahXO zFil6RlEsMxL5kISrAOAjOBUut7LzSUhOAnbtwE8fIfzo2u1CKEqddS01+urGVfKmbspceQmOygO BWcK244+VKikFOQQgx1fAp34cjGB4UTeuTERKTvASDjHiKEsszVx0lZwojnPAIpM2l5QSHypah8Q yT1pguvcM27WyLbc230R3Hoy/wA29gchJ/SHqKnGqJsK46aMu3SW32Q62d6DkDnx8jz41XTFubQ2 MeHPpXvuvd2lIb+FtzlaQeD5ceNOxZXBUxc8ae5UntMao0s/2dag7NpV6ZavmpbO+iBF2qJcAUkF eQMBIPjmsQ6K7PbVp3f3rPfT3bjHjvTFHALAy8pKB4cNZ9cVqf2sbWW7zo3U7bRUbcZLTw8O4c2p UB8sk/SqEvrCoim7fBbCpUtpaUEHguyHBGZ/3d6h6E0GTLKT+hz8znGfansap9n6xyLf2T2eW62W 3bup+6vOOJxkvOEpAHiQgIHlxTbtyt35Q0WIMUEuPXSCCepVh4Hj7ulWRHht2qyw7EwlXcwIrUVr 0DaAgH8KgGqZaLrqSx6XKtzkZ78qytv6CGvsZ8srKaUtmdXHHtiohWWkLecyOiiSAOvNBpkYKBQt AWk8ceJ/hRmbKaaT3jqilPTjrQqfKaYRvW4nB8M9aoZRHZkNzvCXEqWj58/3/voZIhhTffBYKeQf D6EHx+dH35cfGWyVqPOPAfOotdWpslatzi2x0G0dQPA+dSr5FypqmCpFwtjElcZ1C1oQnctxPRGT gdOtOlt/mw7Gd7xlYB3A5++grzIbdKXBtBz1Hwn6+B+dOYfexmkGOspKcpUnwI8AQevFZ8+KKVo8 x1fQYsUPjY1XuHWmwuwSsqBLUppzAI5BSocUzCsHKfpmuNToiYUplQLTzymtgz8GQTnH39D99Ipc z8O3FZnwjgZPH2HIUFEHGaHXNKhL3hJAIGD4etOlObSPIeVMrmsrlJGfhCf76iZMW7octPjI8h1N FYQZUO93c56UBSokgJGcnAHmaSm3R9Q9yjOFDaTucI6r8Nvy+VHE2Q25JTZ5rd11NEtraULYLm50 qGUlKRkj9wq0feVBAHdoStBwEg/Cr5DwIqq+zCGHrpLkrO0MshtPHis/3VZS1FIBA2r4ClHg5rRj Wx6jpGP+B3+7HDLoecDbjYVuyMAcinKIrqVEIWknyUOaSgIbUrepZztwn+setPUIUB0+8UZ1eBBI Ul0BKFJWCeAB9ePGvYabc3Keb/2Rwfp1FOQ0HAAoKUpPiT41wMuJWSkjkc8USBascttocQA2oKCR xn+de2Yri0kLbCVBRxs8vCvLKFZ3JBBJ6ipDYrY7OeSlaDtHVafAeeKLlk+UdabsS5bgU9koQRx/ Cp+0wiI0hLaUhR+FKD0x5/IV1b4bEOIlTeNqeABjJPl86cpYUnc9JBLihzzwkeAH+OtGlXADdnTc UAfAd6zklXmf4U2djJXxyM+B4NLpdV1HBB8+tcUoL5VuBPBIqyiO3jTMC6gNyoTchKVZQSMKQfMH rTJNivVmLLlsk+/Mx17kMS3DuQnHKUueI6cHyFS4AjlXxDwPj9a9Z8fMVI3F7FunyU32yJi6q0uq xTGnoEwPF5kPtkBKkpI3ZHCgQSPrmsv3vSN6tqm1yrapbSFH8638afDBBH7jW9btb4F0iriTojb7 LuUrbcGQQaqjUvYcy+tb+jbw/Cexn3Z7LrJ9M9RSM+JZ/U+TfouoZNFcY7oyajlToOcZIGB9M0HS 8pd1KhtCW0qGAMePX8KujVGgLhZFrGqtMOxBnHvsNO5pXqcDH3gVBnOz+YiQ9PtMlm4MuD4Q2cOI 88pP8K509NOCdbnpcHVsGZpN9r+oDfWhJxvIHC/Uny+XNIAqed3KABA5Pn4/4+VPZ0R2OT3jKwoK 7pSVJwQRnHXzzTZtjapIUM9ATWVR7VudZSUuOB4fzLanMkFKOPPOP76XggBbe5QwEjj1z/dSDwUt okkfEQMEcilGyG8ng8Hofp/A0kcnwOkhK3AhXxcnxxjk0lMjgNAFJwSMZFJJ+J47CrKUjg815dmS HnPdiofDwCeoHQ1STDck0eo2A8pY/VITx4U6aOwOLKv0QPlTBvKXdjbhG0befHp0p4sjunFY4UcD 91VNUyQ4EiShKzxhQAGOp4/Coglxx3Vt4eKRtiR40RJ8ckKcVn/bTUqWFrHAwCrn7/7qitlKn3bl McwVyro+d2eqUENj/gNOxKk2Iy7uMQ4hLexPBPA8a5SfepT8ODxx1rlV2oumbeVNaZ5BCVdAKrbt J1BMkrFnjz+5iBG+V3asKdz+gSOiQOvnny6y+V/Sp+dVjdf+2HP/AFSP+IU2G8qPFy2jZYOjb3M7 OdAB+bpxuLLnylIt7a0d068yEg988OoSCSEjA4A6ZqG3a8XW/S3Zt0luyHV8kk4SB5JHQAeVS/tp /wC+/wD/AErf7zUKZ+wn5q/fW7NJr03wZscV8xJ9H6uvWldKzZalKU3Ple72sPDIRsT+dWPNOSlI T03A1MNMWxVvtwXKUVTpiu/lLPxKUtXmfT+dRWb/AN1Oz3/0h/8AcFT+J/Sq+VZ9RNqojcUVTZ3K aUhoKbI6ck8fdWH/AG0O1RF31PI7ILbtci2eAtye913XJRQ4EA/1G0bf2lGtyL/7Rhf+a3/xV8zu 2n/v1qT/AO+pv/Gum6FfxkwNR/LZUmk7VeZ+oIAsltkTpiJDbjTDLRWtZSoHAA58OtfVXS8DUs+3 NLbhiK6tIcUlHJZJGdu4+Iz4Vkj2E/8Avjev/RI/4q+gNs/oW66+o+dI5mPYCQdPbkpbvkgqczuy nkOenofSn67RFjFammRtIIJPJx9adXT+gV86eSvH9kUCVFt2DCyhtKEApUvHBxgf30hIDyyEpRgA crIxz5U+P2W/pSCvs/48qoIS4SjO3w58vnTB1Lkj822NqCficP8Ayjx+f76cSv6AftJ/eK7uH2V/ sirZTKd9oa1RDYLF8PwqnuMOKVyTub4JJ69M1l/RsFi5a903c7qmU4XLou7sQIrIdVLiRE7W0nHK MAJXnGDu861R7R3/AHBh/wDrl/8A+O7Wd+yz/wC1bSX/APJ8/wD4GKBNqVHPltqO33r+xeEvtI1h qBnuNIaIlRkucoud2WlplI/WCUkqWfQdaGxvyLopl+4Xy7plXO4LC5cp7hx5YHASgdEDnanwzkkk 0w7HP+5cj/7zn/8Au1Xeo/8Avir9s1cuDpcE4u2uJNwwYaVMMIO8rcABUP4CmduTPun/AEhLdWWi fh3HA+eKA3D7B/8AOTU4Y/oUfIfupaKcmcZi4dCEBIb5J8z60pPgiYnu0BB28DHGDXIP9M7+0P3U 9jdHv2R/CisAi0+wuIb+JAVhPzzQVcB6IshQIQeg8BU6f6L/AGRUauv9GfkP+I0OVLsZl1sFPTyi /YDCOZLhaDgQUoU5k+O1JVj64xTdt5Tai2VHChkZ8Ketf0x/8tz/AITQ6V1HzrnPg8Pk9MVQ5Wrf gDB8xnmm7jyFzyyckpbBTnpSL3/WD+2n+FdSf+1X/wDyv4UUSYl6z287hGc4XuyFA9P8edMwCX+9 J/Q2/jmlV/aP7NeB1q2zWt2W12UQu6sDsxQAXLkKIyOqU4SPxzU0U0s7gtvenO4knz9ajvZ7/wB0 bb/5bn/Gqpaj+iHzR++tcFUUey0a7cEEvYatsKQc93lHUAeVOgl3u0LDiVIV4EdDXkfbH7Z/fXcb +ic/x40RqTFG8+gV6Uu2VBeVDcB0ph4n9r+Jp5C/pHP2jUDoN2a3ma4hpCCCTVk2q1R4EbqAEjKl Y/fUW0d/SOfsGpqr/qZ/bR/xCmx4sTLk9tx1LPfuoKP1AOCkeZ9acNOqSlQV8Q9Ov3Uuv+gT8hTN fj+1Qxk2y5Kkdult3Km1gnrxwR9KS3cDnAxx5V4T/wBaa+X8DXE9T8qaALbDxyMqAzg9a7Syko4P p16elJo/5B/Gl2+jnyqEGwShPwHpjj1pNttrctt1RRxwpPUHzpw/1a+Ypur+nV8qpjFuj0/GZdaL UhpDyCPiBAOR581X+qOxHSF5UZtrQu1TCcl2IoJBP9ZPQ1Yz/wD1Zj9j+NeEf0n9j+NCXwZl1d2V autDahPtbGoISejsdP55I8CU9fuJqtnNJ215ak2yQuO6DhcWUMLSfmRn7627M8fkazd23/8Ae+J+ z/E0nJijLlGrBrM2mdwZS11sk+2qCJEZYG4fGBlGOTnNIlopbXsH2cBX+PvqzT/2NI/Z/hVeS/6R /wD8w1ydRiWOVI9b07Wz1cO6aGaP6JRwQon7XmKThsiQt55KhuTgHP3mlHvsj9k/urlj+zL+tIid JvgYxzvkbzzhRIFPXEq7tO3jqSPLrTK29WvkaIP+PyqS5Cg9hq897o2X1nKWkKcX4cAZqL6RjuN2 S3B5CgtbPfrBOcqcJWf+KjOqP+wLn/6J3/gNN7D/ANmQf/SM/wDtpoobY2xUv5q+wQRFBQkltPIH jXKcHqfnXKR3D6P/2a== ------=_NextPart_01D8920D.255C3660 Content-Location: file:///C:/D23738F9/886-GALLEY_archivos/image002.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAQwAABtbnRyUkdC IFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAA AADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk ZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAA AChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAA AAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAA AAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3Bh cmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADT LW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAw ADEANv/bAEMAAwICAgICAwICAgMDAwMEBgQEBAQECAYGBQYJCAoKCQgJCQoMDwwKCw4LCQkNEQ0O DxAQERAKDBITEhATDxAQEP/bAEMBAwMDBAMECAQECBALCQsQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEP/AABEIAYsCDgMBIgACEQEDEQH/xAAeAAAABwEB AQEAAAAAAAAAAAACAwQFBgcIAQkACv/EAE0QAAIBAgQEBAQDBQUFBgYABwECAwQRAAUSIQYHMUET IlFhCBRxgTKRoRUjQrHBCRYzUtEkYnLh8BclNEOSomNzgsLS8RhEU4OTlOL/xAAcAQACAgMBAQAA AAAAAAAAAAAAAgEDBAUGBwj/xAA7EQACAQMDAwIDBQcEAgIDAAAAAQIDBBEFEiExQVEGEyJhcRQy gZGhFTNCscHR8AdSYuEjJBdyksLx/9oADAMBAAIRAxEAPwDdNDp4kz017eajobxQA9Hb+Jv6YlWl Oyi30xDOU1fT5ry44azeJSnzuV09Qyk3N2jBNz33xMNa+uKYR3Ld5FksPBTHxW/DbkfxH8unyJpE pM/yvXU5PWECyyEbxN/uPYD2Njjyg8TjXk5ndRwLxjk8lRS0k7B6WU6ZIZAbF4X6odt+x7jHuE7M fwFRY9bX2xnb4rfhkyDm7kVTxPk9FFFxDRxFyv4BVKB2b+GQDo3Q9D64pubf3Y8GVa1/aeGea3F3 928+yqHNOHCZKkTL4yxgRygerxdLg/xLsfbEr4S46kokgTOsnkSILoaanTWCtupTqPtfFecUcGZv wxm9RQVNNP4tMdwR4c6D3Hf6i4OHDg/iLN3mWgT5asRWNkmHhzD6Hv8AfHM31qpJZWceTo7Sus4X ctDN5eGuI8vkTKM1palmUnQHAdT2up3GK7z3hqDNqJFiiAqFvbboR1v7YdOPK7hWAIcyyeSSUoP9 ojis8ZturEWa4+4xX9LnlFTkyZXxhUUrXt4cpEgt2uG3wtvRylKGRriST2yIzmeVmnkeKWMrIhII +mGs0u5277XPbD7nWZ1lZUNUy5hRVDsbFlQoT9e2Glqlr3dFO29j0xuaantNNOKT4CEpSWsQAP54 kfDsISaNxtpYbjbDHFUQyX0yKD/lO2JDk08UbKZHBF7+XFddPbgelHEslvyEy5fSymxIjsL4+hzE CWEVAsUIs/TbDZlufZdNRRQMZgy9CU2/PBtRLl9Q4Ra6GInvJKqgY5uds28NG6hPbymWrl0UMqpM QCpAtviYZR8qqFVte2KwpOLKbKMvhpoTBXlUF5IJtQv6XsMD/wC0LPkXVQ5JTrfvJMT+gxjO0lLo ZKqJIt4VMcTfiA2wYlXHMlzaw3vilZeLeOMx8sldS0KE2HhQFjb1ucN9RBm1XJ/3rxPUyxH8Smp0 D/0riVYpfeYrqvsi58y4w4fyMeHmOd0sCjcAygt+Q3xFsz5u0Lxt/d3I67MyOkjJ4MV/+Juv2GIE jcIZQgmNOZ5l3vHHqY/Vmwy55zMzKNT+y8jiplb8MlSdTfYdBi+nZwk+jZXUquCzImOY8Sca5+pG Y5xHlNLe8kVEdB0+jSt/TEXzLi3gzh9ZaPJKf5+uk2aQXY37lnO5xAps2zriSrC11TV18j9IIgdP 022w40/DlQDHT17rSsxstJSDxahvrbZfucZ8LVR4XC+Rgu5eeB0qsxzPOKcftSpskptHTRjc+wHp 74UZHkkpWarqacvBRr4jQRi8cdu8p7/8IxZHAHI/OM7X5ispTk1Do6MxepmHoXPT6DFuZ9y/yrLO DanKspo46eNqXwnsBdm/zE9zfDKUIPC5IcpSRlPg6tn4n5lZRGEIp4aoShPp3P5fbGrsiz1RcK34 WI6++KA5V8IVGQ5jXcQZhT+GY9ccOoWIPc4nPDudF11hjfUSbH3xu7Zpo013Hual4Bz0TsF8QbC9 sXLQyrV5e8JI/exMn5gjGWeXWaz/ADSlFbe3U9RjRnDNWzQprNrjpjZ01wa5nk1XJ8hx5n+XkWan r5YyO4s7DCyujOtZCtu4Nt8Qr4j+LajhHnHxtk2TDRVR5xUI0pH4PMTce++KhpeN+L0rkrDn9UZL j8cl1+46WxemsYD288nv18N2dJxLyT4UzLUGY5fHG5/3kGk/yxZQRb7AjGVP7NnjuXjX4eKZasKl XleYVFJKim6gg6gR7ENfGsLXYNqFh1GEwCOKiv5hgQRBtbAh6dMfXYb7YMDBckaEbDBRhB7DBzMf THLknBgApoARYLtgvwCp2AwpGrfV9scY9iBiHHIBDQrbEP5hcuaPjGhFTSaafNqdf3M4H4x/kb1B xM27XGO7rYDGLeWNC/oSt7iKlGSw0xqc5U5KUXyYj5p8HZtWU8ollenqMpOqSkKC7Edd/fFH5xSZ e8RmFMGiItNGB2+mPRPmby6i4wy9q7LkSPNoEIUkeWdbfgb+hxh/JuAMxHFNfHxHSvSfIVTRmlY2 Zzf09MeI6toNT0nOUpPNDrF//q/mdHa1Vf8Awr73cgvDnKaszxJZMhWm/Z0iFl1gWv6W9cPmWcqe e/ANfT1XK3itnimNpsuqJtUKt12V9rH2ti8IstpaBUbKoI4FT+FAAv0IwvpyZYvmXLqZDp0r/CR3 xydP1ldqs1JJ03xtkk1+JtXpdPbx18hPAnEvO8COk5gcroAdlaroKtPzKE/yOLri4Nz2WJZP2Uw1 KCAXXviG8O8So7rlWZzjxBtHNfZvYn1xdPBmZfPZb8rK4M1L5D6lexxvPTOl6T6kvp297T2SazHY 2k8deHntzwYl9Vr2VPfSefOeSENwRxAQR+yj/wCtcJpOAs+kBvlYB95Fxb9hgtwfbHoT/wBLtB7q X/5f9GoWt3S6Y/Iy1zE+FCg4+kavfLTlubafLW0siqzHtrHRh9cZ94z5H80+Uoaq4jys12VKTpzC i/eKo7eIo3T+WPSJo0J3wnqsuSeN4pY0ljkBVldQwI9CD1x0Om+mLXSYe1bSlt7JvKX0Mu29TXtt NSi1jx5PLmsqMhzjLlpc3o4KuJxbzqCAPUHtiM5T8L8vMHO1p+C80yvL0qEvHHmNT4as1/wobbn2 ONz80vg64Q4tnnzbg6q/u5XzgmWFI9dM5PU6P4T9MZ+4h5J8yeU03i1VNJPTIfJVQAvC1u5tuv3x nqhVt5ZXQ7Ojqeh+paLoai/bqP7ssdH9fHyIfV/2ffxCTPFJNnWS1Bp0EcOvMGPhoOircbAe2Jjw j8Nnxg8DaYcu4hyespV//lauv8aMj0AYXH2OL05L80uKYqaDL+LsozE5S4CR5gI2mjhbtdxc6T79 MX0UMoEkTKysAQRuCPbFlW0oX9PZXjuXhpf2OB1Kzno9y6cZqS7OL4a/zsZT4d5ccb8US1VBzA5U ZZR1tDIIpqqgr0BJIuHC7Gx7HD8vJHj/ACm0vCOd1dOF6U9ZKsifTrfF451l9ZT1C8QUETPPTLon hA3ng7r9R1GF0LQ1VNFVU83iwzLrRge2NBP0Xps5Nrcl4zx+TTKlqldLsZ0zDLuaGXQmn405Z0+c 0nRpaXw5rj1KHEMruS3IDmHIYc04Bo8rrXJBCn5OS/2IGNfgqLaZSPY4aM44Y4cz1WTNcnpqk9Ll AG/PFcPQ+n0Jb7eU4P8A4ywS9WrSWJJP6oxJxb/Z38M/IVed8JcU5llEVNC9QTNIk8SqoLE3BB2A xn7Jstgo8thp4JjOqD/FPWTf8XtfHpbW8rI6PUeF+Ia/LC4IMDP4sLA9VKnt2xjbnTyKzzlRm4zL w45ckzSVjTy04tHTzHcxMP4QdyvbqO2NyrGpa0tjqymv+TT/AKI0Wr0/tlBuEUmueCqPBB2KbHrj giRfLYG36YVyIouOgH54JYDcgXJ6YSEfJxLjhnEQMbAXucHeCDtYWwUmq9t7jB6kNe3TFyWBdqC2 iW4IUHbt2wTNENgE1AdsKgSDe97Dpgqe4AO9zgaFweiXw2c48i464Dy2ioYEppcupo6bwUN1AVQB b06YuP5qR99P648/uXM2dckOIv2ZlytPHK1ijC+NjcIcY1uf0ENVUUDwNIoJBxt6bwsM9Fl1yTs1 NjY7YKln17N5lIIK+x64RiUuoJOABo0vby3Nz9cWkcGEPin5X0+X8Yy1lZlj1OWsp1NGSssFz5JY 2G42NiOhtjLma5FWcP1IzTKcxps1p438vjgR1Cj0JGzY9P8An9w5BneQrXeCHMK+FLtuyHp+uPOf mfwX8hmtZTUDlUkOrR6XxotYSpwVXpzybXT5ttwILnfGOYTSoZvlaV7f4FXHpV7+ji4xD80hNYTU VXDwKnfxaS0i/wDtvhTUZpX8LZh+z8zgWopWa4DeZWXuDfpi06Xlhyw4ro481yPMKzJqqaMSWgcq q3HbGNS2U0pJcfIy5VJ1Htk+ShGosndwiVs0BJIs6nHP2JaxhzuG56Bji1s55PcQ0w8TK+K6fMo2 ayLVRKzHf1O+InWcB8S0Dn5rJsvm07tpLR/1xmRrRa4kY7i+6IzFw3nLLrgqIJBfs4w/UHBfGHhi WGNT3BV+uPkyDNach34Unt1BiqCRb22watdmNGwigy2vhHo85tf8sLOcnwmhoRguZIsDl3ktZNVx 5dxPDUwxSHRrhh8QC/c740Tw18OnA3FE8FBl3Fk4mqGVAZMtZQtz1uTbGZOEuLeJ8pq46qkegjkR rhqmTUBb1BBxc0fxGc1Z08GbjnhykFOwZDBQX1Ei22mLp7Y0t1bVJy3RZs6NenGOH/Iu/i/4I67g 7IJMzp+OMveFV1DxAsbHb0vjMHEGQZhk1dJDLnkUhRgdMbGxwo4z5uc2eKSlHJxlUZzTIpCgQvCi 362FhhipOE+ZPEOmaHKCwNhreN2v+e2K7ag6X72aZMq+VhL9BBXVeYSSBDXix6WY7YJaavQo0lVO VXay+UfmcTnLuRHH1eV/aFfFRi17AohH5b4lmWfDtlcbo+e5607X843b7XO2L5Tox6lanORTyZlH Al0njR277zPf2AwrynhnOOI6mM0fDeYZmzHyyVbGOP8A9I3ti/ci4L5e5HmDUkVElS8Q1WmIsPyx Mf2tS0baaeijpViS6LEoGoHv9sV/aIx+5EWSlP7zKp4c5DcRVMAm4hzSHKqNrE01GojJHoT+I/c4 sjh3grhbguNGyzKYpDfT8wV1NqwCuzqoqYI6emqHl8Nx4gve/vh5+cp1hiVQmrVbY97YrnVqT6sI wSJHQZwulT8vKS42BFsAzfMI6ikKyuqi9/DBv+eI4M5lWUw9bWIJ/lhkzPM4qlpTHVFJIJLkA97b g4inHDGlwRrjSvFJDMYmFmBsF264iXL2teoRw4NvFK4Bx5m6x0kjK5ZnuFHe/piR8ouEak0VO1RG dZ/eN7E746KwW5Gmvnjguvl9Rus0TAdh2xf/AA6xjjTr67nFXcIZX4RjslgBi2MogbQtha2NxDg1 bPJr45+WOY5D8SHE1alNMaHPJI8yinERKqzoA6k/VTv74pDL+Xuc5gy+DEXQn8SKWv8Alj3oreDe HuIlYZvk9HWGSMoxmgVyQR03GItyS5YcEUXA9PT03C+Vo9LVVNO7fKoTdZWG5tiHHnqOptIpn+zI yao4R5fZrw7WJIryVYqrspH4lA/pjbgZexwxZRkOVZSS2X0EFOT18KMLf8sO4O2HXwrAvV5FAa+O 6j0ucEBrYEG/XBkkMx8BgI2wLA2B9pPW+Pib/i3x29scJxAASV77Y6CDgtrs/sv646NVtgDgAMAx RHPXl98zn0fE2RQBMxmg1Pt5ZyuxU+jWxelzezCxPTDHxtQSVvD8zwrealInX6Dr+mNB6m0z9raV Wto/eayvquV/Yy7G4+zXEahjypz7PYxBDk2Tx1MjswqY3fSY3v8AhsfucSTUVW6hbaNwp21d8SPj Dg41ch4m4eRVrNN54l6Tr629cQmqzzL8py966rnSGKIEy6tjf0A9b4+UKkHOShGPxLh+c+D0KNRN ZyfUMOUZFQVeYTVfhoN5fEc+S3pfCXlz8U1XRczshySUJ/d6qqGoKuaVf3jB9onv2Ctbb0OKv4k4 rl4unYxqEoiSPCB3I7MffEZm4YipI/HhJYO4YMrbg49U9JWy06qru65qdvl/2c7qdV1l7dPp3PVN kNzpN+4PtgBRh2xn74aeeNTxHl9PwZxVNrqqSIRwV0jeaUDYI3vbv3xoXzBrMMe3WV7Svqe+k/r8 jl505U3iQQE3uTe/tjjrqYKCVwoKqe1sBCjuMZggkkjA8oaze4wnnooqiJoJ4klicWZHW6ke4OHE qL7jAWjUi1uuDAyk0RCh4BybIa2TMOHEOXGY3mgj3hk+qdAfph4EQVfJpD2tYDbDoYQBbCOti2Fr 39QMLjwQ3kRaJna7C225xF3UcM5v8s5Iy3M5P3ZI2p6g9V9lf+f1xMIvEEIWVQrC+wN7+mG7Osvg zKjmo6qEPFMtm3sR6H6jtiGiBFIhF2ut+nvhHPKYk8RVLb9BhDk+bTePNw9mjD9pUCBtVrCeEmyy A9z2I7Ee+F7uN0Xrb0xGRsCeWpDga1vbewNrYgnMjPeWVbTRcu+Pq2NDxJamghZGJLk+RlcCysGs QSdjicTFAfOADa18NWYw0sMJnrhTlEOoPOq2T3uen1wrSZC4PPPmXwBnPLPi+q4VzgM3g/vKWotZ KqAnyyL79mHYgjEUspAJFiTi2PiP5jxcw+MzDQ3/AGdkgalpSwsWe/7xjbsSLD2AxUdz0YWtuQMa 6cMN46HH6hGm6rlR6AwQp8zG3a2BrIovbbbbBJltYm9sfBtJNhthDXCjVYjoPU4BMS7X1WHrbAAw BBAwCWTpvc/TBLkV8Gv58pSr4wNQUDBG7i/fF/8ADDLDRINhZRYDGSODOIKriKOl4ho8zqWhzGKO oQ+ITswB/rb7YufKs0zJaZQ1fUdP85xyF3/qNZWc9kqM8/h/c9eholSaypL9S7kqNS3GAtUkEA3J xUQzSt6mvqPYeIdsFTZtXqLGsnJ/+Yd8Uf8AyjZy+7Ql+aG/YVT/AHosXimD9p5VU0qjUXjIA98Y D5wUcX95quOCRdcBEcgH8DjfSfzGNC8d5JFxxk8mU5lmua01wfDqKKtkgmib1VlI/I7YylmXKvi3 lTVZjHmeaz8Q5JXy+PHmEhLVEEnQiYHrcW8w22w9b1fZ69bOjBOE000n3+j8/IvtdOqWlVSfKwVp xBktJVmSGupgykbm36g4+4VgGU0D5dNWMY4GLU736of4T9MSevo1qadnaRHUfh2vcemGk5ErxtHT EIYrlwTjMsb508Rk+DIuLX3Fuj1C4OIJqae0NWWjvcg7jBPEHHDim8KGp0lx573IJ9bYSVWQ5hTh jTp4qMA2pOwwxVGUyzRlZYnVgd7ja+OlSpz5NU3UjwSDJOOf3KrWkkj8LWsSfr2wuqOIuHqyWOor 8pVpojqBIIv9R0OIItNLSXhqk8vQHqMK/HWCnKJL4gP8DDt6YV0IN5RKqTSHeq47ymLOFeLJYPDc EFWQWJvscS+h5r5N8slLUcMwL4a21LGL/TFG53UJLXKY0KFBY798OeWVnzCDVIC69Qe+MK602lVW 6SMihdzjwi4JOa8EUqvRZawsLKgICge+Jvw1z4jSOly6aha1tLPq2xnM1L+IIw9h+X2w65Wjzyos bMWv0A74oo2NKnHai2dzOTyayh46pJIfmIZY0Ym12YEAfTEdzvjubMIp4aer1aGtdNr4q3LXzQQf KlXSO3W25Hth5y3L5ghjpRqMu5du/wBcQqEIE+7Jk24fkcJ8xKpEstxq67dsOT5xPDKFlLSahYEn ZRhgyLJM2VC1W7Ki2J3vhwr+HquVRUUs7BVI2Jtt3xU9ueo/OByynNpKqeRabUguAOwOJIrqulEL uT5ib7IcRbKQsWga4UsLtv5utjbDnLmJjEghlAJsQ3fCzxnCBDlNmEdLJaQ3kA0rbfEYzrMaXL6i pr55wFl/EL7XA64a854yy7JBJVVtQPGvbT1Z/QDBXB/LjijmdXJnPESS0GR6w0VMwtJUD39BjKtb WdZ8dDHuK8KK+J8+Br4c4RzHmRxCudqrwZZSvaI6dpiPb0xpPg/gpsuUCGokFwPKQLDDtw1wVS5X Sw09HSpFHEAqoFsABif5LkypbyC+19sdNRoxpRUV2NBVqyqS3SBZFkUiUvhPUNqYbONiMTHLMprK cXTMJGNhpDjYYDltCuwtsNsSWkpgoBK7DGRgrTyLctiYIuohmtvbphi5TuE/vTlVipos+n2PYOA3 9cSB2ngRXo4PEe421W2xFuBJmpeZHG+WumjxmpK0L/xR2P8ALA+GmT8iyVGnYEDA1364IVh0wYpN 9zthhQ2++3fHD3x8Djp33vgGyfJqO5Yj2wcDcYJFgb3wMMcAZDCbKTa5A6euPlfUgaxF+xwG59cB bzC18AAn1EjSBY9TgESiK66mNze5x21rWOAtc9cAZD7Am/pgLoz+W4KkEMCOoxxGPQ745HGwdnY3 ubj0tgApfjfMsm5dQZpmfEValBlWX6pvHlNl8M7i3qewA7489eZPxC03MnjmrOX5d+yskZ9FHqNi 7A/4ko6At6dsbq+PDl1LxzyIzLMcujaWs4ekWu8NWPmjH47gdbA3F8eU4ETRg6QbeUnHC2/oXTaF 9XvWsyqPK8Rzy8fibSWq1nTjTXbr8y9smzY5dJ4k0ieEN5Czdv8ATE4y+ppqiNXppElppd7A3G/v 64oHhXieKopzw7m8i6ZB4cEznoOysf5Ysjhap/YFsuW3hEkkse/rjQappjsJuMvw+hkU63vLKLIy XPcy4N4no63LqBqmjaRRP57EKTY/l1xufgPmCk0cGU51UBtaqKaqJ2fbZSfX3xhXhaLOuJc2jocu eNFBBMjC4Re5PrjSvDjpQ5cmVVQ1AWBkXa3vjmK3qapoF7TlReX/ABR8r5/0ZkOz+0Um2voaa2I/ rgDqLWHU4rvg3jqSikTI8+kJh2Wnq23t6K3+uLEsGKsH1Aja3THtGi63a65bK4tn9V3T+Zoa1GVG W2QWQy7Bb398fC/cWwYwJOw6YCd9jjcFIAjvhPNGbk3Om24wqIOC3Bt0wAICJQoFiRba+E0qM4KO Bp77Yc3W5tgqRLggAYhrIZK8444fzGuo0zPhypihzfLdctIzpdZCR/hP/un+djhDwxxAueZJQ1lc qU+Yzxf7TTBrmKVdnX2s2JzmMd1I6H198VDn2X5lwdxtDxlR5iY+Hq/9znNEVuiSnZKpfQ3sG9sV NbXkZPKHer444Fm4hbgWszulGcNptQyEq8hI1ALfZjbewOK1+JDiUcE8NS5nFnNT83m0LZbSZeWB h1E3aota4ZFuPTcYtSv/AGNLVxVNZS0pmg/eRTvECU2/ErW2273xgvn1zW/7SOYVXVUdTrynLSaL LwD5WRT5pB/xG5+lsV1JNLBg39x9npNx6vggk99rnZcIqp5A3ixi6gbgfxDAzMskenXckdcJiWF1 JO2KMZWDmIfCGag4DrYgjb2wDVfueuAp+7bUD5GNiOyn/TH0nlNt+vS2MeUXFmJWh7b+QaZVtsD5 ffrgmWRNr3wF26WsMEzNexXfENlDfksL4LOL4eIMhqOCqup1V+TnxqdWO70zHe3/AAsfyYY1nETG oUCwAtjyc4G4rz7gvOafPuGs0moK+C+iaI72PUEdCPUHGyOT3xl5HxFPDw1zOijybNbiNcwjX/ZZ z2LD/wAsn8vpjy71j6OuqtzO/so7ovlpdU+7x4+h7ZpupQ2KjUeGjUKybn1/nhPPM+9j9MFRVcFR BHU006TRSgMkkbBlcHuCNiMdZwdhc39seeU6Pt8Ncm7ckxp11EU87TyhldgR/u+ww1Z5TU1fSSQV ESSJIullYXDA9rYeKmmZqoOG2K2I9cN1VSqv7tbdbkHGTt53IEzMnMHlnnPDc02Y8LQPV0BJeSjv 54vXT6j2xX+V8RUrmWnlkEb3/DItmB9DjYFdR01QSwYXS6ke+Ks485RcLcV6pqil+XrB+GppyEkv 6m2x++Ot0vXlhUbyLf8AyXX8fJTOnJcwZS+U8QPFUGnP4NRUK/Qi/S/piQVeV5dW0Dz+C0OrZttW /qPbEbz3lPx1w47T5LW0+awxHZWISUW7ehOG/K+bYy2d8l4hy2opaqLaSN4yN/8ATHo1lXp3cM0J bsfn+RqK2IS+LgMzXKqUTLQOYzER5CDuPfDFnOSigp2qgQQm1wfTviVVXE3B2aRXMsasbGx2I/PF acwcypqFRSZfVtJHP5jZug9NsbOipOSiYlTaluREqurNRUSS3C3J2w65KjSybNe/f0xFRK0hLFup vh7yStCSoLkD27YzalN7TFhP4iw6DIUqVA8VC46KTYnFl8I8LZZDGgqEUv3JOwP1xVhmejh+dpp9 d1vtsww+8NcwBTSxCpnJRmBDf640VehWTzDobajVp4w+peUfDETBI4oY2jsfNq339MO+X8O0lPUJ FZiwAOm2354YIuOsmpIUeorKQKQGBDYLm5v8Mw/4VWXkFwBGpY4x9lWfCTLM049WWGtP8oNogy9D fthhrJnhrVjjqllgH4h079MRZeO+L+IwKfhbhHM6pj+GRo9KX+pw7ZZyW5wcWusud5lT5FA/4ki8 0lsX0dOuKnVYKKl7RprrkQZnn/DXDdRNUTV4Vpm1W1XKn0w2UEvHnMeoaj4IyWdaaTytWTqURR6g nF3cHfDBwXkkqV2awzZzWgg+JVtqF/8AhxceVcN0tFElPSU0cUaABUjUKB9hjbUNKhB5qcs1lbUp y4p8FG8uPhpyrI5Y844pqGzrNPxapt44z7DF3UORJS+EkdONIItYdB6DElocoYgXTYemH6hyUHSS u3XpjZxgorCRrnJyeWNeW5P5VbRiSUOWKF1AAe5wvpMuT0w5U9Eigrp98WpAxLSGFNrb3tsMOqNp Q2XftfA4aZANl3HthQsKlvMu4xOGCYXDWwBkjc2c7WxA6GZsv+I2vgLWizThmKVRfq0cpBIH0IxY fgRagTCOt72xA89hgpOeXCOY6SPm8qraME92BVgP54SS6EossyKDYA37HBwvYdsE289wMD1n/KOu LBQ1X3t64GWtY3wVY7FVx8RIpubW9sABisb7jbAyx7C+ClLNY2I9sGA2G4JwAdDE7lSMCBwFWN+n XAiPbASzoudz2x0C99jjgv2ODAbLgIOKLXwO/t+mABhfrjqtbqR9sBOQnMMuo82yysyutp1lp66F 4JoyL6lZbEH7HHjBze5WZpy45lcQ8GPEwioKqUwMR1j/ABJ/7Tj2oUgG4xib+0N5VV0dLR84OHaR WWECmzbSoLWv+7f+YOKquUsolPseeCwRsQ0k5Xv+E4szgXiuXO6um4Ymj8esktFSuqElwP4W/nfE HkjTOWlyygU/NX8WmASxmv1T3b0xuP4Uvh2j5c5THxzxlRpJxNmUf7uFwGFFAw/Db/Ow6+nTHH+s NVs9O09yuOZv7q75/su5stNoVKtbEOncduAOEKLIOH6elpik1c41TTqf4uukewxPMmqVbTFUXUjY /wCuEvEnDJ4arJOIclpy1BJ5p4VFzCT1ZfbER4k4wTKJKKso6aaoNQpd0jNwBfb/AOrHzNUjXvbl yi8uT6naqEI09qXBabyfs2OVJY3ljlsRbcj3XE74S44OTeFlWbytJTOB4cpN2iHYE+mKxyXjHLcy yiMZo3gssQdSo1NGfQgXN/bDZwhwRnuY8TT5lkENa0DzFpJa5mWKIsNz4fV/ZdgMdR6Rv9Rsbz/1 87vHVP6mhv6NNx+M1ekkc0ayxSKyOAysvQjHSvrvhDw7lxyrI6OglZnkhiCu79WPc/8ALDgQL7Wx 9Q0ZSnTjKaw8cnLvrwFkADYYKkIXr3wptgDRrfX3Ati0gTNY74Kb6YUSLfCdwQbXxKWRWNuYwnSX tcDEI4gWlkgmp61UenmRkkRhsynYg4sGcF1ZDvfEF4toWCOQu2FlygyUvnWYSJk2Zcs6nMpIXqaK ZcsqtX7ySmIIKX7sl/utsee/EdBmfBXENVw7m66JqR9OrtIvZl9iMbM53R10lMaqjklgrKF/Hpah DZoXHe/oehHcHGZucNfDzJyRc7gpnhzzLbxVEVrEWF3jPt/EpxiTjyYd7QVxDjqiH0maJINQYW9M LlnD9CPNtisstz51tGxIscSvLsz8RQb3++IwjnpR2cMkBdFBjkUMjbEYHFqVSpOrSLKx7r/rhB4w kQb7gWudr4ElSQbaip239MLOO5YK5xVRYYtK6raSLevthNOWWwsThXCyyxFxe42K++CJ1YkdsYM8 9DXSg4vDM50jjYAb40Z8JMHJnibjX+4/N7hmlrf2yFTLK6WV08GoHSJrEDS/QE9GsO+M2U8gUbH6 Yd6XMzSMtVTytHNEyvGymzIwNwQfW4vjZy6no2cHsbw/yd5f8IUIynh/KZqOlQ3WFaqVlT2ALG2H VeDOG4htROxPrM/+uK7+FrnOvOvlNQZ5Wzq+eZWRl2brfczoBplt/vrZvrqxbAnYzPEYnCqoOs20 tfsPcYX9m2U/jdKLb+SLPfqrjc/zGxuE+He2Wp92Y/1wQ/DHD6kk5TTselyt8PbOPXBDsOtsOtPt I9KUfyX9hXXq/wC5/mR+o4cyJWLrlFLf18MYQTcP5IQf+6KQeh8IYk0oBFyQMI2jLk7bYb7LRXSC /JC+5N9yLycKZBJdZMno/N2MK2w1Zlyy4Yr1ZajIqCQEWuadDt9xidNAB1W+AmMgfTDKjCPRIhyc u5kz4g+VfJ/grhdM+z+kossSSfR4iLoZ9idCgdSbdMYH42zfJc1zY/3Wy+SjoYyQjSuS7j1Pp9Ma +/tJOIZJ834R4PimCQwQTZhKD0LtZVH5A/njGyZZNFCJHlVTJ+GNhu3vjHVtFV3XbecYx2+uPJb7 0lD210GcT1MZsQDf1wthzXMYSvhxpftfCk0ckrhfCRtOxIYYWJksrSKwnhjQ2/iBIHvjIeO4imw2 nzHi2pS8MJIHovXBUw4nmk/w5ALgHSO+LC4by6slFNQZRRzVszkLpWIksT0sPTGkuXHwu083g55z BujNaRcvjIG/bWR/LGj1PWLPSY5rtZfRd39EZlC3rXPECQ8ivhl4ZzflxkPEHEmWtW19dTCeQvIb C52FsXbkHI/g3LQrZfw3QJpNtXhBiCPri1+CuG8ryrhnLMuoIVjhp6dVSMD8I9MSWLL6ZRbTb7Y3 dKMZQUkupgzynhsrzL+CoKZQkUCoo6BFAGHmn4ZAIsot9N8TJKSEdFH5YPSGMDZN8WbRCM0vDwAJ ZN7+mC2y2rjmENNCFaRrBjiXoiqLWxyCjQStJa7H9MDRKElDlKwxh3J1lRq+v0wvpERG0dd+lsK0 iI/Fg9KddmCC/rgwCYGOFdV12HcYWRRi/XHIkUG9sHqtugwwMHGihjvg4Lcdd8FqoHUYMuR0BwEB lja2K55qTjK+MOX2dACy5u1Kx9BJGRixQSbe+Ky+IR/luGMizcAE5fn9HLvtYFrdfvhJ/dZK6lq6 vOABgZdRtbCeB9aBgeqg4PXpa+GTyiGGLIp6A7YHYMNVsAW1rYGDbEgc8w6DAgTazDrgLPpNzj4y LtgA6PEB2IAwMBrbnAFOo3wLe1sAHbHrc4GALb7/AHwAE23GBD6YABKqHcLgagdLYCpFrYGMAHHZ lsFW98RvmbwvTcZ8veIOG6qmSoFbl8yIji416Dp/XEm37YFqA7XxDWU0wTwecPwxfDIclzD/ALRO O6P/AGmCVhldFIPwFTbxmH28o++NWgt1Jwv4ky0ZRndTSrqMbt4sZP8Alb/Q3GGsOE1PJay74+Zf V1S/uNUqxu+XF4S7Jdsfhyd3p0aUaEXT6P8AmLECupjYAqwswPQj0wz1HAvC1S4kfKog1+w2/LDp C6sgdTs24wpUsbAdMcJcUZp5XDM/IZwdw/w5k2exy/JKi1CCAlFCgehO364t+jy2hotT01MiO58z 9S31OM4c2eaGQcouCK3jPiCYWhUx0lOp89TUEeSNR9dz6DfFi/DPzmpOevKHKON1WKHMLNS5lTRm /gVKGzL9CLEexx7t/pHGpKwqqrT4Uvhm+rz1Wfl/U5XXdqqxafPgtMkY+x8CRj7HsKRoGcvj49Mf Y4b32ODBIBgMJZFte2FjLcHBEq9Qe2JXCIaYhcfnhozikFXTMGHmtbEf4k5z8AcMZ4cizjNjT1K2 1kxsVS/S5HTEjos0y7O6VK7KqyKrp5luskTBgcJujJ4TJcJJZaM/8zeF7628HV5SMYt5o5ZXcJZ/ NxBTU4NG48OviXqydnt6r/LHpTxjkSVtM/7sG4N9sZQ5v8BLUxzo1OZNQII09RhJx7lTRgXjvLo8 uzP9rUFvlas6/L+EE73HscE5RmhNhft1vh0z9sqjzav4QWczRxOy09v4Dc6o797HpiFapsqrmpZS Tp6H1GKdprbu1b+NFnUNarqFbcH1OFjNqUb7n+WITleagj8W2JTS1iSIGJ2thWaaUcPA5UtY9P5+ pXexPUdx/phxWWOpjWZgNDDyg9Rhhd7lWXa2FdFmGgMAVI28rm33xi1obl8PUqqU/cXHUzckrWCj CgOep2++E0a2vf8A/WBltQt3xscZ6nbM0z8CXN1+X/OKHhuvqRHlHFyDLp9RsqVAuYH9PxeU+z49 O2bSSpPQ9MeGuWVtRQVkFdSytHPTyrLFIDYq6kEEfQjHrlys55ycweXuS8XUfAOcV8lZSotTPC8Q RqhBplAu1/xA9R3xZTai8Mh5fJa22++C2kYvoCm1r6u1/TEVHHfEcgvDynzhgemurgX/AO7Cd+Pe KDUfKRcrKvxynieG+ZQKQvS/X1xbmK7kEucm26gnBVvt7Yi6cV8wHYA8rAu/Vs2i/oMHLxFzCckL y3oUA6Fs2U/yXCvAJEjKA++AMi7XPU2GI+2bcyS1/wC5GUIPfNCbf+zCHO8+5k5VlVXmjcNcNRpS RNMzSZjJsoFyfwYrckiUjzq+L7O/75c6eJKlpPFgyqVMvi8+0YjXcAepYnFL02WZzmXh0tNTPO9O l7k7KrdPsMLuYHGNfxXxNmOY1a0wkmrJ5XkgWwk1OT17j3OEfD/94K+c5Tk1PVVdRVJ4KRQAlzfs Lb4plNQjvk8IlJyeENs0NVltU6VEYDodxqBB/Lriz+U/IDj3m5Wx1FLRGiykkGSulBWMLf8Ah/zH 2xd3JD4L5EFPxJzYcFgRJDlSm/uPFP8AQY1tluUQZZRRZfl0MNLTQKFjiijCqoHoBjy71N/qJStW 7bTGpT7y7L6eX+hvbHR5VMTr8LwQPlpyX4T5XZekOUQmortAElbONTsfQf5R7YnDDovhlibDbqcL fAk/C0xA/wCHrgs5TmGYTwUWX1hinnlRUfSPIb9d9jb0x5vpt1X1LUacriTlKUly/mzoKkY0KLUF hJFy0UDwUUCLGAVjVenoBhdCHI856dSRiPJwrxyEVG5ky2HcZZCCcDbg/iyRCknMav37rRQj+mPp 2MsLGDgXhvqSaBC24Nx7YUpD2B3OIfHwTxKV8P8A7RszAIsQtPENvywtpuCM2jcauYGeGwt5REP/ ALcSpN9iMIlKxaSBbcjHaaIic2BPrtiPf3LrpH/e8cZ8+1j+8jH8l2wfT8FTxXH988/9iKhR/wDb iW34DBJLhXswttg5SDstjiKycEJMxWTiPPXDHctVgX/TBtLy9yynuUzvPFYm5YVzC+I3PwGCVxhi Dtg5Fe4AQ3+mInNwHlh0BMyzqR77scwfb8sGNy/ytih+dzRACCScxmP9cG5+AZLjE5sDsfTA1idd zv8AXEfh4B4f2ctmBbtevl//ACwJ+CuGYRpmjq/Mdr1spv8A+7DLPcgfwpUEm354rb4j6N5+T2cT ps1I0FUD6FJAb4lQ4M4bFlWlnPpqqpT/APdhLmPL3IcxoKugrctSenngdCkjuwJINurW62xEstEo feEa39rcK5NmMZ1/M0EEmoDYkoL4dgjAk2xUXJThXLs65Y5FW1NZmhkSKSmlQV0iojRyMhChSAB5 cThOX3DoF5lr3+tfN/8AliE20D6knAseq/ngZO341B9yMR1OAeFlP/g5z9ayU/8A3YVR8H8Oxj93 lx39ZnP8zhuSOB2co66fEQXHXUMAgeONLT1MF/ZhhvHCWQWP/dqXPU6mN/1wYOFeHbC2T0xt6rfB yAuNXRIfNW04v6yr/rgJzHLgbNmFN/8A5V/1wlXhbh1QP+46I27mIHAxw9kCkn9i0W/X9ypwck8A arO6GnC+DmFDIWezB6lV0r3PvgTcTcPRkhs6ohb/AOOv+uBHJckUXGT0ew2/cKf6YMTJsnYD/umj t/8AIX/TEckcBI4r4XBseIKAE9vGGPv738LqQpz2lNzYaWvhamX5em0eX0oI9IV/0woWnplNkpoV PtGB/TE8hwNzcVcNkWXNoT66bn+mC24u4bBCnMSdv4YXP8hh6WOO20aD6KMC2HYfliUmBWfHuaZJ mApa2hknkmjPhuPl3A0HuSRYWP8APEUEiMwsjD2Ixd+ZUseZZfUUEv4ZkKfQ9v1xTdbQzUtRJTTx /vYWKP8AXHkf+oWiy96OoUu6xL8On6fyOl0W5zB0X26BKtqtdWFjcWwHM85y7Issqs7zmrWkoaKJ p6iaSwVEUXJvgwNvYGwA3vtjE3xh86qzjSU8uuEq5RkVLITXTRv/AONmU207f+Wp/M+2PP8ARvTt f1BdKhHiK5k/C/ubW7uo2lPe+vYqD4iOflZzt41erWOoj4fy5mhymkLW8neVh/nbr7Cwxb39ntz7 p+WXMKq4Dzk1j5NxYQsUUaGQxVq7RkAf5gSp9wMZVny2SGIMzkMjbgdQPbB+R5tmvD8zV2UVs1JU xSRyxSIBqDRuGU37WIB2x9HWFjQ0y2ha2y2xisI4urVlWm5zeWz3UPFxMiiLhfPnVgdTfKadJ+5x 1+K5VF14Uz5/YUy//liH/Ddzfped3KHI+NVlU15h+VzOIHeOrjADi3ofxD2IxZ9z6nGeuV1KugwJ xVUSBiOD8+BXoDAgv/7sN3EXHGY5Tk1VWw8GZ+JUW0RWmSXzHodKtcgd8TDUcfXINwSD9cDTfcEz OmbZz8T3EkaVPC0MUVNbd1pBSsW9NMxv9wLYjlPwl8WUedLn8stVJVKoS0lbD4ZW97FL6TjVxJY3 Jvgt7AbnFH2ZN5bf5mSrtxWIxX5GR+OuVvPPjjNUzvOODcriqfDEchpp408QjozXPXDZk3Kr4g+F 6mOpyCgekZDqKLmEfhN9VvY42BKmoEA4QSxlTYn6YlWsOuWDvamNuFj6FdftzmLJlkMNdy3lkrBE ondczgVGe25A32vinOaNJzIr6aqgh5amNZY2TxDm8Wpbi1xYY1C6ar3G+GHiHKUrqZzouQDt64sl TeOpi7ueh448fcgOY2VZjJmH7JSIhy6satGa973uO+KyzrJ+LJpJa3MqWNTSsyylGFwfcf1x6m8z +BhUxzf7OpUL6b3xinmvwfPw/mEmaU9OWiHkqowNnj9fqOuKdrXQWVRz4kZ/yyqICkMMSzLqtyoU tiPcRZYmU1gnpSpppQGUr033BGFGWV2oDzDbFckaG7ouEsomcU7uo33PpjrKSdLbAYQUdQDYahe2 FxkDKNr2xS0a5lDB7DboccFz6YLQnYXwYL9QOmNhhHZh0dwRdemN3/2dXMnxYM+5V1tRuP8AvbLg T16LMo/9rfnjCCA37kYs34feYkvK7mzw5xikjLBSVipVBT+KnfySD/0kn7YXdtkmQ/B69NDUsLC4 A6YCaWQkMU37nDspgqYY6imlEkMyCSNh0ZWFwfyIxxokjUEX69sbX2E0Y7m0NHgzX3LaQd9+uD44 2IJ3wfNHZ7AGxx8FCRtI7KqqLksQAB64onS2jxlkAACLk9MVP8U3Ev8AdbkRxRmNOxE1RSmjiINj qkOn+ROLSeem0eMJVZOuqNgw/TFcc3Mg4c47hyrhzO2NRSQz/OvSo1kmZfwh/UDrbGn1O9hpttO5 msqPZdWZdCi681TXc80OVPw8cac2KhZ6OlOXZRG3+0ZjUDyKB10j+I/TG5OTvJXl5yxoFThuiFVm NgJsxqUBlc/7v+VfpixKTJYKWjXLstoUggiXSkUMelVX2AwpoKBMuZomRw5ts/UDsLdhjw71B6h1 HXaM4OE4w42xinh+dz7nUWdlRtGnlN92/wCgakQO/fByoB1B6YURUdS1gtPI219lvtjscTF3jMbF 4hqdbbqMcHHSr2XLoyx/9X/Y2nvU1/EhJJGxACsRbfph04NSOXinLldCbSlrH1AJwjnnjgqY6OSG YPKLqREdNvW+HXgFcvHGH7yrZJKeBn0vcJvt+IixPtfHW+kdNrPVKCq05LDT5T7cmJfV4q3nta6F uE6jcLa+PgN+mC0rqFhdKynb6Sr1/PHIqqlIJatpjdtrSLce3Xrj6K9xdMnEbWHgKu4AvgyIhjfB Xi0+rQZorjqNY2wdG0XQSIbejDE5RGGGx2MhFr4PC33wnjALXU2wpUW64MrBOAmRCNh9cI5XmkvG jMqjbc98ObLqXYE/TDa9LUyzyFiygfgt64Rjx+Y6UW0alz5rWIwujUOxNyR6YZqcVKypGyNa1icP kEdhfvhkxZIOVQAAMFVEasN1vbB0aldibkYG0Ybths5FEIVi92sAO/fCtGV4TY3sO/fHWiI0lVBF 9zj5Ybi2q297WxAxW3w6u8PDPEeQyDScn4ozGnC+iNJ4i/bz4tJxc3tir+VJNBzL5nZGxChswpMz RR6SwAMfzTFotv0OCH3SJcMDosb3wNSLWHbHFFvfArG2wwxB3Hw26YAtyTqFrYDK7R6msW72GIbw Afj63vhPBUCVSU7GxB7YUKGOJTz0DB8EFsDAAFhj5RjtuvtgA6o9MCXrci+AqO4O2BnYYnkAY6bY 43Q4+3t0OAOzWA02viN3zDAA62Nr2GIDx5lbw5mlbGLpVLYkf5h/yxPy6gXLL+YxHeY1FmGYcF5s MimiXNIKWSaiZ7ECVVJG3vjT67py1axnbJ8vo/mjLs67tqyqGL/is58f3Iy88AcPF5Mxroj+0auI m9JAf4FI6Ow/IfXGLq2gEirLldcPlJfOrzOCACDcepNxbDpxv/e3Osyqqyrpc1n8SRpJ5XhkJExN 21G24vhgo8p4nmmMScO5lKt9ar8nIB/vW8uwxj6FpFDRbVUKXLfLfdv/ADoNeXM7upul07CKV6mi h+Zmo/EhluEI6m3Xrht8VXZ4wujxALXO4xNcy4TzcUdNVjI83alZToWOjldbg7g2HW5wU/LLiisy n5iHgvPopUe7u2Wz+ZbbEeXp643mUYuGaH/s7uc1RwJzKfl9nlYq5LxWoiiZjZY61f8ADPp5hdfr bHqDa18eJHA3LzmhBmlPmdBwHxNoo5UmSSPLpl86t5bG2xuAcev/ACr46m4m4AyLNeK4Rk+dT0qL W0VW4SVJQLG4PS/X74FUintBxeMk2Fxv1GBAgi+Ek2cZTTuY5s0pUdeoMo2wnTPsiYB4s6onRtwR MtreuLN68i7WOQKnoRj5gG64RftnJV3ObUa+t51H9cDGZZcSbZlSH/8AvL/rhlKPkjDPpVZbkC3v 2wmkUOCdO2FL5hlwW75jSgf/AD1/1wUTG6lqeVJFH+VgR+mJUlkhiGVCh2BsT+WE0saspHUHC4qS lnbU3fbCd00glTf1GJfIpXXGvDqVMTuI9mG/tjKPN/gFJ1mIivsb7dcbizCkSqhZStiR0xS3MLhJ ZoZj4RLEk9MVNBJZPLXjLhU5TWS5PUwloZSz0pPRW7p/UYrZZGoqt6Q/wHa/Ue2Njc7OXbVMM4WM o4OqOQdUcdDjK/EeW1dV4plpglZStonCj+Ls30Yb4pkmUVKaqLDDstrtSjUbYeRU6wCGtbEGy+re N9JNmU2IOJHT1YK31YplE0Nek4ywVOm32wat+pFsFx3tY9Bg0DbbGYzqmGL+K+F1LdSvucIVFza2 F9KPOoAG574pqdBV1PV/4ROZX9/+SGSvWzF6/JFOU1JY3Y+H/hsfqhX8sXI1coVQGVgTv9MYX+Aj Oauhj4pyp5h8vKtPNHGT1kFwSPtjX6VgZFc7lTfrjfWb92gm+pg1Xsm0SRqzzX6j09MMHE1bUVZF BSyBIo7NNYXLNfZfoP54E2YJDC9Q5JCi/v7YZKhgxSMuZDNfXJcDSet7Xv16YwNRqOnHZHqzMtFu e5jnRUwjYJ8nEgN7HTYg/lhxpohZS4jRmHTSL+2GWOrhyuljWKGqqjCyRBVVnc32BPqO5Jw4NU0t P4k7ullJkcKST07jGi256mfvw+Bzlay/7w/Cb2H39sJppKRKlZ540MrHSGKEgt6Xw1QZlFmXh1NI JNIIOu+nUD0A/wCeBzcR0sJnjKshiBvHoLXN9/rg2RDcyRxxo1OpmjIWUGxje4P3HQYUCmo2PzEl Mpc+Ytp9O2GamqGdminWKPS1ogrGzLb06Xw5QVDhSWYnf7D/AJYsSSQvV8gayZXlaIEa1Gym2w9b YDBGk7lJI9SAAkg23+mGXN8xPzemKbwjqBDHewx2ilqVYzeNI5F7qDa4+3XFaWHkeTWMD4KegdBp WJdTfwgXFvpgtqGPzzCNzdCpBA07+uCYpS1KskEZFgbAjScDXxKcCQzPKLABTa63/oMI4sZcijL6 GiSG3iRxIwAsVvvfr64JbL5LTimqY44ybrIqWJI6i3f64NVDDGYwQfE3csf12wfVyNDTeHT2N7Bt IuQuBBJZWBK8Syxh4t0uFAI2vg8vURBNJm0rYrpYjp22PT2wWsfycbIZ28OQBz4jCyH0A7D/AFwr atCSrpePWAG0dT7Gw/rg5XJOF0BJVzwhmSrlUKBc+K2/64AmZVjU0hfNqnWRa6yNdR2wRNUSVkJa maEgqbkqWDG5B2HuLHAALQF5G1BrkN0Ww7YN4KIqnz+ty6ilqYs3mUxwtJdpL/hF98WRQcQ0rcL0 fElZ5Y5qSKocILm7qOg+pxSfE86ScL5vWU8sLmOila1/RT0HfEkoM4V+TXC0sraRUUFGpIBN1CAn +WL6E3FMpqwy0ibT8y8njLj5Gs8iBybKNvzwD/tVyFrLFR1jgre40/yvit5fCBZxGW3PU9B6m+EN Nl1NDXSV2uQzNGAw1HwwAeqr0B9cN708jexDuWg3NvKoSQcmrCgGza0uT6Wvgufm5lsEJqXySp0g XuZVFl7k+30vira2GoJKxVASJlO7qQQfW/8ALB+VU7UsdLFErSyRBRLJM1ncdQR6/wAsHuyJVGHg keUcTUVDzAzjjujUSrm9BT0UkDNpVGjJIbV32Nre2JLV81aqJL0mU0rvrCaWmZtN/Ww++IUPllh8 CmVI0QkkRx9L9rDbBUVEo8fwkiQHzSunl1ta1zbqdsL7k10Y6pQ7omqc0eIHbfJaKNQ1i2tzt3IG OT8086iOlKWh2sP4jf3G+IXRVVpEg8YRRCMjTITb33PocBjoaZy8sErzESlhuGAvsVHsDvht8/Im yGehN05l8QVmn5X9m6Bcv+7YtYdf4tsKxx5nRIANIysLgmE7fXfpiqqujq8sjqZ6SleSysQEbeUj fSPQm1sP+Q1GYZhlUdXnNPDRVTmy06SF20dtZsADbqB3wnuT8jbIdkSSfmBnlLUiL5iBHmYqAlOD Y/U9MHnjfixVjJr4SptrYRLsPYWwxx03hKJX0sWOkN1Nu974PceGNUIJB/hJ2+xwm6fkGoYxgfU4 24iqAjRVhUKCHvEoJP39sJ/728VH96ucSlb3sI0sfbphnipFpmZ1maoWQ/8AmPut+w/PrjjpPTJe KKyGQXW97/mdr4Jzl5IjCK7Ehl4w4mWN5Icy1NcsgaJCD7EWwHifnNBlXBWYZi1M9HmkUcaRkEMp ZmCll+gubH+mGVqnRBG6FUZrsRa9rdwB9cRrjXL1zjhDOYYaRjUGll0gjqwUkab/AExEa04vGSXS jLsSPKc5rK7L46+trqusM6eIkjSXZri4AF7ADCmnnkkKiaTTIhLBWckMBsCL97WxBeU/EArOAMqa scJPT3pyp8xksQAbde+J87Is5eRFcJYddh19fe35YtT4K5LDwERDMJp5jXya6d3KJFoChR/U373w ZGny7Fo2Lw3syFixDA/9C1scp4YfACzT+KiHYkgHdj323wGF6g6laiMJCsEcyBg2+wPQjbtb74M5 IwGPHIaiZP3el7BfKLg299v/ANYFSVAoIohHFtTLplaRg2snudsB1yRyr8w7PIlysaAaGsL7X3vb ve2+BVBeqPjpaIqhMaHuf97EBg5JPLpYxq5ZxcXO6g9sddJpbwfNvZoyguSOi2NiN+mEsc9f+7gl pFaJo9T1MclwHHUFSLgX9zj5nd5pKSCNVlSJZIppoy0Nyehsbn3wZDDBCjrMspTCk0joVCh3nI0A W31H+fU74RJStSTq1RC87MbkCUFUA/iv6i5Hrgyqkqaqmgosz+X8Z4z48lPKRFftp1WNrW98KqeC CPW6ISqAiW9zc7djsfrg+g0VxyCpK6lqEELSSCFntqnXZgRsBbt2uffHDToBaOJXiDEOWYEW6gWH Tr+WEtaXMZmEEUbeGpkUi432t6flj6mqqeKU+LcB1VX0nyi3Qf0v7YgjDD6uknailOU5ctdPFH5I NWks3oW7fXCzLqPMBlaftLKY6CdlKmAMJLEejjYje/S+AitEJU0sg8zBr6Tuvbp3Bw4nPDVvDDMs KkyGIeG1wXAO2/c2xKkl1DaxjmjKL5YZDr/hCeYG9gfpfrth34dq6zJ5VrghVSA80KkksD1Fzsfb Haiop10eFEolkYqzddh2tgqulq44I0o6YPNKw0koGEe/4m8w27bb4fdt6CuOeCzGEc8aTQSeR1DI 673B6YQTpJHqeJbyb2Umysf6YR8I5jFJC+UNIpaIl4Rv+E/iUX9Cb/Q4e5k30qR7X74zoTUo5RjS jgbZCzxBzHpPdfTEY4qylq6kdodIkt5SVuPyxK5FlUho7FLnVfrb2wmqY1njKWUhhh2hTJvNThCO ZJUeC5IO1sYj5s8KT5Fmcmb09MdKgpUIP/MiPXb1GPT/AI94VFQzTaVU20qb7n2tjJvN7gZag1CG nAYAnp1GKpLIklhmBM+yePK6gZjQMXpaj94CWva+BUtaxS5e2JrxFw8MlzObh+sitSVbM9KxGySd SntfqMV5mNLLk9W9LLq0dUJ9PTFLMS4pb+URWMC/2watiLYLQW3wMXJ64yGbENjPvvhwoAXlUX74 QKvrhzyaNpKyJbX3xRMDSvIDiF+EJ4qqK6mVtUi+o9Ma+4d5h5DnlRT5fT5jHFWSIsxp3BWQJ7g4 wtwxUmmEei91AB81saK5VcQ0dRVRGenp/GCGMSul5LddIb0xm2Ny6fwZ4KK1JS5NJMVnaOLWFjjI llIsdQ7Df874aTVRTeI9LTup1aizqQQoNjbA4ld6ZEVyJZ3DFHbSoGwtbqbemA1+dZDlNLNJX1NL TRiTw3lN1PidNJvtjAuqrrVXLsbG1oPCpwWWwMWYTy1chpGc6RYF/KFPoB1NzhXlM1dXZdUPUukD xGzh3DanHWxHb3wiomkr6BKnLJYJnlF4CWtGfQgi/bvbDnTVEIo38SrJXWUcsv8AH3F+/UYxxpQc ZOMuGhK07pK0aJNDcWJBBBsMHpLluXuk1TKBJUMFvM19z032thHQxBJg1NE51DUJJnuxUdBv074f IZqY/wCJBqChbqVWwJPUDuR9cMlkViwOJo1kMY2ttfcH+mOSVMgZadHYMw2UX3+/0wCWqgJP7uQI DclWC6R3JvgNRV0zwNPBJIgtvId1sO5xEuCIrLI+8z1E71CowiS+rUbEC9r79OmHKCvo6aETTzxw R2s8rS6LDrsScMIWQz+DM0kkZI8pAs1hf7+uKw5tZmTxCaSOeSQQxAOpe6BzvsvY7jEdjeaHpH7Z vFbuW1Yy2XTNzW4OjcQtnFKQptcFgpA97YcqLiXJOIoniocxgmLjb5eYa1UfriC8vuDcug4aoJM0 oI5amsh+Yd2jVm8xuF3HpbA+OuAMvosrbiHhynOX19D+9tAdAkA9h0bruPTfEYyZk7LSncu0pzmn nCk8NZ6crh4LHlr6l0jKAxu0litvKFt1v6+wwGaeoqJtEdQQYyGkVR5iAL9O4xCeXHG2Y8SURauh PzlCoEjBx+9VrgEr67fmcLeJeZGS8PzmjdZKnMCdCw07WJN9gxFzb26k4lR8GFPRb1XcrKEN0146 Y858EmpCZYJNLzFZvO6SOSS5NwbE7bdtsLKWSsZSaiUGoPl1R/ha3YDsLYrc8U8xKpmrcr4Ro444 iNaVLlJGJHpqB6HDdWc3Zsqheh4q4er8urkP+HAbpKp/y3/DYfX64JLjBfT9OXlV4oOM5eIyTf5F vVmYTiNdLFWI0WVdzbv74a8wU1axUcraUaQKNzcnrYAbAWHf1xH+HuN8j4uy2SoyKWdJKWRS6zDw nVjuNhcMNrX/ADth/qp6ZjGKyteVlZHurA3sRffp9sVuJrK9tVs6ro14uMl1TIxxq1HlXCmdy07S iSnoJw7G1gGQ73/qPXDzyzzocS/D9y4ri51fK1FO5DWF4joF/tt98NfNTMXk5ccVVMKeFCcvm0sL E7KLbnv9PXES+E3N/wBr/DbkCPOGbKc+zOkILdVOhwf1tb3xMFhMxJctMtWnqYdHgxSCZlYjSNyT e1jv/wBWwfHQwlR48yg6rlCN79hhKkCSMsyIqlVPnZrOtzvY9gbfywhzni/h3KcwpspzOrdJZUuG Nym+wLN2vbr9MTHpkyqFtWu5bKEXJ9ePkONZUPBLBNDSLKgmIPieXSvdh6j/AJ4DJPTTV3yyVC+O rayANAUex9OnTCOeqq6d44iGeCQBRpBYjvfb+fTCJq+F3DmNFqI3MSeIx8w7kWuemJKEpZxjkd6N /C1FaZ7mQ+IdXQep9b+2F1F4jTeMZDEhunhLcpY9CduuGrI1Voxl9NmoqpCNRZmRn2vcG3UdBa18 SWnMdPqgdWKOmpWsP3bf5d99+v2wD1ITp4UlgZoPCnepoGdxIQwtKPwgnba2F9NSNllGi08QWNF6 f5vX74Ya/MKhs4nZoGUqFRPMNgbG5HUE9LHCHjbiuTgump6w07zy1TNEkTSDw1YAG7dzsegw6eET a2dW+uI29FZlLoTlMxgmg0imWRVANjscCYQzEASESBQwJuLDoL/lip8kzbjji9Er4Mzp6CGa+kRo OgNtgAbC9+pxIais434cQVtTW0+aU6KPFJjsyAdTYWPTuMV7s84NvV0J0Z+060N6425fXxnGM/iW JEJSiuXWQhrWHf7YC5CuRTHYgFkIsR9D2xG+H+MqDP4y9KfCnW2uI73HQMPUYHmXElDlVPNUVlT4 bbiJVbUS3sO+JNVUsbiFb2HF7/BIY5Y60XYGNg5AVxYix6jAzNFGDHN5kchAq9bk2v8Alio8q494 xSneGggbPKtZWbxjTkAL2WygAW+uDZOZnGeQxJV8XcLRLSyyaUkicodQ3sASbn2OElybil6Zv6mI rbvfSO5bn8sFr6YgHgOsp1Rh/I4TI+tJo3sDewYen09dsN/DvEmWcS5ZHm+UyNJCbrIQSrxsCPxD 1/T64UyyRrMTGwQP1IO3+6f5YWUcLJqatvVtqsqFaO2UeGn2IZy+poeG+Ks+yWsy9HgM/wA7SOAD +7PVlI6DzDpi0GnStiMXgqF0BwW66P64rzM1qKLOsp4hjXwo4p/kajuNLiwLXtsGsPyxJ9GZNmIg EgVU31o3QA9NI297nbriyPKMecHngcPmpaqqakeEr4cYkWRo/K6m9tLdL9Ppj56kxqTUg04Rm2AD i3ZgRtv74OlJsJqcxtBbzBdzcdgQfrj6m8GnU+CbqU3V7t1/XBkV05RfKOGFNUjVM/jJUFUEYhuU UjzLcdQet9gMcpqOPLpWgpYmWOQEup3DMzXLb737W9Ppg6mkiRCKQMGB1aXBvb2v29+mOyeJVvLJ GxBA2jZhpJ3FvUYnD6iqLbwckURLaSZ47MTs9goPbBNzUeIscbxzaApDD9b98dmqZFnSmVWUndnK 3Vdjvc9QelsKQkashJV5UUgWJAF7XHX+eJwK8piCopmSjilmivput2UKQPUjpt64NpXiTLvmpKmI 08B8zvIF0+pJ6WwaxpKQ/LTpJIlU1iNJOt2O526e/QAYjXH3B1JnvCFZk+X+JBJFqrIgsraHddyG 7EdQF7dsR0L7SEK9eFOq8RbSb8JvqO2Z1NFXE065xD4aAO5jnUCMAg263uRfCaKsyuoaSOjjhkBX UCZ1Y6ie9r2++KM5Z5Hk/FGfJlefZjPDHDGXpoAf8Vgbsinttc2HXFp1XJrhKaI1XDdRWZRVxm8U 0UzWD9tQJ6frgTyso6vVNBsNHuPstevLc1lPZ8OH075/IkNG0cBMA28MjT3BPcddvY9MLqSCGF5I br+ESOg/huLKQehO2Kli484j5eZ7HkXMYmamqnCU9ZpBLb2D7fiW/UdR3viyKnOoKeglzSJ6eeGG MySzKw8yab3XrcDpb64rkzVX+j17SUMYlGf3ZLlP/v5MfqaOGKUImnUbltA2Xe98Gu1dHVB4zG8B Gkkr5w1/U7W9tvvjP9BJxzzEq5pXzlkpYmAYI7RwxqTZVCL1JH8tziRV9JxBy7ytc6yrimtq4hMi VFPMQY9J7i97dh98MpZ7Gyr+mI0Jxt53EfeePhw8ZfZsuinq/kMwo6sTqipKtigu0trl1H1GLJUw 1Ea1EDB45F1IwPUHFGcJcbwcW5S1dSJJC6OYpqckNpbYj7HtizeCc3SQy5LISpQeJCGFrD+JR7d/ zxl0JY+E5O+s61pVlSrLEovDQ/Sx9QpFu+Eny6hSFGm3T3w4vHYXthO6dQdsZhgDDm+XLWQMhHmF 8UdzI4P8WOVjBtuOmNDyJsffES4syRKyByAd+uIaIayeaXOnlstZHUR+EUYHXG69VYdCMZwzDLxn KmjzCIpX0T+HOoHXbZx7HHpJzU4GSaOUiA3FyDbGIubPAmYUucLW5RMaWpYmORwNnTrY/QjFEl3K 8GZE3G98GDtY4AnSwwJR1xay8NQmxBvv0w/8NRF6qN9NytztiPLdiBfEv4Ug/HIdugGKJdALBydm BW19sX9yFyafiHieKnRXMNMhqJjbay9AfS5sMUBlAcML7jG0Phq4Jq8j4HreMq2tjpVzRAyCR9Kr BGTdm+p7elvXFOcdC6jTdSailks5/lJXaGslSmRd3k1hSnoS19t7YozmhxFNxPnHg0c4/Z9L+7iC nyyONmk6b37e2JHm3Eeb8fZoOH8gBkpz5fGaIK0gFyXc28qb7D6d8RfPsvoKbMXo6CV5lpT8u8jC 3iTD8Vh2F9h9MVnqvpbRoadX967/AHuMqP8AtXl+GT7kbBJ+wa1ax3WjacLCxJFiF82k9B2wo4j5 s5FkskmW5VTPm80AaMyFwsQN9/MBdunUfnhgzqfM8nyHLuXmRyt83WRh6y4F9chuI19B6/QYmHD3 LvJOGMvgqa+kirq5mGuZ1uin/Kina3vh8cGs1CjYwuJ6nfJy9xvZBcZS4y34Y3Zdza4ZroIYM8o6 ihE4UTkgvGB33BDW6dsTmCsy5Yo6ilqlaAx+IsgNkZSL3v8ATviA83c+yam4b/u8kULV9RZ3XwgW p0ve5P8ACTYAAYfeU+T1WX8K0MlfleiNo3m8UuSWUtspQ9Nt79LWxGWajVNOt/sMdQpQdPdLG1vO Vjqu6JNT0Sz07aq+eojkLtZzckMb6Rb+EdsHVcr01GKcqscLgeGQe3+W2Fbs1O0kq076GIAUEPta wCjthozS6I0s5jUWLQoOiWFh74jlnNR4GykmjgmWuJSOGMsxDtYWH9euKLqg2fZ+9W+oivqyfw72 Z9tvpiX5hxw+X0eaZVmlOKPMzGyUr6S0U2ry6o/RrEmx6YiuRzVdBWUs8EBqZopRKigEsSu9rDcH DSj0R6N6IoqlbXF22s9Fn5c/zNLwFKdYY6cEBI1jUe3QHEX5i8X0+T5HVUEFelRmFSGgip1bUY1I sWbre2/W3UYirZtzY