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Resumen 
El proceso de automatización (AP) actual es de gran importancia en el mundo digitalizado, en 
rasgos generales, representa un aumento en la calidad de producción con el trabajo hecho a 
mano. El equilibrio es una capacidad natural del ser humano que está relacionada en trabajos 
y conducta inteligente. Equilibrarse representa un desafío adicional en los procesos de 
automatización, debido a la presencia de múltiples variables involucradas. Este artículo 
presenta el equilibrio físico y dinámico de un poste en el que un agente, mediante el uso de 
aprendizaje por refuerzo (RL), tiene la capacidad de explorar su entorno, detectar su posición 
a través de sensores, aprendiendo por sí mismo cómo mantener un poste equilibrado bajo 
perturbaciones en el mundo real. El agente usa los principios de RL para explorar y aprender 
nuevas posiciones y correcciones que conducen a recompensas más significativas en términos 
de equilibrio del poste. Mediante el uso de una matriz Q, el agente explora las condiciones 
futuras y adquiere información de política que hace posible mantener el equilibrio. Todo el 
proceso de entrenamiento y pruebas se realizan y gestionan íntegramente en un 
microcontrolador Arduino. Con la ayuda de sensores, servo motores, comunicaciones 
inalámbricas e inteligencia artificial, todos estos componentes se fusionan en un sistema que 
recupera constantemente el equilibrio bajo cambios aleatorios de posición. Los resultados 
obtenidos demuestran que a través de RL un agente puede aprender por sí mismo a utilizar 
sensores, actuadores genéricos y resolver problemas de balanceo incluso bajo las limitaciones 
que presenta un microcontrolador. 
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Abstract 
Automation Process (AP) is an important issue in the current digitized world and, in general, 
represents an increase in the quality of productivity when compared with manual control. 
Balance is a natural human capacity as it relates to complex operations and intelligence. 
Balance Control presents an extra challenge in automation processes, due to the many variables 
that may be involved.  This work presents a physical balancing pole where a Reinforcement 
Learning (RL) agent can explore the environment, sense its position through accelerometers, 
and wirelessly communicate and eventually learns by itself how to keep the pole balanced 
under noise disturbance. The agent uses RL principles to explore and learn new positions and 
corrections that lead toward more significant rewards in terms of pole equilibrium. By using a 
Q-matrix, the agent explores future conditions and acquires policy information that makes it 
possible to maintain stability. An Arduino microcontroller processes all training and testing. 
With the help of sensors, servo motors, wireless communications, and artificial intelligence, 
components merge into a system that consistently recovers equilibrium under random position 
changes. The obtained results prove that through RL, an agent can learn by itself to use generic 
sensors, actuators and solve balancing problems even under the limitations that a 
microcontroller presents. 
 
Keywords: reinforcement learning, intelligent agent, Q-learning, microcontroller, Industry 4.0. 
 

Introduction 
Factories continue to improve and introduce new technology to reduce their production 

costs, such as the solution given to repetitive work in the delivery of goods industry (Azadeh 
et al., 2019). New technologies have to target and solve two main aspects to keep progressing 
and improve tasks in multiple areas: transparency of costs that makes replication easier and 
produce these technologies; recreate a more human-like robot behavior. 

 
One primary aspect and basic act that robots should replicate from humans, is to be 

proficient at balancing. Whether we want a humanoid or a computer to replace the workers, 
they have to be capable of performing on a similar level to humans (Hyon et al., 2007). Ships’ 
displacement is often dependent on careful balancing; in sea navigation, equilibrium is critical. 
The balancing mechanism is based on fin stabilizers, which rotate and change the fin angle to 
resist ocean disturbance (Sun et al., 2018). Balance is also present in aviation. Unmanned aerial 
vehicles (UAVs) use stabilizers that play an important role minimizing disruption effects and 
ensuring a smoother flight (Korkmaz et al., 2013), by dealing with three different angles known 
as yaw, roll, and pitch. Balancing is a critical component that affects the ability to perform a 
wide variety of tasks and is essential in the operation require by loaders, robotic arms, ships, 
anti-seismic systems, or robots themselves. 

 
Machine activity does not present adaptation or reaction to new events that occur, and 

are not predictable during normal function. This is critical if correct balancing is a goal in 
changing environments. Unpredictable events and varying conditions of the environment are 
why automation has limited uses in many factories and moving vehicles. AI may be set to 
perform a task in varying circumstances; it may give improved results, and be efficient in 
activities currently executed only by humans. A contemporary and relevant tool in AI is 
Reinforcement Learning (RL), a methodology by which agents independently learn efficient 
control policies. They then use this knowledge to solve logical or mechanical problems 
(Foerster et al., 2017). 
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The first reason to use Arduino is its flexibility to adapt to different projects. AI requires 
data recollection and this may be a difficult task because data is proprietary or cost prohibitive. 
In this sense, Arduino is handy and very helpful for recollecting data from the world.  

 
Arduino is reasonably priced for building several prototypes. Also, as shown in (López-

Rodríguez & Cuesta, 2016; Taha & Marhoon, 2018), is how feasible it is to build more than 
one specific model or prototype with customizable devices, depending on the situation. The 
low cost advantage also decreases barriers to perform a study in different areas of AI devices, 
or reducing problems to replicate and produce multiple similar technologies that instantly 
interact with the real world.  

 
With these premises, this paper develops a dynamic balancing pole that AI manages 

running in an Arduino microcontroller. Here, an RL agent, with the capacity to read sensors 
and control the angles of servo motors that drive an x, y balancing pole, learns by itself how to 
keep the pole balanced under noise disturbance, responding to natural changes of its 
environment. The prototype demonstrates the capabilities of microcontrollers that have some 
limitations, compared with regular desk computers, and how extensive is there potential.  

  

Related work 
The following section examines and evaluates works that are relevant to the planted 

objectives and share common themes, strategies, and method elaboration.  
 

Arduino fully managed systems 
Due to their low and medium cost, Arduino-based projects can be produced or 

recreated. Due to easy access to a variety of hardware resources, it is simple to execute multi-
purpose projects. A mobile robotic platform is presented in (Araújo et al., 2015). In the work, 
it is claimed that robots must be as inexpensive as possible for students and researchers to 
conduct real-world experiments. The work in (Ram et al., 2017) demonstrates the versatility of 
Arduino when used in an IoT project, a proper power supply, wireless communication and 
sensor devices are good features of working with Arduino boards. The Arduino microcontroller 
is used in (González & Calderón, 2019) to build a Supervisory Control and Data Acquisition 
(SCADA) system with high configuration possibilities, easy access to  libraries and a fast 
learning rate for new users.  In (Wu et al., 2017) it is described the Arduino board's data 
collection, tracking, and scalability projection capabilities.  

  
The majority of the work discuss the low-cost advantages of Arduino projects, as well 

as how to adapt or include more electronic devices to create more robust devices with no issues. 
Furthermore, the majority of the works incorporate two elements: automation and real-time 
operations. Arduino can conduct real-time operations without the use of simulations, 
concentrating on the problems that are important to the target, enabling it to detect planning 
mistakes or missed steps in the early stages of development. This has been a big help for 
researches, both technically and theoretically, showing that Arduino is a very useful tool.  

 
Artificial intelligence with microcontrollers 

In (Jain, 2018), a self-driving car is demonstrated using a Raspberry Pi and a 
Convolutional Neural Network. An Arduino board guides the movements of the vehicle. It 
receives an order and drives the car in a specific direction. The author concludes that the car's 
design and testing were successful. In addition, the work (López-Rodríguez & Cuesta, 2016) 
shows a mobile robot for educational purposes based on Android and Arduino. The robot has 
a light sensor, GPS, camera, accelerometer, Bluetooth, and Wi-Fi, and can accept commands 
from a smartphone via an Internet connection. The author claims that software alteration can 
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be easily applied for future projects. In the third study (Lengare & Rane, 2015), image 
processing is used to monitor the movements of a human arm and reproduce this action in a 
robotic arm controlled by an Arduino. The author claims that an Arduino board can monitor 
the robot's behavior; however, there are many ways to accomplish the same task. 

 
It is clear from the previous work that the Arduino will perform actions with good 

results if the instructions come from a logical process of an efficient AI or a human. The 
argument is that with the use of a microcontroller, the majority of the work present no hardware 
problems. As a consequence, with the right instructions, Arduino will perform a variety of 
tasks. The intelligence of data analysis is executed outside the microcontroller in all previous 
projects, but as further projects illustrate, it is also possible to code the intelligence or 
incorporate learning techniques in the Arduino itself, without having to raise costs or resources. 

 
Artificial Intelligence has shown better results than conventional approaches in several 

of projects; these works involve intelligent agents that perform several tasks in pursuit of 
optimum results. It was shown in (Jimenez et al., 2020; Salazar et al., 2013), that an intelligent 
agent’s capable of considering timing, amount of water, and properly implementing them in 
what they detail as Spatio-temporal variations of the soil–plant–atmosphere system, gathering 
impressive results in terms of water efficiency and precision irrigation. As agents work with 
microcontrollers like Arduino, they may create further applications. For example, (Mata-
Rivera et al., 2019) shows an intelligent traffic light control device that uses Arduino sensors 
to detect the color of traffic lights, as well as the tone, distance, and motion of vehicles in the 
streets where it is installed. The entire process is executed in Arduino, demonstrating how this 
platform can perform complex tasks using machine learning techniques. 

 
Since the recently mentioned works used an Arduino to carry out the whole operation, 

these project reinforces the concept that Arduino hardware and software are plenty capable, 
and assisting this study in realizing that AI can be implemented in a microcontroller. Of course, 
Arduino has limitations, but the previous works only require a little extra effort to comprehend 
the obstacles, adapt the prototype, and include RL. 

 
Reinforcement learning in Real environments 

The aim of developing robots is to allow them to participate in a real-world environment 
where unexpected events can occur. The goal is to make machines more effective in performing 
various tasks in a manner that is equivalent to, if not superior to, a human. To accomplish this 
action in computers, a variety of techniques are used. 

 
Three classifications of methods are given in (Kormushev et al., 2013), as well as 

mentioned how computers can learn to deal with such tasks. Direct programming is defined as 
the lowest method. This is more akin to a programming method than it is to learning. The 
second method is imitation learning, which is more comparable to a learning strategy. The 
problem with this approach is that it requires a specialist to perform a perfect presentation of 
how to complete the job. The last method, RL is defined as a trial-and-error method that 
explores the environment and the robot's body. RL has three benefits over the other two 
approaches: learning new tasks, optimizing efficiency, and adapting to new situations.  

  
RL has been used in real-world settings to solve physical problems in various 

experiments, but simulations can also be used in training. According to (Pan et al., 2017), 
depending on the context, the training will present undesirable driving behaviors that can cause 
harm to the environment. As a result, depending on the case, a simulation or real-world 
environment may be used to train a computer. The problem with transitioning from a virtual to 
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a real-world environment is that it takes extra time to apply the learned skills to a different 
scenario than the one in which they were educated. The research of (Miglino et al., 1995) 
demonstrates how simulations can solve problems that appear to be closer to the original target 
but are not; in other words, the simulation environment lacks realistic behavior. However, 
conducting training in the real world poses a challenge; as mentioned in (Nagabandi et al., 
2018), samples can be extremely costly. The tools used can influence this complication about 
cost of collecting samples. As mentioned, an Arduino’s main advantage is its low cost. 

  
The work from (Gu et al., 2017) creates and trains a robot to open a door from scratch, 

which is a realistic application that requires complex contact dynamics to imitate human 
physical abilities. In addition, it demonstrates how real robotic platforms can perform physical 
tasks in 3D real environments. It is also claimed that RL is an effective training method for 
these systems. The work of (Sharma et al., 2020) uses a free-reward RL algorithm to teach a 
robot how to travel properly within its structure and navigate, 20 hours of preparation, the 
machine had mastered a variety of locomotion gaits. After a short time, the RL methods yielded 
results. This research showed how RL can be used to teach an AI how to control its movements 
in the real world, without wasting too much time in the training process.   

 

Methodology 
This section describes the proposed system, which learns to detect a properly stable 

position. The construction of the balancing prototype has three main points to be described, 
divided into the following sections: General description of the system. A detailed description 
of the transmitter device. A detailed description of the receiver device. In the end, generating 
an algorithmic description of the training process. 

 
Problem Solving Phases 
Problem Description 

The structure to balance consists of a pole with a platform at the top, where objects can 
be placed. The pole cannot stand up straight due to a flexible component in the base, the pole 
is connected to this component which allows the pole to constantly bend in any direction. To 
control the pole displacement, two servo motors are connected using a rigid wire. One servo 
motor moves the pole up and down (north-south), the second moves the pole from left to right 
(east-west). An upper view of the balancing structure shown in Figure 1 A, and a front view in 
Figure 1 B.  

 
Figure 1 

A View of the Structure to Balance 
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 Analysis of the Problem 
The first issue is to translate the environment in terms that is possible to convert into a 

programming platform, select the correct data type, and attempt not to exceed the memory 
capacity of the Arduino. 

 
The speed execution of the code is enough to sustain the speed movement of the servo 

motors. To train an agent and measure a reward, is necessary to measure after a change or move 
is completed. The Arduino board can execute multiple moves virtually before a servo motor 
actually has finished the first move. In other words, the measurement has some imprecision 
issues, due to movements that are supposed to happen but are retarded because of inertial 
forces. 
 
Implementation 

The agent’s work is to randomly explore the environment through its own actions. The 
agent will try different moves depending of its actual state, meaning that the agent will increase 
and decrease the angle in the servo, allowing the agent to explore which action will yield better 
or worse results, depending on the detected state. The Q-matrix, also known as a Q-table, 
represent the conditions and possible behavior of the agent represented. The dimensions of this 
Q-matrix are 9x2, represented in Figure 2, where the number of columns represents the number 
of possible actions from which the pole will pass. The number of files represents the inclination 
states in which the platform will be. 
 

Figure 2 

Q-Matrix, States(Rows) and Actions (Columns) 

 
 

The servo motors in use operate in degrees from 0⁰-180; one pushes the pole forward 
or backward Figure 3 (a), while the other moves the pole left Figure 3 (c), or right Figure 3 (d). 
However, if the system detects that is in balance, both servo motors will not move pole Figure 
3 (b) and Figure 3 (e). The first column depicts the action of decreasing the current angle at 
which the servo motor is located, while the second column depicts the action of raising the 
current angle at which the servo motor is located. The servo motor has 144⁰ of inclination since 
the eighth row is 8, which is the highest value that can be found in this matrix beginning at 
state 0 from 0⁰, in the servo motor. 

 
The error to balance the pole is 18⁰ due to the Q-matrix design. Both servos increase or 

decrease its angle 18⁰, the angle was chosen to save space memory in Arduino, and also the 
servo motors have a better response with angle variations of a larger magnitude, one-degree 
variation will be a good improvement, but better precision servo motors are required. 



 
 
 

 
 

195 Artificial intelligence-controlled pole balancing using an Arduino board 

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021) 

Figure 3 

Possible actions performed by the servos 

 
 
The prototype stabilizes the post in 18 steps, with each servo performing nine steps 

simultaneously, in a worst-case scenario. Delays measured in the servo's movement speed, 
allowing the balancing time to increase or decrease. Servos perform angle variations every 200 
milliseconds; hence these nine moves can be completed in less than 1800 milliseconds. In the 
worst-case scenario, the prototype's balancing time is nearly two seconds. 

 
System description 

The prototype design is structured by two devices working together to balance the pole, 
as seen in Figure 4. This details which component is connected and how it communicates and 
flows. It is known as a Q-table, from upper components to which are below. the device A and 
B have wireless communication, the implementation and a deeper description of the internal 
process of each device will be described in the following sections. Device A, due to its 
structure, could be reused in more areas to estimate more precise position changes. The device 
B does not have the same reuse capacity; it has to be modified depending on the balanced 
structure. 
 

Figure 4 

Prototype Whole Process Flow Diagram 

  
 

Device A 
Has the task to recollect and notify position changes of the platform in which it is 

placed. Figure 5 shows the electronic elements used as the Arduino Nano, the accelerometer 
and gyroscope that are in the MPU6050 sensor, and the nRF24L01 RF transceiver. Device A 
performs the flow process in Figure 6. 
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Figure 5 

 
Device B 

This device, managed by Arduino Uno, will execute the process from Figure 7. 
Afterwards, the Train process finishes and will execute the steps from Figure 8. Device A in 
Figure 5 shows the two servo motors, that manage the positions of the pole, also have the 
nRF24L01 RF transceiver for wireless communication. 
 

Figure 6 

Arduino NANO Process Flow Diagram 

 
 
Device A process 
Setup and Loop Functions 

The setup and loop functions are the two main functions of most Arduino programs. 
After uploading the program to an Arduino microcontroller, the setup function is the first to 
run. The loop function is a loop that repeats the actions inside the microcontroller until the 
microcontroller resets or the power supply is disconnected. Both functions are required in 
Arduino programs. 
 
Sense and Transmission Flow Process 

The Arduino Nano carries out the entire process depicted in Figure 6. First, is the setup 
function, where all variables of the accelerometer and gyroscope in the three-axis x, y, and z 
are initialized in the variable initialization step. The data rate in symbols per second (baud) has 
several bits per second (bps) in which the Arduino will communicate during the transmission 
of data is setup. Sensor initialization begins the MPU6050 functionality after ensuring that it 
is operational. The Power Amplifier level, the channel between 2.400 and 2.524 GHz, the data 
rate, and the address of the receiver to which we will send data, are all set up in the wireless 
communication initialization step.  
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The loop, as seen in Figure 6, is the second part that constantly reads position changes. 
MPU6050 is constantly read during sensor reading, and the data obtained is then sent to data 
processing, where all information is processed in degrees and g (terms of standard gravity). 
After that, data transmission begins, which reports the changes in the pole's extreme to the 
Arduino UNO. 

 
Device B process 
Train Flow Process 

Setup in Figure 7 and Figure 6 are very similar, except for the variables initialization 
step with the R and Q matrices for the training process. As seen in Figure 6, use the same 
parameters for wireless communication initialization. 

 
In the loop section, the data reception is emitted from the accelerometer in the Arduino 

Nano. Action Selection consists of a random selection of the available options from the servo 
motors. Now Perform action executes the selected action from the previous step. Calculating a 
reward is the next step, updating the Q-table. A fixed number of iterations is achieved all the 
steps are repeated. The end section is saving the experience that is in the Q-table, earned in the 
loop section for forthcoming testing. 

 
Figure 7 

Arduino UNO Train Phase Process Flow Diagram 

 
 

Figure 8 

 
Testing Flow Process 

Setup in Figure 7 and Figure 6 show the same steps. Then in the loop function, the data 
reception is received from the Arduino Nano, then it checks the Q-table, selects the best option, 
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and performs the action selected in the servo motors establishing the balance and repeating the 
process from the data reception.  
 
Code structure 

The pseudocode from Figure 9 is train agent and executed to train the agent. The input 
of the algorithm are the variables that describe the current state of the environment. 

 
First are initialized the different variables the Qm is Q-matrix and all the values are 

initialized from zero, which will present changes in the values while learns the policy, K is the 
number of limited episodes, Moves is the variable that limits the number of moves an agent can 
execute before finish an episode. 

 
After the train starts, first are selected an x and y position, a random number selected 

between the 0 and the number of columns for x and the number of files for y of the Qm matrix, 
the variable Agent is assigned a random starting action from Qm[x][y] position. 

 
The following inner loop works as a limited sequence of steps where the agent can 

move around the environment until it reaches the goal or executes a limited number of moves 
defined previously in the variable Moves. The function StepSelection looks at matrix Qm 
neighborhood values, selects an action of the possible options. The possible options of the act 
allow the agent to move in four possible ways; up, down, left, right. 

 
Updating the variables Agent, x, y, depend on the previous move. The variable State 

saves the new environment variables. The matrix Qm updates the index x, y value calling the 
function reward, which uses the variables State and action to calculate the new value function 
Reward. 

 
If the agent reaches the goal state the episode finishes, otherwise this inner loop is 

repeated until the end of the allowed number of steps. The output is a Q-table matrix, the Qm 
which has the experience obtained after the agent exploration. 

 
Figure 9 

Agent Training Pseudocode  
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Results 
Table 1 shows the Q-table values for the servo motor that pushes the pole left and right, 

while  Table 2 shows the Q-table values for the second servo motor's forward and backward. 
The table depicts the Q-table during various training episodes, and it is possible to observe how 
the absolute value rises. The 0 value does not change during training because the episode ends 
when it enters this state; this state is considered the most stable because it receives a reward of 
0, while the other states receive a punishment depending on the platform's inclination. It is easy 
to see how values that are farther from the stable state are punished more severely, resulting in 
extreme values gaining more knowledge, or learning faster than states closer to the optimal 
state. As compared to Q-tables with more iterations, it is possible to see that certain values in 
one column that should be lower than the other column are not. In the first 50 episodes in the 
table Q-table from Table 1, it was determined that the agent does not have the experience to 
choose the proper actions at this point in the training. 

 
Table 1 

Agent 1 Q-table Evolution of Values at Different Training Episodes  

EPISODE 
100 500 1000 

State Actions 

0 -7.63 -7.63 -16.42 -16.42 -16.13 -16.13 

1 -7.59 -5.66 -17.45 -13.32 -17.44 -13.32 

2 -3.91 -3.06 -12.95 -9.45 -12.96 -8.38 

3 -1.44 -1.76 -6.56 -4.94 -8.48 -3.93 

4 0 0 0 0 0 0 

5 -0.86 -0.54 -1.00 -2.33 -1.00 -2.75 

6 -3.10 -4.99 -3.90 -7.04 -3.90 -6.77 

7 -7.04 -9.41 -8.51 -13.99 -8.51 -12.37 

8 -9.49 -9.49 -12.66 -12.66 -12.66 -12.66 

 
Table 2 

Agent 2 Q-table Evolution of Values at Different Training Episodes 

EPISODE 
50 100 500 1000 

State Actions 

0 -3.254 -3.54 -3.254 -3.54 -9.02 -9.02 -14.30 -14.30 

1 -2.15 -1.73 -17.45 -1.73 -10.21 -8.22 -15.15 -13.49 

2 -3.35 -2.24 -12.95 -2.24 -9.13 -7.74 -13.52 -10.74 

3 -3.75 -2.77 -6.56 -2.77 -9.04 -3.99 -11.75 -6.32 

4 0 0 0 0 0 0 0 0 

5 -0.83 -0.47 -0.83 -0.47 -1.00 -1.46 -1.00 -1.67 

6 -1.18 -1.73 -1.18 -1.73 -2.68 -3.38 -1.90 -3.40 

7 -2.68 -4.69 -2.68 -4.69 -3.71 -7.44 -3.71 -6.50 

8 -5.78 -5.78 -5.78 -5.78 -7.34 -7.34 -7.34 -7.34 

 
In the cumulative reward Figure 10, the x-axis represents the number of episodes 

trained, while the y-values represent the absolute value total of each variable corresponding to 
the Q-table. The graphic demonstrates that the agent is learning, gaining experience after each 
iteration from the first to the nth episode. Figure 10 plots a summary of all the learning work, 
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both curves present a general growth doing decently. Over the last two hundred iterations agent 
1 does not have a noticeable increase in comparison to earlier episodes. Agent 2 shows that it 
could improve its experience, this behavior comes from the random aspect of the training 
process, at some episodes would have a noticeable increase in comparison to earlier episodes, 
this behavior comes from the random aspect of the training process, at some episodes will have 
a noticeable. 
 

Figure 10 

 Cumulative Reward as a Function of the Number of Episodes, from both Agents 

 
 

In Figure 11 are the Q-matrix at episode 100 and 1000, of both agents. The colors with 
a more negative value represent a higher point and have a darker color, while values closer to 
zero are more clear and lower points. The agent's path will be the clearest option where it would 
be located, at episode 1000, the disparity in colors between the different states of the Q-matrix 
is more apparent compared at episode 100, where the path to follow is somewhat diffuse. 
 

Figure 11 

Agent 1 and Agent 2 Heatmap Q-matrix representation  

 
 
 

The pole is at the leftmost position; Figure 12 A depicts the direction in which the servo 
will move the pole; internally, the agent determines which alternative is most appropriate. 
Figure 12 B is a basic example that concludes when the pole is balanced.  
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Figure 12 

Prototype balancing the pole simple case  

  
 
Figure 13 shows an interesting behavior, which an external disturbance is manually 

introduced, tilting the base, similar to what happens in air and sea ships. The agents must now 
solve a fresh and unexpected problem. 

 
In Figure 13 A, B, C, the agent 2, tilted back, is in charge of balancing the pole in a 

forward-backward motion. Agent 2 begins to increase the servo's angle by 18 degrees until it 
is balanced in this direction; nevertheless, this movement has influenced the pole's correct 
position in the left-right direction; as a result, agent 1 begins to tilt the pole to the left,  Figure 
13 D, E, and F depict the prototype's last steps in a real-world scenario. 

 
Figure 13 

Prototype behavior tilting the platform  
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Figure 14 is an internal representation of the actual behavior after finishing the training 
following a path and choosing the clearest option, depicting the direction that agent 1 will take 
if it is in the rightmost state, a right inclination. Agent 1 will gradually shift the pole to the left 
until it reaches the state in row 4. The agent 2 detects that is at a state 0, thanks to the 
sensometer, which means the platform is facing backward, and it will shift to the front by 
increasing the signal sent to the servo motor by 18⁰, moving from state 0 to state 4. 

 

Figure 14 

Internal Behavior of Agents  

 
 

Conclusions 
This project includes a study of Arduino microcontrollers, some of their peripherals, 

and the implementation of a RL agent in a completely Arduino-based prototype consisting of 
two devices that operate by wireless communication. Within the experimental limitations, the 
automation process implementation with Artificial Intelligence and RL agents running in 
Arduino boards, presented very promising results that, in principle, can extend to more 
complex intelligent machines in the real world. This will require increasing the number of 
variables, the resolution of the sensors, the power of the actuators, etc.  According to the 
obtained results during the project’s execution, the following facts can be concluded: 

 
• The restricted memory space of the Arduino for storing variables is not a barrier to 

running learning RL algorithms. In particular, Q-learning algorithms can be fully 
implemented in current Arduino microcontrollers, as demonstrated. 

• In the real world, most environments are analog; however, as demonstrated in this 
study, using Q-learning and a finite Q-matrix it is possible to convert analog changes 
in discrete signals and use them to control a pole balancing situation. 

• Wireless communication adds value to Arduino projects by allowing them to collect 
data and/or send instructions in complex environments with limited space and/or 
constant movement. Also, opens possible valuable applications in the world of the 
Internet of things (IoT). 

• Agents and RL algorithms are powerful tools because they allow robots to train 
themselves in many tasks, such as maintaining dynamic balance using only their 
implemented components such as sensors and actuators. 
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• Arduino platforms have access to a variety of peripherals with methodical inclusion, 
and is a fertile ground to work and develop self-learning macro sensors, robots, and 
control systems. 
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