

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

https://doi.org/10.37815/rte.v33n2.852
Artículos originales

Artificial intelligence-controlled pole balancing using an Arduino
board

Balanceo de un poste, controlado por una inteligencia artificial
usando una placa Arduino

José Revelo1 https://orcid.org/0000-0003-1159-1523, Oscar Chang1 https://orcid.org/0000-0003-1241-1782

1Yachay, Imbabura, Ecuador

jose.revelo@yachaytech.edu.ec, oscar.chang@yachaytech.edu.ec

Sent: 2021/07/11
Accepted: 2021/09/28
Published: 2021/11/30

Resumen
El proceso de automatización (AP) actual es de gran importancia en el mundo digitalizado, en
rasgos generales, representa un aumento en la calidad de producción con el trabajo hecho a
mano. El equilibrio es una capacidad natural del ser humano que está relacionada en trabajos
y conducta inteligente. Equilibrarse representa un desafío adicional en los procesos de
automatización, debido a la presencia de múltiples variables involucradas. Este artículo
presenta el equilibrio físico y dinámico de un poste en el que un agente, mediante el uso de
aprendizaje por refuerzo (RL), tiene la capacidad de explorar su entorno, detectar su posición
a través de sensores, aprendiendo por sí mismo cómo mantener un poste equilibrado bajo
perturbaciones en el mundo real. El agente usa los principios de RL para explorar y aprender
nuevas posiciones y correcciones que conducen a recompensas más significativas en términos
de equilibrio del poste. Mediante el uso de una matriz Q, el agente explora las condiciones
futuras y adquiere información de política que hace posible mantener el equilibrio. Todo el
proceso de entrenamiento y pruebas se realizan y gestionan íntegramente en un
microcontrolador Arduino. Con la ayuda de sensores, servo motores, comunicaciones
inalámbricas e inteligencia artificial, todos estos componentes se fusionan en un sistema que
recupera constantemente el equilibrio bajo cambios aleatorios de posición. Los resultados
obtenidos demuestran que a través de RL un agente puede aprender por sí mismo a utilizar
sensores, actuadores genéricos y resolver problemas de balanceo incluso bajo las limitaciones
que presenta un microcontrolador.

Palabras clave: aprendizaje por refuerzo, agente inteligente, microcontrolador, Industria 4.0.

Sumario: Introduction, Related work, Methodology, Results and Conclusions.

Como citar: Revelo, J. & Chang, O. (2021). Artificial intelligence-controlled pole balancing using an
Arduino board. Revista Tecnológica - Espol, 33(2), 189-204.
http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/852

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License

https://orcid.org/0000-0003-1159-1523
https://orcid.org/0000-0003-1241-1782
mailto:oscar.chang@yachaytech.edu.ec

190 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

Abstract
Automation Process (AP) is an important issue in the current digitized world and, in general,
represents an increase in the quality of productivity when compared with manual control.
Balance is a natural human capacity as it relates to complex operations and intelligence.
Balance Control presents an extra challenge in automation processes, due to the many variables
that may be involved. This work presents a physical balancing pole where a Reinforcement
Learning (RL) agent can explore the environment, sense its position through accelerometers,
and wirelessly communicate and eventually learns by itself how to keep the pole balanced
under noise disturbance. The agent uses RL principles to explore and learn new positions and
corrections that lead toward more significant rewards in terms of pole equilibrium. By using a
Q-matrix, the agent explores future conditions and acquires policy information that makes it
possible to maintain stability. An Arduino microcontroller processes all training and testing.
With the help of sensors, servo motors, wireless communications, and artificial intelligence,
components merge into a system that consistently recovers equilibrium under random position
changes. The obtained results prove that through RL, an agent can learn by itself to use generic
sensors, actuators and solve balancing problems even under the limitations that a
microcontroller presents.

Keywords: reinforcement learning, intelligent agent, Q-learning, microcontroller, Industry 4.0.

Introduction
Factories continue to improve and introduce new technology to reduce their production

costs, such as the solution given to repetitive work in the delivery of goods industry (Azadeh
et al., 2019). New technologies have to target and solve two main aspects to keep progressing
and improve tasks in multiple areas: transparency of costs that makes replication easier and
produce these technologies; recreate a more human-like robot behavior.

One primary aspect and basic act that robots should replicate from humans, is to be

proficient at balancing. Whether we want a humanoid or a computer to replace the workers,
they have to be capable of performing on a similar level to humans (Hyon et al., 2007). Ships’
displacement is often dependent on careful balancing; in sea navigation, equilibrium is critical.
The balancing mechanism is based on fin stabilizers, which rotate and change the fin angle to
resist ocean disturbance (Sun et al., 2018). Balance is also present in aviation. Unmanned aerial
vehicles (UAVs) use stabilizers that play an important role minimizing disruption effects and
ensuring a smoother flight (Korkmaz et al., 2013), by dealing with three different angles known
as yaw, roll, and pitch. Balancing is a critical component that affects the ability to perform a
wide variety of tasks and is essential in the operation require by loaders, robotic arms, ships,
anti-seismic systems, or robots themselves.

Machine activity does not present adaptation or reaction to new events that occur, and

are not predictable during normal function. This is critical if correct balancing is a goal in
changing environments. Unpredictable events and varying conditions of the environment are
why automation has limited uses in many factories and moving vehicles. AI may be set to
perform a task in varying circumstances; it may give improved results, and be efficient in
activities currently executed only by humans. A contemporary and relevant tool in AI is
Reinforcement Learning (RL), a methodology by which agents independently learn efficient
control policies. They then use this knowledge to solve logical or mechanical problems
(Foerster et al., 2017).

191 Artificial intelligence-controlled pole balancing using an Arduino board

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

The first reason to use Arduino is its flexibility to adapt to different projects. AI requires
data recollection and this may be a difficult task because data is proprietary or cost prohibitive.
In this sense, Arduino is handy and very helpful for recollecting data from the world.

Arduino is reasonably priced for building several prototypes. Also, as shown in (López-

Rodríguez & Cuesta, 2016; Taha & Marhoon, 2018), is how feasible it is to build more than
one specific model or prototype with customizable devices, depending on the situation. The
low cost advantage also decreases barriers to perform a study in different areas of AI devices,
or reducing problems to replicate and produce multiple similar technologies that instantly
interact with the real world.

With these premises, this paper develops a dynamic balancing pole that AI manages

running in an Arduino microcontroller. Here, an RL agent, with the capacity to read sensors
and control the angles of servo motors that drive an x, y balancing pole, learns by itself how to
keep the pole balanced under noise disturbance, responding to natural changes of its
environment. The prototype demonstrates the capabilities of microcontrollers that have some
limitations, compared with regular desk computers, and how extensive is there potential.

Related work
The following section examines and evaluates works that are relevant to the planted

objectives and share common themes, strategies, and method elaboration.

Arduino fully managed systems
Due to their low and medium cost, Arduino-based projects can be produced or

recreated. Due to easy access to a variety of hardware resources, it is simple to execute multi-
purpose projects. A mobile robotic platform is presented in (Araújo et al., 2015). In the work,
it is claimed that robots must be as inexpensive as possible for students and researchers to
conduct real-world experiments. The work in (Ram et al., 2017) demonstrates the versatility of
Arduino when used in an IoT project, a proper power supply, wireless communication and
sensor devices are good features of working with Arduino boards. The Arduino microcontroller
is used in (González & Calderón, 2019) to build a Supervisory Control and Data Acquisition
(SCADA) system with high configuration possibilities, easy access to libraries and a fast
learning rate for new users. In (Wu et al., 2017) it is described the Arduino board's data
collection, tracking, and scalability projection capabilities.

The majority of the work discuss the low-cost advantages of Arduino projects, as well

as how to adapt or include more electronic devices to create more robust devices with no issues.
Furthermore, the majority of the works incorporate two elements: automation and real-time
operations. Arduino can conduct real-time operations without the use of simulations,
concentrating on the problems that are important to the target, enabling it to detect planning
mistakes or missed steps in the early stages of development. This has been a big help for
researches, both technically and theoretically, showing that Arduino is a very useful tool.

Artificial intelligence with microcontrollers

In (Jain, 2018), a self-driving car is demonstrated using a Raspberry Pi and a
Convolutional Neural Network. An Arduino board guides the movements of the vehicle. It
receives an order and drives the car in a specific direction. The author concludes that the car's
design and testing were successful. In addition, the work (López-Rodríguez & Cuesta, 2016)
shows a mobile robot for educational purposes based on Android and Arduino. The robot has
a light sensor, GPS, camera, accelerometer, Bluetooth, and Wi-Fi, and can accept commands
from a smartphone via an Internet connection. The author claims that software alteration can

192 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

be easily applied for future projects. In the third study (Lengare & Rane, 2015), image
processing is used to monitor the movements of a human arm and reproduce this action in a
robotic arm controlled by an Arduino. The author claims that an Arduino board can monitor
the robot's behavior; however, there are many ways to accomplish the same task.

It is clear from the previous work that the Arduino will perform actions with good

results if the instructions come from a logical process of an efficient AI or a human. The
argument is that with the use of a microcontroller, the majority of the work present no hardware
problems. As a consequence, with the right instructions, Arduino will perform a variety of
tasks. The intelligence of data analysis is executed outside the microcontroller in all previous
projects, but as further projects illustrate, it is also possible to code the intelligence or
incorporate learning techniques in the Arduino itself, without having to raise costs or resources.

Artificial Intelligence has shown better results than conventional approaches in several

of projects; these works involve intelligent agents that perform several tasks in pursuit of
optimum results. It was shown in (Jimenez et al., 2020; Salazar et al., 2013), that an intelligent
agent’s capable of considering timing, amount of water, and properly implementing them in
what they detail as Spatio-temporal variations of the soil–plant–atmosphere system, gathering
impressive results in terms of water efficiency and precision irrigation. As agents work with
microcontrollers like Arduino, they may create further applications. For example, (Mata-
Rivera et al., 2019) shows an intelligent traffic light control device that uses Arduino sensors
to detect the color of traffic lights, as well as the tone, distance, and motion of vehicles in the
streets where it is installed. The entire process is executed in Arduino, demonstrating how this
platform can perform complex tasks using machine learning techniques.

Since the recently mentioned works used an Arduino to carry out the whole operation,

these project reinforces the concept that Arduino hardware and software are plenty capable,
and assisting this study in realizing that AI can be implemented in a microcontroller. Of course,
Arduino has limitations, but the previous works only require a little extra effort to comprehend
the obstacles, adapt the prototype, and include RL.

Reinforcement learning in Real environments

The aim of developing robots is to allow them to participate in a real-world environment
where unexpected events can occur. The goal is to make machines more effective in performing
various tasks in a manner that is equivalent to, if not superior to, a human. To accomplish this
action in computers, a variety of techniques are used.

Three classifications of methods are given in (Kormushev et al., 2013), as well as

mentioned how computers can learn to deal with such tasks. Direct programming is defined as
the lowest method. This is more akin to a programming method than it is to learning. The
second method is imitation learning, which is more comparable to a learning strategy. The
problem with this approach is that it requires a specialist to perform a perfect presentation of
how to complete the job. The last method, RL is defined as a trial-and-error method that
explores the environment and the robot's body. RL has three benefits over the other two
approaches: learning new tasks, optimizing efficiency, and adapting to new situations.

RL has been used in real-world settings to solve physical problems in various

experiments, but simulations can also be used in training. According to (Pan et al., 2017),
depending on the context, the training will present undesirable driving behaviors that can cause
harm to the environment. As a result, depending on the case, a simulation or real-world
environment may be used to train a computer. The problem with transitioning from a virtual to

193 Artificial intelligence-controlled pole balancing using an Arduino board

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

a real-world environment is that it takes extra time to apply the learned skills to a different
scenario than the one in which they were educated. The research of (Miglino et al., 1995)
demonstrates how simulations can solve problems that appear to be closer to the original target
but are not; in other words, the simulation environment lacks realistic behavior. However,
conducting training in the real world poses a challenge; as mentioned in (Nagabandi et al.,
2018), samples can be extremely costly. The tools used can influence this complication about
cost of collecting samples. As mentioned, an Arduino’s main advantage is its low cost.

The work from (Gu et al., 2017) creates and trains a robot to open a door from scratch,

which is a realistic application that requires complex contact dynamics to imitate human
physical abilities. In addition, it demonstrates how real robotic platforms can perform physical
tasks in 3D real environments. It is also claimed that RL is an effective training method for
these systems. The work of (Sharma et al., 2020) uses a free-reward RL algorithm to teach a
robot how to travel properly within its structure and navigate, 20 hours of preparation, the
machine had mastered a variety of locomotion gaits. After a short time, the RL methods yielded
results. This research showed how RL can be used to teach an AI how to control its movements
in the real world, without wasting too much time in the training process.

Methodology
This section describes the proposed system, which learns to detect a properly stable

position. The construction of the balancing prototype has three main points to be described,
divided into the following sections: General description of the system. A detailed description
of the transmitter device. A detailed description of the receiver device. In the end, generating
an algorithmic description of the training process.

Problem Solving Phases
Problem Description

The structure to balance consists of a pole with a platform at the top, where objects can
be placed. The pole cannot stand up straight due to a flexible component in the base, the pole
is connected to this component which allows the pole to constantly bend in any direction. To
control the pole displacement, two servo motors are connected using a rigid wire. One servo
motor moves the pole up and down (north-south), the second moves the pole from left to right
(east-west). An upper view of the balancing structure shown in Figure 1 A, and a front view in
Figure 1 B.

Figure 1

A View of the Structure to Balance

194 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

 Analysis of the Problem
The first issue is to translate the environment in terms that is possible to convert into a

programming platform, select the correct data type, and attempt not to exceed the memory
capacity of the Arduino.

The speed execution of the code is enough to sustain the speed movement of the servo

motors. To train an agent and measure a reward, is necessary to measure after a change or move
is completed. The Arduino board can execute multiple moves virtually before a servo motor
actually has finished the first move. In other words, the measurement has some imprecision
issues, due to movements that are supposed to happen but are retarded because of inertial
forces.

Implementation

The agent’s work is to randomly explore the environment through its own actions. The
agent will try different moves depending of its actual state, meaning that the agent will increase
and decrease the angle in the servo, allowing the agent to explore which action will yield better
or worse results, depending on the detected state. The Q-matrix, also known as a Q-table,
represent the conditions and possible behavior of the agent represented. The dimensions of this
Q-matrix are 9x2, represented in Figure 2, where the number of columns represents the number
of possible actions from which the pole will pass. The number of files represents the inclination
states in which the platform will be.

Figure 2

Q-Matrix, States(Rows) and Actions (Columns)

The servo motors in use operate in degrees from 0⁰-180; one pushes the pole forward
or backward Figure 3 (a), while the other moves the pole left Figure 3 (c), or right Figure 3 (d).
However, if the system detects that is in balance, both servo motors will not move pole Figure
3 (b) and Figure 3 (e). The first column depicts the action of decreasing the current angle at
which the servo motor is located, while the second column depicts the action of raising the
current angle at which the servo motor is located. The servo motor has 144⁰ of inclination since
the eighth row is 8, which is the highest value that can be found in this matrix beginning at
state 0 from 0⁰, in the servo motor.

The error to balance the pole is 18⁰ due to the Q-matrix design. Both servos increase or

decrease its angle 18⁰, the angle was chosen to save space memory in Arduino, and also the
servo motors have a better response with angle variations of a larger magnitude, one-degree
variation will be a good improvement, but better precision servo motors are required.

195 Artificial intelligence-controlled pole balancing using an Arduino board

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

Figure 3

Possible actions performed by the servos

The prototype stabilizes the post in 18 steps, with each servo performing nine steps

simultaneously, in a worst-case scenario. Delays measured in the servo's movement speed,
allowing the balancing time to increase or decrease. Servos perform angle variations every 200
milliseconds; hence these nine moves can be completed in less than 1800 milliseconds. In the
worst-case scenario, the prototype's balancing time is nearly two seconds.

System description

The prototype design is structured by two devices working together to balance the pole,
as seen in Figure 4. This details which component is connected and how it communicates and
flows. It is known as a Q-table, from upper components to which are below. the device A and
B have wireless communication, the implementation and a deeper description of the internal
process of each device will be described in the following sections. Device A, due to its
structure, could be reused in more areas to estimate more precise position changes. The device
B does not have the same reuse capacity; it has to be modified depending on the balanced
structure.

Figure 4

Prototype Whole Process Flow Diagram

Device A
Has the task to recollect and notify position changes of the platform in which it is

placed. Figure 5 shows the electronic elements used as the Arduino Nano, the accelerometer
and gyroscope that are in the MPU6050 sensor, and the nRF24L01 RF transceiver. Device A
performs the flow process in Figure 6.

196 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

Figure 5

Device B

This device, managed by Arduino Uno, will execute the process from Figure 7.
Afterwards, the Train process finishes and will execute the steps from Figure 8. Device A in
Figure 5 shows the two servo motors, that manage the positions of the pole, also have the
nRF24L01 RF transceiver for wireless communication.

Figure 6

Arduino NANO Process Flow Diagram

Device A process
Setup and Loop Functions

The setup and loop functions are the two main functions of most Arduino programs.
After uploading the program to an Arduino microcontroller, the setup function is the first to
run. The loop function is a loop that repeats the actions inside the microcontroller until the
microcontroller resets or the power supply is disconnected. Both functions are required in
Arduino programs.

Sense and Transmission Flow Process

The Arduino Nano carries out the entire process depicted in Figure 6. First, is the setup
function, where all variables of the accelerometer and gyroscope in the three-axis x, y, and z
are initialized in the variable initialization step. The data rate in symbols per second (baud) has
several bits per second (bps) in which the Arduino will communicate during the transmission
of data is setup. Sensor initialization begins the MPU6050 functionality after ensuring that it
is operational. The Power Amplifier level, the channel between 2.400 and 2.524 GHz, the data
rate, and the address of the receiver to which we will send data, are all set up in the wireless
communication initialization step.

197 Artificial intelligence-controlled pole balancing using an Arduino board

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

The loop, as seen in Figure 6, is the second part that constantly reads position changes.
MPU6050 is constantly read during sensor reading, and the data obtained is then sent to data
processing, where all information is processed in degrees and g (terms of standard gravity).
After that, data transmission begins, which reports the changes in the pole's extreme to the
Arduino UNO.

Device B process
Train Flow Process

Setup in Figure 7 and Figure 6 are very similar, except for the variables initialization
step with the R and Q matrices for the training process. As seen in Figure 6, use the same
parameters for wireless communication initialization.

In the loop section, the data reception is emitted from the accelerometer in the Arduino

Nano. Action Selection consists of a random selection of the available options from the servo
motors. Now Perform action executes the selected action from the previous step. Calculating a
reward is the next step, updating the Q-table. A fixed number of iterations is achieved all the
steps are repeated. The end section is saving the experience that is in the Q-table, earned in the
loop section for forthcoming testing.

Figure 7

Arduino UNO Train Phase Process Flow Diagram

Figure 8

Testing Flow Process

Setup in Figure 7 and Figure 6 show the same steps. Then in the loop function, the data
reception is received from the Arduino Nano, then it checks the Q-table, selects the best option,

198 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

and performs the action selected in the servo motors establishing the balance and repeating the
process from the data reception.

Code structure

The pseudocode from Figure 9 is train agent and executed to train the agent. The input
of the algorithm are the variables that describe the current state of the environment.

First are initialized the different variables the Qm is Q-matrix and all the values are

initialized from zero, which will present changes in the values while learns the policy, K is the
number of limited episodes, Moves is the variable that limits the number of moves an agent can
execute before finish an episode.

After the train starts, first are selected an x and y position, a random number selected

between the 0 and the number of columns for x and the number of files for y of the Qm matrix,
the variable Agent is assigned a random starting action from Qm[x][y] position.

The following inner loop works as a limited sequence of steps where the agent can

move around the environment until it reaches the goal or executes a limited number of moves
defined previously in the variable Moves. The function StepSelection looks at matrix Qm
neighborhood values, selects an action of the possible options. The possible options of the act
allow the agent to move in four possible ways; up, down, left, right.

Updating the variables Agent, x, y, depend on the previous move. The variable State

saves the new environment variables. The matrix Qm updates the index x, y value calling the
function reward, which uses the variables State and action to calculate the new value function
Reward.

If the agent reaches the goal state the episode finishes, otherwise this inner loop is

repeated until the end of the allowed number of steps. The output is a Q-table matrix, the Qm
which has the experience obtained after the agent exploration.

Figure 9

Agent Training Pseudocode

199 Artificial intelligence-controlled pole balancing using an Arduino board

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

Results
Table 1 shows the Q-table values for the servo motor that pushes the pole left and right,

while Table 2 shows the Q-table values for the second servo motor's forward and backward.
The table depicts the Q-table during various training episodes, and it is possible to observe how
the absolute value rises. The 0 value does not change during training because the episode ends
when it enters this state; this state is considered the most stable because it receives a reward of
0, while the other states receive a punishment depending on the platform's inclination. It is easy
to see how values that are farther from the stable state are punished more severely, resulting in
extreme values gaining more knowledge, or learning faster than states closer to the optimal
state. As compared to Q-tables with more iterations, it is possible to see that certain values in
one column that should be lower than the other column are not. In the first 50 episodes in the
table Q-table from Table 1, it was determined that the agent does not have the experience to
choose the proper actions at this point in the training.

Table 1

Agent 1 Q-table Evolution of Values at Different Training Episodes

EPISODE
100 500 1000

State Actions

0 -7.63 -7.63 -16.42 -16.42 -16.13 -16.13

1 -7.59 -5.66 -17.45 -13.32 -17.44 -13.32

2 -3.91 -3.06 -12.95 -9.45 -12.96 -8.38

3 -1.44 -1.76 -6.56 -4.94 -8.48 -3.93

4 0 0 0 0 0 0

5 -0.86 -0.54 -1.00 -2.33 -1.00 -2.75

6 -3.10 -4.99 -3.90 -7.04 -3.90 -6.77

7 -7.04 -9.41 -8.51 -13.99 -8.51 -12.37

8 -9.49 -9.49 -12.66 -12.66 -12.66 -12.66

Table 2

Agent 2 Q-table Evolution of Values at Different Training Episodes

EPISODE
50 100 500 1000

State Actions

0 -3.254 -3.54 -3.254 -3.54 -9.02 -9.02 -14.30 -14.30

1 -2.15 -1.73 -17.45 -1.73 -10.21 -8.22 -15.15 -13.49

2 -3.35 -2.24 -12.95 -2.24 -9.13 -7.74 -13.52 -10.74

3 -3.75 -2.77 -6.56 -2.77 -9.04 -3.99 -11.75 -6.32

4 0 0 0 0 0 0 0 0

5 -0.83 -0.47 -0.83 -0.47 -1.00 -1.46 -1.00 -1.67

6 -1.18 -1.73 -1.18 -1.73 -2.68 -3.38 -1.90 -3.40

7 -2.68 -4.69 -2.68 -4.69 -3.71 -7.44 -3.71 -6.50

8 -5.78 -5.78 -5.78 -5.78 -7.34 -7.34 -7.34 -7.34

In the cumulative reward Figure 10, the x-axis represents the number of episodes

trained, while the y-values represent the absolute value total of each variable corresponding to
the Q-table. The graphic demonstrates that the agent is learning, gaining experience after each
iteration from the first to the nth episode. Figure 10 plots a summary of all the learning work,

200 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

both curves present a general growth doing decently. Over the last two hundred iterations agent
1 does not have a noticeable increase in comparison to earlier episodes. Agent 2 shows that it
could improve its experience, this behavior comes from the random aspect of the training
process, at some episodes would have a noticeable increase in comparison to earlier episodes,
this behavior comes from the random aspect of the training process, at some episodes will have
a noticeable.

Figure 10

 Cumulative Reward as a Function of the Number of Episodes, from both Agents

In Figure 11 are the Q-matrix at episode 100 and 1000, of both agents. The colors with
a more negative value represent a higher point and have a darker color, while values closer to
zero are more clear and lower points. The agent's path will be the clearest option where it would
be located, at episode 1000, the disparity in colors between the different states of the Q-matrix
is more apparent compared at episode 100, where the path to follow is somewhat diffuse.

Figure 11

Agent 1 and Agent 2 Heatmap Q-matrix representation

The pole is at the leftmost position; Figure 12 A depicts the direction in which the servo
will move the pole; internally, the agent determines which alternative is most appropriate.
Figure 12 B is a basic example that concludes when the pole is balanced.

37,33
66,93

79,21
95,22

112,01
130,52

133,94

132,74

133,13

131,83

130,43

128,6

22,62
42,67 45,89

55,51

72,48 80,69 86,38
87,02 93,8 100,83

99,52
102,26

110,79

0
20
40
60
80

100
120
140
160

50 100 150 200 300 450 500 600 700 750 800 900 950 1000

Re
w

ar
d

Iteration

201 Artificial intelligence-controlled pole balancing using an Arduino board

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

Figure 12

Prototype balancing the pole simple case

Figure 13 shows an interesting behavior, which an external disturbance is manually

introduced, tilting the base, similar to what happens in air and sea ships. The agents must now
solve a fresh and unexpected problem.

In Figure 13 A, B, C, the agent 2, tilted back, is in charge of balancing the pole in a

forward-backward motion. Agent 2 begins to increase the servo's angle by 18 degrees until it
is balanced in this direction; nevertheless, this movement has influenced the pole's correct
position in the left-right direction; as a result, agent 1 begins to tilt the pole to the left, Figure
13 D, E, and F depict the prototype's last steps in a real-world scenario.

Figure 13

Prototype behavior tilting the platform

202 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

Figure 14 is an internal representation of the actual behavior after finishing the training
following a path and choosing the clearest option, depicting the direction that agent 1 will take
if it is in the rightmost state, a right inclination. Agent 1 will gradually shift the pole to the left
until it reaches the state in row 4. The agent 2 detects that is at a state 0, thanks to the
sensometer, which means the platform is facing backward, and it will shift to the front by
increasing the signal sent to the servo motor by 18⁰, moving from state 0 to state 4.

Figure 14

Internal Behavior of Agents

Conclusions
This project includes a study of Arduino microcontrollers, some of their peripherals,

and the implementation of a RL agent in a completely Arduino-based prototype consisting of
two devices that operate by wireless communication. Within the experimental limitations, the
automation process implementation with Artificial Intelligence and RL agents running in
Arduino boards, presented very promising results that, in principle, can extend to more
complex intelligent machines in the real world. This will require increasing the number of
variables, the resolution of the sensors, the power of the actuators, etc. According to the
obtained results during the project’s execution, the following facts can be concluded:

• The restricted memory space of the Arduino for storing variables is not a barrier to

running learning RL algorithms. In particular, Q-learning algorithms can be fully
implemented in current Arduino microcontrollers, as demonstrated.

• In the real world, most environments are analog; however, as demonstrated in this
study, using Q-learning and a finite Q-matrix it is possible to convert analog changes
in discrete signals and use them to control a pole balancing situation.

• Wireless communication adds value to Arduino projects by allowing them to collect
data and/or send instructions in complex environments with limited space and/or
constant movement. Also, opens possible valuable applications in the world of the
Internet of things (IoT).

• Agents and RL algorithms are powerful tools because they allow robots to train
themselves in many tasks, such as maintaining dynamic balance using only their
implemented components such as sensors and actuators.

203 Artificial intelligence-controlled pole balancing using an Arduino board

Revista Tecnológica Espol – RTE Vol. 33, N° 2 (Noviembre, 2021)

• Arduino platforms have access to a variety of peripherals with methodical inclusion,
and is a fertile ground to work and develop self-learning macro sensors, robots, and
control systems.

Referencias
Araújo, A., Portugal, D., Couceiro, M. S., & Rocha, R. P. (2015). Integrating Arduino-based educational mobile

robots in ROS. Journal of Intelligent \& Robotic Systems, 77(2), 281–298.

Azadeh, K., De Koster, R., & Roy, D. (2019). Robotized and automated warehouse systems: Review and recent
developments. Transportation Science, 53(4), 917–945.

Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H. S., Kohli, P., & Whiteson, S. (2017). Stabilising
experience replay for deep multi-agent reinforcement learning. International Conference on Machine
Learning, 1146–1155.

Garcia, J., & Shafie, D. (2020). Teaching a humanoid robot to walk faster through Safe Reinforcement
Learning. Engineering Applications of Artificial Intelligence, 88, 103360.

González, I., & Calderón, A. J. (2019). Integration of open source hardware Arduino platform in automation
systems applied to Smart Grids/Micro-Grids. Sustainable Energy Technologies and Assessments, 36,
100557.

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates. 2017 IEEE International Conference on Robotics and Automation
(ICRA), 3389–3396.

Hyon, S.-H., Hale, J. G., & Cheng, G. (2007). Full-body compliant human--humanoid interaction: balancing in
the presence of unknown external forces. IEEE Transactions on Robotics, 23(5), 884–898.

Jain, A. K. (2018). Working model of self-driving car using convolutional neural network, Raspberry Pi and
Arduino. 2018 Second International Conference on Electronics, Communication and Aerospace
Technology (ICECA), 1630–1635.

Jimenez, A.-F., Cardenas, P.-F., Canales, A., Jimenez, F., & Portacio, A. (2020). A survey on intelligent agents
and multi-agents for irrigation scheduling. Computers and Electronics in Agriculture, 105474.

Korkmaz, H., Ertin, O. B., Kasnako\uglu, C., & others. (2013). Design of a flight stabilizer system for a small
fixed wing unmanned aerial vehicle using system identification. IFAC Proceedings Volumes, 46(25),
145–149.

Kormushev, P., Calinon, S., & Caldwell, D. G. (2013). Reinforcement learning in robotics: Applications and
real-world challenges. Robotics, 2(3), 122–148.

Lengare, P. S., & Rane, M. E. (2015). Human hand tracking using MATLAB to control Arduino based robotic
arm. 2015 International Conference on Pervasive Computing (ICPC), 1–4.

López-Rodríguez, F. M., & Cuesta, F. (2016). Andruino-A1: Low-Cost Educational Mobile Robot Based on
Android and Arduino. Journal of Intelligent and Robotic Systems: Theory and Applications, 81(1), 63–
76. https://doi.org/10.1007/s10846-015-0227-x

Mata-Rivera, M. F., Zagal-Flores, R., & Barría-Huidobro, C. (2019). Telematics and Computing: 8th
International Congress, WITCOM 2019, Merida, Mexico, November 4--8, 2019, Proceedings (Vol.
1053). Springer Nature.

Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving mobile robots in simulated and real environments.
Artificial Life, 2(4), 417–434.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel, P., Levine, S., & Finn, C. (2018). Learning to adapt
in dynamic, real-world environments through meta-reinforcement learning. ArXiv Preprint

204 José Revelo, Oscar Chang

Escuela Superior Politécnica del Litoral. ESPOL

ArXiv:1803.11347.

Pan, X., You, Y., Wang, Z., & Lu, C. (2017). Virtual to real reinforcement learning for autonomous driving.
ArXiv Preprint ArXiv:1704.03952.

Ram, S. A., Siddarth, N., Manjula, N., Rogan, K., & Srinivasan, K. (2017). Real-time automation system using
Arduino. 2017 International Conference on Innovations in Information, Embedded and
Communication Systems (ICIIECS), 1–5.

Salazar, R., Rangel, J. C., Pinzón, C., & Rodríguez, A. (2013). Irrigation system through intelligent agents
implemented with arduino technology.

Sharma, A., Ahn, M., Levine, S., Kumar, V., Hausman, K., & Gu, S. (2020). Emergent real-world robotic skills
via unsupervised off-policy reinforcement learning. ArXiv Preprint ArXiv:2004.12974.

Sun, M., Luan, T., & Liang, L. (2018). RBF neural network compensation-based adaptive control for lift-
feedback system of ship fin stabilizers to improve anti-rolling effect. Ocean Engineering, 163, 307–
321.

Taha, I. A., & Marhoon, H. M. (2018). Implementation of controlled robot for fire detection and extinguish to
closed areas based on Arduino. Telkomnika, 16(2), 654–664.

Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., & Guzzo, J. A. (2017). A fog computing-
based framework for process monitoring and prognosis in cyber-manufacturing. Journal of
Manufacturing Systems, 43, 25–34.

	Resumen
	Introduction
	Related work
	Arduino fully managed systems
	Artificial intelligence with microcontrollers
	Reinforcement learning in Real environments

	Methodology
	Problem Solving Phases
	System description
	Device A process
	Device B process
	Code structure

	Results
	Conclusions
	Referencias

